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2 N. ADJEROUD

1. INTRODUCTION

Analysis of fractional differential equations have gained considerable importance and con-
tinuous attention during the past three decades, due mainly to their varied applications in many
fields [3,[5,[8/10]. The differential equations involving Riemann-Liouville and Caputo op-
erators of fractional orders arise in many engineering and scientific disciplines as the math-
ematical modeling of systems and processes in the fields of physics, chemistry, aerodynam-
ics, polymer rheology, economic, control theory, signal and image processing, biophysics, etc.
[4],16,7,9]. Boundary-value problems for fractional differential equations have been discussed
in [1,12,[12]13]. Zhangd [14] investigated the existence and multiplicity of positive solutions for
the problem.

D (t) = f(t,u(t)), 0<t<1,0<a<2
{ u(0)+u (0) =0,u(l)+u (1) =0.

X.Su, S. Zhang [11] have investigated the existence, uniqueness and continuous dependence
of solutions for the problem

{CD3+u(t):f(t,u() D0+u()>, 0<t<1
a1u (0) — agu’ (0) = A, byu (1) + by’ (1) = B,

Whel‘eo<ﬁ§ Ll1<a< 2,(11',[)1' >0,1=1,2; asby + arbg > 0, f [0,1] xRxR—1RIs
continuous.
C. Cheng, Z. Feng, Y. Sul[2] have investigated the existence and uniqueness for the problem

Dgiu(t)+ f (tu(t),u (t) =0, te(0,1),n—1<a<n,
u (0)=0, i=0,1,2,....,n — 2,

PWUU} =0, 2<B<n-2
t=1
wheren > 4 (n € N) ;andf : [0,1] x [0, 00) x (—o0, 00) — [0, 00) satisfies the Carathéodory
type conditions.

Motivated by the previous results, in this paper,we study the existence of positive solutions
for the fractional differential equation witth—point boundary conditions

(1.2) {CD0+U()+f<t7u() D0+U()>:07 0<t<1,
w(0) = u (1) = Y7 au(n;),

where°Dy, is the standard Caputo derivative, anet o < 2,0 < 3 < 1; a, 3 a real numbers,
a; > 0fori=1,2,..m—2and;n, : 0 <1y <ny < ... < Npppg < 1WIch_1 a; < 1,
f:10,1] x [0,00) x R — [0, 00) is continuous andf (t, 0 ,0) > 0.

The organisation of this paper is as follows. In Secﬂowe introduce some notations and
definitions of fractional calculu§ [5] 8] and present preliminary results needed in our proof later.
In section3 we discuss the existence of solutions for the problém) .
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2. PRELIMINARIES

Definition 2.1. The Riemann-Liouville fractional integral of order> 0 of a continuous func-
tion f : (0,00) — Ris defined by

1 t
I“f(t :—/ t— )L f(s)ds,
() = |, =27 )
provided the right-hand side is point-wise defined(6mo), I is the gamma function defined
by (o) = 0+OO ettt
Definition 2.2. For an at least-times continuously differentiable functigh: (0, +o0) — R,
the Caputo derivative of fractional orderis defined as

1 t
m/ (t—s5)"" 1 fM(s)ds,n—1<a<n,n=][a]+1,
- 0

where[a] denotes the integer part of the real number

CDg+f (t) =

Remark 2.1. Under natural condition on the functigiiz) if « = n, the Caputo’s derivative of
order« is the usual derivative of order. We have the following properties:

I°IPf(t) = 1B f(t), cD*I*f(t) = f(t), fora, 8 > 0, f € L'(0,1) and[® : C[0,1] —
C[0,1],a > 0.

Remark 2.2. Fora = n, the Caputo’s fractional derivative of ordeibecomes the conventional
n—th derivative. The Caputo’s fractional derivative is definedliras follows:

“Dg, f (t) = Dg, (f t) -} f(m—(m)tp> , provided that the right-side derivative exists,

p=0 p!
we have in particuIaPDgak = 0 for any constant € R,a > 0. We have the following
properties: Dy, I¢, f (1) = f(t) if a > 0,f(t) € C[0,1] and I Dy f(t) = f(t) —
F(0),0<a<1,f(t)ec(o].

Lemma 2.1. The general solution of the equation
‘D%(t) =0,
is given by
u(t) =co+ et + ... +cpqt"
wherec; € R,i=1,2,...,n—1andn = [a] + 1.

