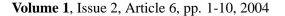


The Australian Journal of Mathematical Analysis and Applications

AJMAA



FIXED POINT THEOREMS FOR A FINITE FAMILY OF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

E. PREMPEH

Received 19 May 2004; accepted 19 September 2004; published 25 November 2004. Communicated by: Yeol Je Cho

DEPARTMENT OF MATHEMATICS, KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA

edward_prempeh2000@yahoo.com

ABSTRACT. Let E be a real reflexive Banach space with a uniformly Gâteaux differentiable norm, K be a nonempty bounded closed convex subset of E, $T_i: K \to K, i=1,2,\ldots,r$ be a finite family of asymptotically nonexpansive mappings such that for each i, $\{k_{n_i}\} \subset [1,\infty)$. Let $\bigcap_{i=1}^r F(T_i)$ be a nonempty set of common fixed points of $\{T_i\}_{i=1}^r$ and define

$$S^n := \alpha_0 I + \alpha_1 T_1^n + \alpha_2 T_2^n + \dots + \alpha_r T_r^n,$$

 $n \ge 1$. Let $u \in K$ be fixed and let $\{t_n\} \subset (0,1)$ be such that $t_n \to 1$ as $n \to \infty$. We prove that the sequence $\{x_n\}_n$ satisfying the relation

$$x_n = (1 - \frac{t_n}{p_n})u + \frac{t_n}{p_n}S^n x_n,$$

 $p_n \in [1, \infty)$ associated with S^n , converges strongly to a fixed point of S provided E possesses uniform normal structure. Futhermore we prove that the iterative process: $z_1 \in K$,

$$z_{n+1} := (1 - \frac{t_n}{p_n})u + \frac{t_n}{p_n}S^n z_n,$$

 $n \ge 1$, converges strongly to a fixed point of S.

Key words and phrases: Asymptotically Nonexpansive Mappings, Banach Limits, Uniformly Gâteaux differentiable norm, Fixed points.

2000 Mathematics Subject Classification. 47H06, 47H09, 47J25.

ISSN (electronic): 1449-5910

^{© 2004} Austral Internet Publishing. All rights reserved.

1. Introduction

Let E be a Banach space and K a nonempty subset of E. The mapping $T: K \to K$ is said to be Lipschitzian if for any integer $n \ge 1$, there exists a constant $k_n > 0$ such that $||T^nx - T^ny|| \le k_n ||x - y||$ for all $x, y \in K$. A Lipschitzian mapping T is called uniformly k-Lipschitzian if $k_n = k$ for all $n \ge 1$, nonexpansive if $k_n = 1$ for all $n \ge 1$, and asymptotically nonexpansive if $k_n \in [1, \infty)$ and $\lim_n k_n = 1$.

In [1] Kirk introduced an iterative process given by

$$(1.1) x_{n+1} := \alpha_0 x_n + \alpha_1 T x_n + \alpha_2 T^2 x_n + \dots + \alpha_r T^r x_n,$$

where $\alpha_i \geq 0$, $\alpha_0 > 0$ and $\sum_{i=0}^r \alpha_i = 1$, for approximating fixed points of nonexpansive mappings on convex subsets of uniformly convex Banach spaces. Maiti and Saha [2] extended the results of Kirk as follows:

Let K be a nonempty closed convex and *bounded* subset of a real Banach space E. Let $T_i: K \to K$, for i = 1, 2, ..., r be nonexpansive mappings and let

$$(1.2) S := \alpha_0 I + \alpha_1 T_1 + \alpha_2 T_2 + \dots + \alpha_r T_r,$$

where $\alpha_i \geq 0$, $\alpha_0 > 0$ and $\sum_{i=0}^r \alpha_i = 1$. Mappings T_i , $i = 1, 2, \ldots, r$ with nonempty common fixed points set $D := \cap_{i=1}^r F(T_i)$ where $F(T_i) := \{x \in K : T_i(x) = x\}$ in K are said to satisfy condition A: (see, e.g., [2], [3], [4]) if there exists a nondecreasing function $f: [0, \infty) \to [0, \infty)$ with f(0) = 0, f(r) > 0 for $r \in (0, \infty)$, such that $||x - Sx|| \geq f(d(x, D))$ for all $x \in D$, where $d(x, D) := \inf\{||x - z|| : z \in D\}$.

