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ABSTRACT. In this paper, we consider a mathematical model that describes the quasi-static
process of contact between two thermo-electro-viscoelastic bodies with damage and adhesion.
The damage of the materials caused by elastic deformations. The contact is frictional and mod-
eled with a normal compliance condition involving adhesion effect of contact surfaces. Evolu-
tion of the bonding field is described by a first order differential equation. We derive variational
formulation for the model and prove an existence and uniqueness result of the weak solution.
The proof is based on arguments of evolutionary variational inequalities, parabolic inequalities,
differential equations, and fixed point theorem.
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1. INTRODUCTION

The piezoelectric phenomenon represents the coupling between the mechanical and electrical
behavior of a class of materials, called piezoelectric materials. In simplest terms, when a piezo-
electric material is squeezed, an electric charge collects on its surface, conversely, when a piezo-
electric material is subjected to a voltage drop, it mechanically deforms. Many crystalline mate-
rials exhibit piezoelectric behavior. A few materials exhibit the phenomenon strongly enough to
be used in applications that take advantage of their properties. These include quartz, Rochelle
salt, lead titanate zirconate ceramics, barium titanate and polyvinylidene flouride (a polymer
film). Piezoelectric materials are used extensively as switches and actually in many engineering
systems in radioelectronics, electroacoustics and measuring equipment.

Different models have been developed to describe the interaction between the electric and
mechanical fields (see, eld.[2,[9/ 10] 21, 25]). Therefore there is a need to extend the results
on models for contact with deformable bodies which include coupling between mechanical and
electrical properties.

General models for elastic materials with piezoelectric effects can be found in [7,/9, 15, 16]
and more recently ir_[1], viscoelastic piezoelectric materials in[[211, 25] or elasto-viscoplastic
piezoelectric materials have been studied_in [12]. The coupling between the thermal, electric
and mechanical fields in piezo electric materials provides a mechanism for sensing thermo
mechanical disturbances from measurements of induced electric potentials, and for altering
structural responses via applied electric fields.

One of the applications of the thermo-piezoelectric material is to detect the responses of a
structure by measuring the electric charge, sensing or to reduce excessive responses by ap-
plying additional electric forces or thermal forces actuating. If sensing and actuating can be
integrated smartly, a so-called intelligent structure can be designed. The piezoelectric materials
are also often used as resonators whose frequencies need to be precisely controlled. The cou-
pling between the thermo-piezoelectric and pyroelectric effects, it is important to qualify the
effect of heat dissipation on the propagation of wave at low and high frequencies.

The thermo- piezoelectric theory was first proposed by Mindlin [14], later he derived the
governing equations of a thermo-piezoelectric plate [17]. The physical laws for the thermo-
piezoelectric materials have been discussed byl [19, 20]. Chandrasekhariah [4, 5] presented the
generalized theory of thermo-piezoelectricity by taking into account the finite speed of prop-
agation of thermal disturbance. Yang and Batra [28] studied the effect of heat conduction on
shift in the frequencies of a freely vibrating linear thermo-piezoelectric body with the help of
perturbation methods. Sharma and Wellia [24] presented the propagation of straight and circu-
lar crested waves in generalized piezo thermoelastic materials. The normal compliance contact
condition was first considered in [21,125, 26] in the study of dynamic problems with linearly
elastic and viscoelastic materials and then it was used in various references, see e.g. [23]. This
condition allows the interpenetration of the body’s surface into the obstacle and it was justified
by considering the interpenetration and deformation of surface asperities. The adhesive contact
between deformable bodies, when a glue is added to prevent relative motion of the surfaces,
has received recently increased attention in the mathematical literature. Analysis of models for
adhesive contact can be found(in[[9] 10,11, 22] and recently in the monographs [18].