Lemma 2.2. Suppose that. € C|0,1]() L'[0, 1] with a derivative of ordem that belong to
C[0,1] N L'[0,1]. Then

I “D*u(t) = u(t) + co+ crt + ... + cp1t"
wherec; € R,i=1,2,....,n— 1andn = [a] + 1.
Lemma 2.3. Leth € C ([0, 1], R) be a function, then the problem
‘D&u(t)+h(t)=0, 0<t<1,
{ u(0) = u (1) = S0 au (n;),
has a unique solution given by

(2.1)

22) U@ZAE@@M@@+EZﬁ%;?Qﬁ@®’
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where
a(1=y)* ' —(z—y)* ! O<y<zxr<l
o Y — y — x — Y
G (I7 y) - { z(lfy)o‘_rl( )
NOBE 0<z<y<L
Proof. From Lemmad2.2)we have
IS h (t) = u(t) + co + it
then
1 ¢ .
(2.3) u(t) = _m/o (t—s)"" " h(s)ds+cy+ cit.

By the boundary conditions, we obtain
S aimd“h (1) = S5 ag0h ()
1= 7

Co =

and
1

Cl:m/o (1—295)"""h(s)ds.

Substitutinge, andc; into (2.3) we obtain solutior{2.2)
1 /t a—1 3 /1 a—1
u(t) = ——=—— t—s h(s)ds 4+ =—— 1—s h(s)ds
O = ~Fg ), =970 E) r<a>0< ) h(s)

m—2 1 (1-s) s i (=)~ lh S
+Zi:1 ain; J, ( F(a) )ds fo F (@) “lds
m—2 m—2
1= a 1= a

o gt as s [T R
- i, @ [

m—2 —s)o‘flh(s)d

_ i 1;(1
Lt (1—9)* " hi(s) i a g ( T'(a) 5
+ ds + m—2
t ' () 1= a
m—2 (1 —(n;—s)*"h(s m—2 1 n,(1-5)"""h(s
doict @ fo s Fga) s 2li G fm- ul F)(a) s
11— -y e
B /t (- (- ) t(1— s)a_l) h(s)
0 ' (a)

(=), (1) V()
i f() (o)

L=
(1—8)*~ 1hs
> in alf = (@) )ds_'_/lt(l—s)a_lh(s)
1_2?;12&2‘ t

! 1 7 ) d
= / G (t,s)h(s)ds+ PO fo 72712 his) .
0 1=>200 a

ds

ds

Lemma 2.4. Leta; > 0 fori = 1,2,...,m — 2 and assume thaY."" > a; < 1. If h € C'[0,1]
andh (t) > 0, then the unique solution of the problenl) satisfies

u(t) > 0.
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Proof. From the boundary conditions, we have

m—2 1 (1—s)* " h(s i (1;—8)* " Th(s
> am; J %ds fo 1“)(a Clds
U(l) = U(O) = m—2 - m—2
=320 a 1_Zi:1 @i
m—2 1—5)* " Lh(s m—2 i (1—8)*"Lh(s
B doiml @i f %ds n Doy ain; fo %ds
1- me a; 1= a
2 Jo ’7’7‘})@ mi=3)” _hs) g
1= Z;LQ @i
m—2 I (1—s)*"h(s i n;(1—s) ;—8) 1
B Dlimy i) fm %ds a; |, ol agn " (s)ds
-y 1=
m—2 s (i (1=9)* " —(m;—s)* ! m—2 1 1,(1—5)° " h(s
B Dim1 @i on ( T(a) )h(s) ds L Doict G ; l F)(a) s
1- 27_12 a; 1= a
i s s)d
1 - Zz‘:l @i

This completes the prook

Lemma 2.5. Leta; > 0 fori = 1,2,...,m — 2 and assume tha}."" > a; > 1. If h € C'[0,1]
andh (t) > 0, then the probleng2.1]) has no positive solutions.

Proof. We claim the contrary, and suppose that the prokfed) has a positive solution, then
we haveu (n;) > 0,i=1,2,...,m — 2. From(2.2) we have

L Cai fy G(n,s)h(s)ds
uni:/Gni,shsds—l— 1 Om
m) = | Gushis) 1_213%
1
i o d
- [ Cusntsas- Silah Gl hi)ds
0 z -1 az_]-
we get
m—2 1 m—2 1
(Zaz_:l)/ G(nzas)h(s>d8> Zal/ G(Uws)h(s)d&
i=1 0 i=1 0
and
/ G (n;,s)h(s)ds >0,
then

/0 G (n;,s)h(s)ds < 0.