In [3], Liu, Lei and Li introduced an iteration process

$$(1.3) x_{n+1} := Sx_n$$

where $x_1 \in K$, and showed that $\{x_n\}_n$ defined by (1.3) converges to a common fixed point of $\{T_i, i = 1, 2, ..., r\}$ in Banach spaces provided that $T_i, i = 1, 2, ..., r$ satisfy condition A.

In [5] Jung removed the *strong* condition A and proved the following (though not applicable to L_p spaces 1):

Let E be a reflexive and strictly convex Banach space with uniformly $G\hat{a}$ teaux differentiable norm. Let $T_i: E \to E, \ i=1,2,\ldots,r$ be nonexpansive mappings and $\{x_n\}_n$ be a sequence in E defined by the recursion relation (1.3) and suppose that $J^{-1}: E^* \to E$ is weakly sequentially continuous at 0 if $\bigcap_{i=1}^r F(T_i)$ is nonempty, then $\{x_n\}_n$ converges weakly to a common fixed point of $\{T_1, T_2, \ldots, T_r\}$.

Chidume, Zegeye and Prempeh [6] proved the following theorem which does not require condition A, and is applicable to Banach spaces including L_p spaces, 1 , and the convergence is strong:

Theorem CZP. [6]. Let K be a nonempty closed convex subset of a strictly convex real Banach space E which has uniformly Gâteaux differentiable norm. Assume K is a sunny nonexpansive retract of E with Q as sunny nonexpansive retraction. Let $T_i: K \to E, i=1,2,\ldots,r$ be a family of nonexpansive weakly inward mappings. Assume that every nonempty closed bounded convex subset of K has the fixed point property for nonexpansive mappings. For given $u, x_1 \in K$, let $\{x_n\}$ be generated by the algorithm

$$(1.4) x_{n+1} = \alpha_n u + (1 - \alpha_n) QSx_n, \ n \ge 1,$$

where $S:=a_0I+a_1T_1+\cdots+a_rT_r$, for $0< a_i<1,\ i=0,1,2,\ldots,r$, $\sum_{i=0}^r a_i=1$, and $\{\alpha_n\}$ is a real sequence which satisfies the following conditions: (i) $\lim \alpha_n=0$; (ii) $\sum \alpha_n=\infty$ and (iii) $\lim \frac{|\alpha_n-\alpha_{n-1}|}{\alpha_n}=0$. Then $\{x_n\}$ converges strongly to a common fixed point of $\{T_1,T_2,\ldots,T_r\}$.

Most recently Chidume and Udomene [7] have proved the following:

Let E be a real reflexive Banach space with a uniformly Gâteaux differentiable norm, K be a nonempty bounded closed convex subset of E, $T:K\to K$ be asymptotically nonexpansive mapping with sequence $\{k_n\}_n\subset [1,\infty)$. Let $u\in K$ be fixed and let $\{t_n\}\subset (0,1)$ be such that $t_n\to 1$ as $n\to\infty$, then the sequence $\{x_n\}_n$ satisfying the relation

(1.5)
$$x_n := \left(1 - \frac{t_n}{k_n}\right)u + \frac{t_n}{k_n}T^n x_n, \ n \ge 1$$

converges strongly to a fixed point of T provided $||x_n - Tx_n|| \to 0$ as $n \to \infty$ and E possesses uniform normal structure. Furthermore the iterative process $z_1 \in K$,

(1.6)
$$z_{n+1} := \left(1 - \frac{t_n}{k_n}\right)u + \frac{t_n}{k_n}T^n z_n, \ n \ge 1$$

converges strongly to a fixed point of T.