In these papers, the bonding field, denoted hiy describes the point wise fractional density
of adhesion of active bonds on the contact surface, and some times referred to as the intensity
of adhesion. Following [6], the bonding field satisfies the restrictiegh{ < 1, when{ =1 at
a point of the contact surface, the adhesion is complete and all the bonds are activeé,~when
all the bonds are inactive, severed, and there is no adhesion,whef < 1 the adhesion is
partial and only a fractiog of the bonds is active. The novelty of this work lies in the analysis
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of a system that contains strong couplings in the multivalued boundary conditions: both the
normal compliance and the friction law depend on the adhesion[(seé (2.15) and (2.16)), and the
adhesion be written by the differential equation of the form

é = Had(Ca ag, Ru(ui + u?,)a RT(uql— - U?_))

Here,H,, is theadhesion evolution rate functioifhen, the adhesion rate function was assumed

to depend, in addition t9, R, (u! +v?), R, (u — u?) anda,, where, the truncation operators

R,, R, are defined b3) and-(x, t) fo x, s)ds. We use it inH 4, since usually when

the glue is stretched beyond the Ilmntlt does not contribute more to the bond strength. An
example of such a function, used In [6], the following form of the evolution of the bonding
field was employed = —CﬂnRy(uy)Q, where~,, is the normal rate coefficient and L is the
maximal tensile normal traction that the adhesive can provide(ang max(0,¢). We note

that in this case, only debonding is allowed. A different rate equation for the the evolution of the
bonding field is{ = —(¢ (v, Ry (ul +u2)? + 7, | R, (ul —u?)|?) —e,) 4, See, e.g.[]9,10]. Here,

v, 1S the tangential rate coefficient, which may also be interpreted as the tangential stiffness
coefficient of the interface when the adhesion is compléte= 1). However, the bonding
cannot exceed = 1 and, moreover, the rebonding becomes weaker as the process goes on,
which is represented by the factor ag in the denominator. In all these papers the damage of
the material is described with a damage functibrestricted to have values between zero and
one. When* = 1, there is no damage in the material, whén= 0, the material is completely
damaged, whefi < ¢ < 1 there is partial damage and the system has a reduced load carrying
capacity.

In this paper, we study the quasi-static frictional contact problem between two viscoelas-
tic piezoelectric bodies with damage, adhesion and normal compliance. In Sgction 2, we de-
scribe the mathematical models for the frictional contact problem between two thermo-electro-
viscoelastic bodies with long-term memory and damage. The contact is modelled with normal
compliance and adhesion. We introduce some notation, list the assumptions on the problem’s
data, and derive the variational formulation of the model. We prove in S€dtion 3 the existence
and unigueness of the solution, where it is carried out in several steps and is based on arguments
of evolutionary variational equalities, differential equations and Banach fixed point theorem.

2. PROBLEM STATEMENT AND VARIATIONAL FORMULATION

We describe the model for the process, we present its variational formulation. The physical
setting is the following. Let us consider two thermo-electro-viscoelastic bodies with long-term
memory, occupying two bounded domain, Q? of the spaceR?(d = 2, 3). We put a super-
script ¢ to indicate that the quantity is related to the dom@i ¢ = 1,2. In the following,
the superscript ranges betweeh and2. For each domaif)’, (¢ = 1, 2) the boundary™* is
assumed to be Lipschitz continuous, and is partitioned into three disjoint measurablegparts
'Y andT, on one hand, and on two measurable p&ftandI'j, on the other hand, such that
measl'{ > 0, measl'’ > 0.LetT > 0and let0, T'] be the time interval of interest. TK¥ body
is submitted tof, forces and volume electric charges of dengftyThe bodies are assumed to
be clamped o x (0,T), so the displacement field vanishes there. The surface tragfipns
act onl'y x (0,T). We also assume that the electrical potential vanishésion (0,7) and a
surface electric charge of densityis prescribed o’} x (0, 7). The two bodies are in contact
along the common pait} = 'z, which will be denoted’; below. The bodies is in adhesive
contact, over the contact surfafe, the contact is frictional and is modeled with the normal
compliance condition and a version of Coulomb’s law of friction. The process is assumed to be
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isothermal, electrically static, i.e., all radiation effects are neglected, and mechanically quasi-
static; i.e., the inertial terms in the momentum balance equations are neglected. We denote by
u’ the displacement field, by the stress field and by(u‘) the linearized strain tensor. We

use an thermo-electro-viscoelastic constitutive law with damage given by

2.1)
ol = Ale(d’) + B (e(u’), 7", ¢") + /th(t — s,e(u’(s)),7(s),s"(s)) ds — () B (&),

where A’ is a given nonlinear operata®’ is the relaxation operato’ represents the elastic-

ity operator, where* represents the absolute temperature drigl the damage fieldE(¢°) =