This contradicts the fact thgfg1 G (n;,5) h (s)ds > 0, and the claim is proved. K7 7% a; >
1, itis clear that: (0) = (1) is not positive.x

Remark 2.3. The Green function

x(l—y)ail_(x—y)ail < < <
G (z,y) = T vsvsest
’ z(1—y)* 0<z<y<l1
T(a) STy S
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is such thati (z,y) > 0. In factG (z,y) = (lr(y)) >0forall (z,y): 0<2z<y<1,1<
a < 2.

For(z,y) : 0 <y <z <1,we have fol) <y <1, andx = 1 thatG (z,y) = G (z,z) =0,
fory =0,0 <z < 1, we haveG (z,y) = G (2,0) = 2 — 2%~ > 0.

For0 < z <1,y = x, we haveG (z,y) = G (z,2) = z (1 —z)* " > 0. It follows that for
all (z,y):0<z<y<1 G(x,y) >0.

3. THE MAIN RESULTS
In this section, we study the existence of positive solution for the proljletj.
Let C (1) be the Banach space of all continuous real-valued functions-eri0, 1] . Define
the space
E = {u:uGC(I) and°D’u e C(I),0< B < 1},

endowed with the norm

Jull = max { ull. | Pgu_}.
where
— C —
Jull. = max fu ()], ||| = max |*Df,u ()],

it is known that(E, ||.||) is a Banach space. Let the following assumption

(H) 1 <a<20<p < 1with« ﬁareal numbersg; > 0 fori = 1,2,....m — 2
;00 < <My < e < Mg < LandY "% a; < 1. f 2 [0,1] x [0,00) x R — [0,00) is
continuous, and (¢, 0 ,0) > 0forallt €[0,1].

Lemma 3.1. Assume thatH) holds. Then the problerl.l)) is equivalent to the integral
equation

(3.1) u(t) = /OIG(t, s)f (s,u( ), D0+u( )) ds
S fy G (nis) £ (s,u(s) . DYuls)) ds
11— '

In other words, every solution is also a solution off3.1]) and vice versa.
Proof. Letu € E be a solution off1.1)) . We denotes the right-hand side(Bf1) by z (¢) ; i.e;
2t = —Iof <t, w(t) © Dub, (t)) I f (1, w(1) £ Dlu (1))
> i 12 @iy

-l—m o+ f (1 u(l), D0+u(1)>
_$’j12az o/ (n“ (n i)>CD§+ (771')>>

and

(1) =~ (Lu @) Du(®) + I f (1,u(1) £ DLu (1))
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From Remark®.1]and2.2] we get
“Dy.z(t) = D§, (z(t)—=z(07) =2 (07)¢)

_ g+<z(t)—%uf(1u() D0+u(1)>
ZmQ

+1——1a2 orf (77@7 (1) D0+u(771)>

tIo, f (1,u( ), D0+u(1)>>
= D~ f (tu(®) S DJu(®)) = —f (bu(®) S DLu).

then
Dgeult) = —f (tu () DYu ().
One can verify that, (0) = u (1) = 37, au (n,)
= et f (Lu() £ DR (1)) —BSe I T (o () DG ()
Thus,u is a solution of(1.1]) . Conversely, let: € 'E be a solution of(1.1]) , applying the

method used to prove Lemmad] it follows thatw is a solution of(3.1)) , which completes the
proof. i

From Lemma.3] we conclude that the solution ¢f.1]) coincides with the fixed point of the
operator!’ : E — F defined by

(Tu) (1) = /OlG(t,s)f< w(s) ¢ Dlu () ds

2 a fy G ns) S (5, (s) £ Dgou(s)) ds
1= a '

Note that
(Tw) (t) = —I*f(t,u(t),Du(t))
+t1°f (1,u (1) ° Du (1))
Y ald f (ng,u () 2 DPu(n,)) ds
11—
X o (L (1) £ D (1) ds
11—

(Tw) (t) = —I°7'f(t,u(t),”Dlult))
+I°f (L,u(1),°Du(1)),

I

and

DY (Tu) (t) = I'7(Tw) (1)
= —I°Pf(tu(t), Dul(t))
+I7PHF (1u (1), DPu (1)) .
Then we see thdfl'u) (t), <D° (Tw) (t) € C (I).
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We give the main result of this section.