Given that $T_i: K \to E$ for $i = 1, 2, \dots, r$, T_i asymptotically nonexpansive and

$$S := \alpha_0 I + \alpha_1 T_1 + \dots + \alpha_r T_r,$$

then we are especially informed by the modified Mann iteration method, Schu [8] (See Theorem 1.5) to define for all $n \ge 1$,

$$S^n := \alpha_0 I + \alpha_1 T_1^n + \dots + \alpha_r T_r^n.$$

Our main purpose in this paper to extend the Theorem CZP to a family of asymptotically nonexpansive mappings $\{T_i\}_{i=1}^r$ with common fixed point set $D := \bigcap_{i=1}^r F(T_i)$.

2. PRELIMINARIES

Let E with dual E^* be a Banach space. E is said to be *smooth* if for each $x \in S(0,1)$ the unit sphere of E, the limit

(2.1)
$$\vartheta = \lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t},$$

exists for all $y \in S(0,1)$. If this limit exists and is attained uniformly in $x,y \in S(0,1)$, then E is said to be *uniformly smooth*. The norm is said to be *uniformly Gâteaux differentiable* if for each $y \in S(0,1)$, the limit exists uniformly for $x \in S(0,1)$.

The normalised duality mapping $J: E \to E^*$, defined by

$$J(x) := \{x^* \in E^* : \langle x, x^* \rangle = ||x||^2 = ||x^*||^2\}, x \in E.$$

If E is smooth the duality mapping is single-valued, and if E has a uniformly $G\hat{a}$ teaux differentiable norm then the duality mapping is $norm-to-weak^*$ uniformly continuous on bounded sets. (See [6], [7], [9])

Let K be a nonempty closed convex and bounded subset of the Banach space E. Let the *diameter* of K be defined by $d(K) := \sup\{\|x - y\| : x, y \in K\}$. For each $x \in K$, let

 $r(x,K) := \sup\{\|x-y\| : y \in K\}$ and denote the $\check{C}eby\check{s}ev$ radius of K by $r(K) := \inf\{r(x,K) : x \in K\}$. The *normal structure coefficient* of K, denoted by

$$N(K) := \inf\{\frac{d(K)}{r(K)} : K \text{is closed convex bounded subset of E with } d(K) > 0\}$$

(See [10]). A space E such that N(E) > 1 is said to have *uniform normal structure*. It is known that a space with uniform structure is reflexive and that all uniformly convex or uniformly smooth Banach spaces have uniform normal structure. (See [9]).

Let LIM be a Banach limit. $LIM \in (l^{\infty})^*$ such that ||LIM|| = 1, $\liminf a_n \leq LIM_n a_n \leq \limsup a_n$ and $LIM_n a_n = LIM_n a_{n+1}$ for all $\{a_n\} \in l^{\infty}$. Furthermore if $\{a_n\}_n$, $\{b_n\}_n \in l^{\infty}$ then

(2.2)
$$\limsup a_n + LIM_n b_n \le \limsup (a_n + b_n).$$

(See [7])

A Banach space E is said to be *strictly convex* if $\|\frac{x_1+x_2+\cdots+x_r}{r}\| < 1$ for $x_i \in E$, $i=1,2,\ldots,r$ with $\|x_i\|=1,\ i=1,2,\ldots,r$ and $x_i \neq x_j$, for some $i\neq j$. In a strictly convex Banach space E, we have that if $\|x_1\|=\|x_2\|=\cdots=\|x_r\|=\|\alpha_1x_1+\alpha_2x_2+\cdots+\alpha_rx_r\|$, for $x_i\in E,\ \alpha_i\in(0,1),\ i=1,2,\ldots,r$ and such that $\sum_{i=1}^r\alpha_i=1$ then $x_1=x_2=\cdots=x_r$. (See [6]).

We shall require the following technical lemmas in the sequel.