Theorem 3.2.( Schauder’s fixed point ). Léf be a closed bounded convex subset in a Banach
spaceF, assume thaf’ : U — U is a continuous mapping such tHat is relatively compact
subset ot/. ThenT has a fixed point iri/.

Theorem 3.3. Assume thatH ) holds. If there exist a constaif, such that

L1 (s, i
maX{F(a)F(Q—ﬁ)’F(a) <1+ 1_2?112%)}]\43 5

whereM = max {f (t,u,v):0<t<1,0<u(t) <K, |v(t)] < K} .Then the problen{l.1]
has at least one positive solution.

Proof. For anyt € [0, 1], we find

/01|G(t,s)|ds < ﬁ(/Ot(t—s)a_lds+/olt(1—s)a_lds)

< L ﬁ+£ <L
- I'(a)\a a) " T(a+1)
< 2
and
! 1 (ne 7
< — (L4
(el < i (T4 2)
2n,
< 1
- I'(a)
Define

U:{U:UEE,OStgl,Ogu(t)SK

CDO+u()’ gK}.

ThenU is a bounded, closed and convex subset of the Banach gpace
We prove thal’'U C U. Foru € U we have

(Tu) (t) < (/OlG(t,s)der 1‘if£ ”;’ )M

S 1 221 1 a’;nl M
I'(a) 1 -
2 m2 0.
= — 1+—lelmci’;7’ M
(o) 1=> 0 a
< K,
which implies
(3.2) 0<Tu(t) <K, 0<t<I.
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For0 < 8 < 1, we get

D, (Tu) (1

—;t—sfﬂ w)' (s)ds
- Fig | -7 T )

e A
(/s (1=-7)"=(a=1)(s=7)*?) f <7’, u(T),° D(@u (7‘)) dr
X

IN

IR SR AR
F(l—ﬁ)/o(t )

) (/ (1—7)0‘_1f<7,u(7) eDlu(r )) dr

| ; i 1(1—7)"‘_1f<7,u() D0+u())dr
T m/o“_s)ﬁ/o

()
< M < M
T TR-AT(e+1) " TR-HT(a)
< 2M <K
S TE-AT) -

also we have

c B — —1 t —S_B u’s S
DP, (Tu) () = F<1_m/o(t ) " (Tu) (s)d

g,
s(a—1)(s—71)%f (T, w(r) Dl (r )) dr )
§ ‘/0 I (a) ’

[t S AP
F(l—ﬂ)/o(t )

) (/1 (a—1) (S_T)a—2f<7,u( ) oD (r )) d7> .

v

v
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Thus
c —M t B = =
Dg. (Tu) (t) > F(l_ﬁ)r(a)/o(t—s)ﬁds_r(g_ﬁ)l“(oz)
—2M
> K.

F@-Al@)
It follows that
(3.3) — K <° D (Tu) (t) < +K.
Therefore, from(3.2)) and(3.3), we havel'v € U which implies thal'U' c U.

We show thafl" : U — U is continuous. In fact, for,, € U, n = 1,2,... andu € U such
thatlim,_. ||u, — u||z = 0 uniformly on[0, 1], where

||wn, — ul| = max{Hun — ., CD0+un - cD[)Jru ‘OO} :
we havelim,,_. ||u, — ul|,, = 0 andlim,_ CDO+un cD0+u‘ = 0, which implies
that -
lim u, () =u(t), lm “Dfu, (t) = “Dfu(t),
therefore
lim_f (t,un( ) Dl (t )) —f (t,u( ) e Dl (t )) ,telo,1],
which gives
[(Tun) () — (TU) (®)]
= / G (t,s) s LU (8), D0+un( )) — f (s,u(s) ,CDngu(s))] ds
z:mk (10:5) [ (5,0 () D (5))
i 11— a
—Mmu>%wmﬂﬂ
1- Zz I a; 7
1
< /|Gﬁwﬂf (5 (5) £ DYn (5)) = £ (s5,u(5) . D ls)) | ds
S ai Jy NG s ) [ (5,10 (3) 5 DY (5)) = £ (s, (5) = DG (5)) s
1=y a ’
then
(3.4) [(Tuy) (£) — (Tw) (£)] — 0, asn — oo,