Lemma 2.1. ([11]). Let E be an arbitrary normed space. For each $x, y \in E$ and $j \in J(x + y)$ we have

$$||x+y||^2 \le ||x||^2 + 2 < y, j >$$

Lemma 2.2. ([9]). Suppose E is a Banach space with uniform normal structure, K is a non-empty bounded subset of E and $T: K \to K$ is a uniformly k-Lipschtzian mapping with $k < N(E)^{\frac{1}{2}}$. Suppose also there exists a nonempty bounded closed convex subset C of K with the following property (P):

(P): $x \in C$ implies $\omega_w(x) \subset C$ where ω_w is the weak $\omega - limit$ set of T at x, that is, the set

$$\{y \in E : y = weak - lim_j T^{n_j} x \text{ for some } n_j \uparrow \infty\}.$$

Then T has a fixed point in C.

Lemma 2.3. ([12]). Let $\{a_n\}_n$ be a sequence of nonnegative real numbers satisfying the following relation: $a_{n+1} \leq (1 - \alpha_n)a_n + \sigma_n$, $n \geq 1$ where (i) $0 < \alpha_n < 1$; (ii) $\sum_{n=1}^{\infty} \alpha_n = \infty$. Suppose, either (a) $\sigma_n = o(\alpha_n)$, or (b) $\limsup \sigma_n \leq 0$. Then $a_n \to 0$ as $n \to \infty$.

3. MAIN RESULTS

We now prove the following lemma and theorems. In the sequel we denote k_{n_i} as the Lipschitz's constant of T_i^n .

Lemma 3.1. Let K be a nonempty closed convex subset of a strictly convex Banach space E. Let $T_i: K \to E, i = 1, 2, ..., r$ be a family of asymptotically nonexpansive mappings such that $\bigcap_{i=1}^r F(T_i) \neq \emptyset$. Let $\alpha_0, \alpha_1, \alpha_2, ..., \alpha_r$ be a finite number of real numbers in (0,1) such that $\sum_{i=0}^r \alpha_i = 1$ and for $n \geq 1$ let $S^n := \alpha_0 I + \alpha_1 T_1^n + \cdots + \alpha_r T_r^n$. Then (i) S is asymptotically nonexpansive and (ii) $F(S) = \bigcap_{i=1}^r F(T_i)$.

Proof. (i) Let $x, y \in K$ and for each $n \ge 1$, for $1 \le i \le r$, $||T_i^n x - T_i^n y|| \le k_{n_i} ||x - y||$, $k_{n_i} \ge 1$ and $\lim_n k_{n_i} = 1$.

$$||S^{n}x - S^{n}y|| = ||(\alpha_{0}x + \alpha_{1}T_{1}^{n}x + \dots + \alpha_{r}T_{r}^{n}x) - (\alpha_{0}y + \alpha_{1}T_{1}^{n}y + \dots + \alpha_{r}T_{r}^{n}y)||$$

$$\leq \alpha_{0}||x - y|| + \sum_{i=1}^{r} \alpha_{i}k_{n_{i}}||x - y||$$

$$\leq \alpha_{0}||x - y|| + p_{n}||x - y|| \sum_{i=1}^{1} \alpha_{i}, p_{n} := \max\{k_{n_{i}}, i = 1, 2, \dots, r\}$$

$$= [(1 - \sum_{i=1}^{r} \alpha_{i}) + p_{n} \sum_{i=1}^{r} \alpha_{i}]||x - y||$$

$$= [1 + (p_{n} - 1) \sum_{i=1}^{r} \alpha_{i}]||x - y||$$

$$\leq p_{n}||x - y||$$

where $p_n \ge 1$ for all n and $\lim_n p_n = 1$. Therefore S is asymptotically nonexpansive. (ii) Let $w \in \bigcap_{i=1}^r F(T_i)$, then $\forall i, T_i w = w$. Then:

$$Sw = \alpha_0 w + \alpha_1 T_1 w + \dots + \alpha_r T_r w$$
$$= w \sum_{i=0}^{r} \alpha_i$$
$$= w$$

Thus $\cap_{i=1}^r F(T_i) \subset F(S)$.

Next we show that $F(S) \subset \bigcap_{i=1}^r F(T_i)$. Suppose $v \in F(S)$, then $v \in F(S^n)$ and for $w \in \bigcap_{i=1}^r F(T_i)$, we have

$$\|v - w\| = \|\alpha_0 v + \alpha_1 T_1^n v + \dots + \alpha_r T_r^n v - w\|$$

$$= \|\alpha_0 (v - w) + \alpha_1 (T_1^n v - w) + \dots + \alpha_r (T_r^n v - w)\|$$

$$\leq \alpha_0 \|v - w\| + \sum_{i=1}^r \alpha_i \|T_i^n v - w\|.$$

Then taking \lim_n throughout we have:

$$||v - w|| \leq \lim \{\alpha_0 ||v - w|| + \sum_{i=1}^r \alpha_i ||T_i^n v - w|| \}$$

$$= \alpha_0 ||v - w|| + \sum_{i=1}^{r-1} \alpha_i \lim ||T_i^n v - w|| + \alpha_r \lim ||T_r^n v - w||$$

$$\leq \alpha_0 ||v - w|| + \sum_{i=1}^{r-1} \alpha_i \lim k_{n_i} ||v - w|| + \lim \alpha_r ||T_r^n v - w||$$

$$\leq \alpha_0 ||v - w|| + \sum_{i=1}^r \alpha_i \lim k_{n_i} ||v - w||$$

$$\leq \alpha_0 \|v - w\| + \sum_{i=1}^r \alpha_i \lim p_i \|v - w\|
= \|v - w\| \sum_{j=0}^r \alpha_j
= \|v - w\|.$$

From the foregoing we have

$$||v - w|| = \sum_{j=0}^{r-1} \alpha_j ||v - w|| + \alpha_r \lim ||T_r^n v - w||$$

therefore

$$\alpha_r \|v - w\| = \alpha_r \lim \|T_r^n v - w\|.$$

Hence,

$$||v - w|| = \lim ||T_r^n v - w||.$$

Similarly we have

$$||v - w|| = \lim ||T_i^n v - w||, i = 1, 2, \dots, r - 1$$

but also

$$||v - w|| = ||\alpha_0(v - w) + \sum_{i=1}^r \alpha_r(T_i^n v - w)||.$$

By strict convexity of E,

$$v - w = \lim(T_i^n v - w), i = 1, 2, \dots, r.$$

Hence

(3.1)
$$v = \lim T_i^n v, \ i = 1, 2, \dots, r.$$

Then, $T_i v = \lim T_i(T_i^n v) = \lim T_i^{n+1} v = v$, by (3.1). Therefore $T_i v = v$, i = 1, 2, ..., r. Hence $v \in F(T_i)$, i = 1, 2, ..., r, and so $v \in \cap_{i=1}^r F(T_i)$ implying that $F(S) \subset \cap_{i=1}^r F(T_i)$. Hence $F(S) = \cap_i^r F(T_i)$, for $n \in \mathbb{N}$.

Theorem 3.2. Let E be a real Banach space with a uniformly Gâteaux differentiable norm possessing uniform normal structure, K a nonempty closed convex and bounded subset of E, $S: K \to K$ an asymptotically nonexpansive mapping with $\{p_n\}_n \subset [1,\infty)$. Let $u \in K$ be fixed, $\{t_n\}_n \subset (0,1)$ be such that $\lim t_n = 1$, and $\lim \frac{p_n-1}{p_n-t_n} = 0$. Then (i) for each integer $n \geq 1$, there exists a unique $x_n \in K$ such that

(3.2)
$$x_n = (1 - \frac{t_n}{p_n})u + \frac{t_n}{p_n}S^n x_n$$

and, if in addition, $\lim_{n\to\infty} ||x_n - Sx_n|| = 0$, then (ii) the sequence $\{x_n\}_n$ converges strongly to a fixed point of S.