AJMAA Vol. 14, No. 2, Art. 5, pp. 1-14, 2017 AJMAA


http://ajmaa.org

EXISTENCE OF POSITIVE SOLUTIONS 11

and

"D, (Tun) (t) = “Dy (Tu) (1)
= ; t —3_5 w,) (s)ds
_ ‘m—m/o“ )8 (Tun) (s)d

o t —8) P (Tw) (s)ds
m—m/o“ )2 (Tu () d

L[

I'(1-p)

x (/010;(3,7) (f <T,un( ). D2y (7 )) —f(T,u( ), DBy (r )))dT) ds

(/ G ( ST|(f 7t (7) £ Dyt (7)) = f (7,0(7) £ DG (n )‘m)

then

(3.5)

DS, (Tu,) (t) — DY, (Tu) (t)’ — .0, asn — oo

By (3.4) and({3.5)) , we have

| T, — Tl = maX{HTun —Tul_,

DY, Tu, — CD§+TUH } — .0, asn — oo,
(o)

which means thdt’ is continuous.
We prove thatT'U is an equicontinuous set. Taket, € [0,1],t; < ty, and letM =

max{f <t,u() D0+u()) 0<t<1,0<u(t) <K, ’CDO+U< )‘ SK}
Then we have

/01 (G (t1,5) — G (ts, 5)) (s,u(s) ,CDQU(S)) ds

(Tw) (1) = (Tw) (t2)] =

IN

(/Otl (G (t1,5) = G (t2, )| ds
+/:|(G(t1,s)—G(t2,S))|d3
+ /1 (G (t1,5) — G (L2, 9))] d5> M

to
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which means

[(Tw) (t1) — (Tu) (t2)] < <[/0 'ty — S)a_p_ ()tl g

O T U
- </ Sl A
e [ U5

= — (t5 =t +ty —t
F(a+1)(2 l—i_2 1)’

which is independent af, using the fact that the functiot§ — ¢{ is uniformly continuous on
0,1] then

1(Tw) (t2) = (Tw) ()]l o — O @Sty — #,

and
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We get
"Dy, (Tu) (1) = “Dy, (Tw) (t2)

S Ta - ]ﬁw)r (@ / (6= = (=) ds

2M - —siﬂ S
+r<1—ﬂ>r<a>/ﬁ A

2M 1-p 1-8 1-4

since the functiom, ” — ¢;~7 is uniformly continuous o, 1], it follows that

D, (Tu) (t2) — *DJ, (Tw) (1)

— 0 asty — t;.

Consequently
1(Tw) (t2) — (Tu) (t1)]]
= max {H(TU) (t2) = (Tu) (1) »

ast, — t;.We conclude thal'U is an equicontinuous set. Obviously it is uniformly bounded
sinceTU C U. By the Arzela-Ascoli theorem the operatbr: U — U is completely con-
tinuous. The Schauder fixed-point theorem asserts the existence of positif solutidarithe
problem(L.1)) and the theorem is proved.

D, (Tu) (t2) — *Di, (Tw) (1)

j—o

Example 3.1. Consider the four-point boundary-value problem

CD0+u() L) (1+/u ()

CDQ )
Werin{t;l—%}ZO, 0<t<1,

w(0) = u(l) =37, au(m),.

(3.6)

We chooser = 3 8 = 3im = 1,1, = 3501 = 3,02 = +. Thenl — (a1 +az) =
%<1 I = 0886F(2—%):0.886and— T4+ ix % > 0.101. Setf (t,u,v) =
T (14 (14 Vau) + 1+t2) + min {¢;1 — £} and takeK = 12. A direct computation shows

that
M = max {f (t,u, v)'0<t<1 0<u(t) <12, |v(t)] < 12} = 4.295,

ZQ: vl — 1 —
1.273, gy (14 E22% ) = ohs % 0.636 = 0717,

F(a)Fl(Q—B) - 0.81862
Then we have
max {1.273,0.717} x 4.295 = 1.273 x 4.295 = 5.467 < & =¢,

i.e;
1 1 S am; - K
HléD({I‘(a)F(Q_ﬁ)’F(&) (1—1—%)}]\4—5.4(57 < E = 0.

From Theoren3.3] the problem(3.6)) has at least one positive solution.
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