Proof. First we observe that since N(E) > 1 and $p_n \to 1$ as $n \to \infty$ there exists an integer N > 0 and a constant L > 0 such that

$$p_n \le L \le N(E)^{\frac{1}{2}}, \forall n \ge N.$$

For each integer $n \geq 1$, the mapping $f_n : K \to K$ defined for each $u \in K$ by

$$f_n x := \left(1 - \frac{t_n}{p_n}\right) u + \frac{t_n}{p_n} S^n x$$

is a contraction. It follows that there exists a unique $x_n \in K$ such that $f_n x_n = x_n$. Define the mapping $\phi : K \to \mathbb{R}$ by

$$\phi(y) = LIM_n ||x_n - y||^2, \ \forall y \in K.$$

Since E is reflexive, $\phi(y) \to \infty$ as $\|y\| \to \infty$, ϕ is continuous and convex, there is some $x \in K$ such that $\phi(x) = \inf_{y \in K} \phi(y)$. Thus the set $K_{\min} := \{x \in K : \phi(x) = \inf_{y \in K} \phi(y)\} \neq \phi$. It is also convex and closed. Further, K_{\min} has property (P). This follows as in [7], [9]. Hence $K_{\min} \cap F(S) \neq \phi$.

Let $x^* \in K_{\min} \cap F(S)$ and let $t \in (0,1)$. Then $(1-t)x^* + tu \in K$. It follows that $\phi(x^*) \leq \phi((1-t)x^* + tu)$. Using inequality (2.3) we have

$$0 \leq \frac{\phi((1-t)x^* + tu) - \phi(x^*)}{t} \\ \leq -2LIM_n < u - x^*, j(x_n - x^* - t(u - x^*)) > .$$

This implies that $LIM_n < u - x^*, j(x_n - x^* - t(u - x^*)) > \le 0$. In the limit as $t \to 0$, since j is $norm - to - weak^*$ continuous, we have that

(3.3)
$$LIM_n < u - x^*, j(x_n - x^*) > \le 0.$$

Since S is asymptotically nonexpansive with $\{p_n\}_n \subset [1,\infty)$ we have

$$\langle x_n - S^n x_n, j(x_n - x^*) \rangle = \langle x_n - x^*, j(x_n - x^*) \rangle - \langle S^n x_n - x^*, j(x_n - x^*) \rangle$$

 $\geq \|x_n - x^*\|^2 - \|S^n x_n - x^*\| \|x_n - x^*\|$
 $\geq \|x_n - x^*\|^2 - p_n \|x_n - x^*\|^2$
 $= -(p_n - 1) \|x_n - x^*\|^2$
 $\geq -(p_n - 1) d^2$

where d = diam K. Since x_n is a fixed point of f_n , it follows that

$$x_n - S^n x_n = \frac{p_n - t_n}{t_n} (u - x_n)$$

and from the last inequality,

$$\frac{p_n - t_n}{t_n} < u - x_n, j(x_n - x^*) \ge -(p_n - 1)d^2$$

or

$$\langle x_n - u, j(x_n - x^*) \rangle \le \frac{t_n(p_n - 1)}{p_n - t_n} d^2$$

where $\frac{t_n(p_n-1)}{p_n-t_n} \to 0$ as $n \to \infty$. Therefore

(3.4)
$$\limsup \langle x_n - u, j(x_n - x^*) \rangle \leq 0.$$

We also have using (2.1)

$$\limsup ||x_n - x^*||^2 + LIM_n < x^* - u, j(x_n - x^*) > \le \limsup ||x_n - u, j(x_n - x^*)|| > 1$$

From inequalities (3.3) and (3.4) we deduce that

$$\limsup ||x_n - x^*||^2 \le \limsup |x_n - u, j(x_n - x^*)| >$$

 $\le 0.$

Hence $\{x_n\}_n$ converges strongly to $x^* \in F(S)$.

Theorem 3.3. Let E be a real Banach space with uniformly Gâteaux differentiable norm possessing uniform normal structure, K be a nonempty closed convex and bounded subset of E, $S: K \to K$ be an asymptotically nonexpansive mapping with sequence $\{p_n\}_n \subset [1,\infty)$. Let $u \in K$ be fixed, $\{t_n\}_n \subset (0,1)$ be such that $\lim t_n = 1$, $t_n p_n < 1$, and $\lim \frac{p_n - 1}{p_n - t_n} = 0$. Define the sequence $\{z_n\}_n$ iteratively by $z_1 \in K$,

(3.5)
$$z_{n+1} = \left(1 - \frac{t_n}{p_n}\right)u + \frac{t_n}{p_n}S^n z_n, \ n = 1, 2, \dots$$

Then

(i) for each integer $n \ge 1$, there is a unique $x_n \in K$ such that

$$x_n = (1 - \frac{t_n}{p_n})u + \frac{t_n}{p_n}S^nx_n;$$

and if in addition $\lim ||x_n - Sx_n|| = 0$, $||z_n - S^n z_n|| = o(1 - \frac{t_n}{p_n})$, then (ii) $\{z_n\}_n$ converges strongly to a fixed point of S.

Proof. From (3.2)

$$x_n - z_n = (1 - \frac{t_n}{p_n})(u - z_n) + \frac{t_n}{p_n}(S^n x_n - z_n).$$

Applying inequality (2.3), we have

$$\begin{split} \|x_n - z_n\|^2 & \leq \frac{t_n^2}{p_n^2} \|S^n x_n - z_n\|^2 + \\ & + 2(1 - \frac{t_n}{p_n}) < u - z_n, j(x_n - z_n) > \\ & \leq \frac{t_n^2}{p_n^2} \|S^n x_n - z_n\|^2 + \\ & + 2(1 - \frac{t_n}{p_n}) < u - x_n, j(x_n - z_n) > + p_n^2 \|x_n - z_n\|^2 \\ & \leq \frac{t_n^2}{p_n^2} \{p_n^2 \|x_n - z_n\|^2 + 2p_n \|x_n - z_n\| \|S^n z_n - z_n\| + \\ & + \|S^n z_n - z_n\|^2 \} + 2(1 - \frac{t_n}{p_n}) \{ < u - x_n, j(x_n - z_n) > + p_n^2 \|x_n - z_n\|^2 \} \\ & = \{1 - (1 - \frac{t_n}{p_n}) \}^2 p_n^2 \|x_n - z_n\|^2 + \\ & + \|S^n z_n - z_n\| \{2p_n \|x_n - z_n\| + \|S^n z_n - z_n\| \} + \\ & + 2(1 - \frac{t_n}{p_n}) \{ < u - x_n, j(x_n - z_n) > + p_n^2 \|x_n - z_n\|^2 \} \\ & \leq \{1 + (1 - \frac{t_n}{p_n})^2 \} p_n^2 \|x_n - z_n\|^2 + \|S^n z_n - z_n\|M + \\ & + 2(1 - \frac{t_n}{p_n}) < u - x_n, j(x_n - z_n) > \end{split}$$

for some constant M. It follows that

$$\limsup \langle u - x_n, j(z_n - x_n) \rangle \leq \frac{[p_n^2 - 1 + p_n^2 (1 - \frac{t_n}{p_n})^2]}{(1 - \frac{t_n}{p_n})} \limsup \|x_n - z_n\|^2 + \lim \sup \frac{M \|z_n - S^n z_n\|}{1 - \frac{t_n}{p_n}}$$

Since $\{z_n\}$ and $\{x_n\}$ are bounded, $\{S^nz_n\}$ is bounded, and also since $\|z_n - S^nz_n\|$ = $o(1 - \frac{t_n}{p_n})$, it follows that

(3.6)
$$\limsup \langle u - x_n, j(z_n - x_n) \rangle \leq 0.$$

Moreover by Theorem (3.2), $x_n \to x^* \in F(S)$ as $n \to \infty$. But

$$\langle u - x_n, j(z_n - x_n) \rangle = \langle u - x^*, j(z_n - x^*) \rangle + \langle u - x^*, j(z_n - x_n) - j(z_n - x^*) \rangle + \langle x^* - x_n, j(z_n - x_n) \rangle$$

$$(3.7)$$

Now $< x^* - x_n, j(z_n - x_n) > \to 0$ as $n \to \infty, < u - x^*, j(z_n - x_n) - j(z_n - x^*) > \to 0$ as $n \to \infty$. Therefore from (3.6) and (3.7) we obtain

$$\limsup \langle u - x^*, j(z_n - x^*) \rangle \leq 0.$$

From the iterative process (3.1) and inequality (3.2) we have

(3.8)
$$z_{n+1} - x^* = \left(1 - \frac{t_n}{p_n}\right)(u - x^*) + \frac{t_n}{p_n}(S^n z_n - x^*)$$

and the following estimates:

$$||z_{n+1} - x^*||^2 \le \frac{t_n^2}{p_n^2} ||S^n z_n - x^*||^2 + 2(1 - \frac{t_n}{p_n}) < u - x^*, j(z_{n+1} - x^*) >$$

$$\le \frac{t_n}{p_n} ||z_n - x^*||^2 + 2(1 - \frac{t_n}{p_n}) < u - x^*, j(z_{n+1} - x^*) >$$

$$= (1 - \alpha_n) ||z_n - x^*||^2 + 2\alpha_n \beta_n$$

where $\alpha_n := (1 - \frac{t_n}{p_n})$ and $\beta_n := \langle u - x^*, j(z_{n+1} - x^*) \rangle$, and that $\limsup \alpha_n \beta_n \leq 0$. It therefore follows from Lemma 2.3 that $z_n \to x^*$, as $n \to \infty$, completing the proof.

Remark 3.1. Lim and Xu [9] have shown that a sequence $\{t_n\}_n \subset (0,1)$ satisfying the conditions of the theorems above always exists. The example given by them is: $t_n := \min\{1 - (p_n - 1)^{\frac{1}{2}}, 1 - n^{-1}\}, n = 1, 2, \ldots$

REFERENCES

- [1] W. A. KIRK, On successive approximation for nonexpansive mappings in Banach spaces, *Glasgow Math. J.*, **12** (1971), 6-9.
- [2] M. MAITI and B. SAHA, Approximating fixed points of nonexpansive and generalised nonexpansive mappings, *Internat. J. Math. Math. Sci.*, **24** (2000), 173-177.
- [3] G. LIU, D. LEI and S. LI, Approximating fixed points of nonexpansive mappings, *Internat. J. Math. Math. Sci.*, **24** (2000), 173-177.
- [4] H. F. SENTER and W. G. DOTSON Jr., Approximating fixed points of nonexpansive mappings, *Proc. Amer. Math. Soc.*, **44** (1974), 375-380.
- [5] J. S. JUNG, Convergence of nonexpansive iteration process in Banach spaces, *J. Math. Anal. Appl.*, **273** (2002), 153-159.
- [6] C. E. CHIDUME, H. ZEGEYE and E. PREMPEH, Strong convergence theorems for common fixed points for a finite family of nonexpansive mappings, *Comm. Appl. Nonlinear Anal.*, **2** Vol. 11 (2004), 25-32.
- [7] C. E. CHIDUME and A. UDOMENE, Convergence of paths and approximation of fixed points of asymptotically nonexpansive mappings, *Proc. Amer. Math. Soc.*, (Submitted).

- [8] J. SCHU, Iterative Construction of Fixed Points of Asymptotically Nonexpansive Mappings, *J. Math. Anal. Appl.*, **158** (1991), 407-413.
- [9] T-C. LIM and H-K. XU, Fixed point theorems for asymptotically nonexpansive mappings, *Nonlinear Anal. Math. Appl.*, **11** Vol. 22 (1994), 1345-1355.
- [10] W. L. BYNUM, Normal structure coefficients for Banach spaces, *Pacific J. Math.*, **2** Vol. 86 (1980), 427-436.
- [11] C. H. MORALES and J. S. JUNG, Convergence of paths for pseudocontractive mappings in Banach spaces, *Proc. Amer. Math. Sci.*, **11** Vol. 128 (2000), 3411-3419.
- [12] H. K. XU, Iterative algorithm for nonlinear operaors, J. London Math. Soc., 66 (2002), 240-256.