—V¢is the electric fieldg! represents the third order piezoelectric ten&dh)* is its transposi-

tion. We study a quasi-static Coulomb’s frictional contact problem between two thermo-electro-
viscoelastic bodies with long-term memory and damage. The contact is modelled with normal
compliance where the adhesion of the contact surfaces is taken into account and is modelled
with a surface variable, the bonding field. We derive a variational formulation of the problem
and prove the existence of a unique weak solution.

In (2.1) and everywhere in this paper the dot above a variable represents derivative with
respect to the time variabte It follows from (2.1) that at each time moment, the stress tensor
a'(t) is split into three partso’(t) = o, (t) + o (t) + o4(t), wherea!, (t) = A'e(u‘(t))
represents the purely viscous part of the stre§gt) = (£°)*Ve! (1) represents the electric part
of the stress ana(t) satisfies a rate-type elastic relation

G%(t) =B (s(ue(t)), Tg(t),gf(t)) + /0 o* (t — 5,e(u(s)), 7(s), gg(s)) ds.

Note also that whel®‘ = 0 the constitutive law[(2]1) becomes the Kelvin-Voigt viscoelastic
piezoelectric with damage and thermal effects constitutive relation,

a'(t) = Ale(u'(t)) + B (e(u' (1)), 7(t), <" (1)) + ()" VE (D).

Quasistatic evolution of damage in viscoplastic materials has been studied in [13]. According
to Batra and Yand |1] the following constitutive law is employed for the electric potential:

(2.2) D = &'=(u’) + G (E" (&),

whereD' is the electric displacement field agd is the electric permittivity tensor.
The differential inclusion used for the evolution of the damage field is

(2.3) KA +0Y e (N 2 U (o' — Ale(u), e(u’), <) in Q° x (0,T),
whereK* denotes the set of admissible damage functions defined by
(2.4) K'={ac HY(N); 0<a <1, ae inQ},

' is a positive coefficient)i .. represents the subdifferential of the indicator function of the
set K¢ and ¢’ is a given constitutive function which describes the sources of the damage in
the system. Wher’ = 1, there is no damage in the material, whén= 0, the material is
completely damaged, wheén< ¢¢ < 1 there is partial damage and the system has a reduced
load carrying capacity. Contact problems with damage have been investigated in [9, 25, 26].

The thermo-electro-viscoelastic constitutive law|(2.1) includes a temperature effects described
by the parabolic aquation given by

(2.5) it — kAT = 0F (O'E, e(u’), 7<) + p.
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With these assumptions, the classical formulation of the quasi-static problem for frictional
contact problem between two thermo-electro-viscoelastic bodies with damage, normal compli-
ance and adhesion is the following.

Problem P. For ¢ = 1,2, find a displacement fieldu* : Qf x (0,7) — RY, a stress
field o* : QY x (0,7) — S% , a temperature’ : Qf x (0,7) — R, a damage field
£ Q' x (0,T) — R, an electric potential field* : Q¢ x (0,7) — R, a bonding field
¢ : T3 x (0,T) — R and a electric displacement field* : Q° x (0,7) — R? such that

a'(t) = A'e(u(t)) + B (e(u(t)), (1), <" (1)) +

2.6 t in Q°x(0,7),
EO [ s e, Ao st s ey EEy,
0
(2.7) D' = &'(u') + G'(EY(£)), inQ x(0,7),
(2.8) 7t — K,éATK = @K(oj, e(uz), ¢ gﬁ) +p inQf x (0,7),
(2.9) =K +0Y e (s 2 U (o —Ale(u), e(uh), ") in Q° x (0,T),
(2.10) Dive!+ f5=0 inQ°x (0,7),
(2.11) divD'—¢f=0 inQ x(0,7T),
(2.12) u’'=0 onTY x(0,7),
(2.13) o'v' = f, onT% x(0,7),
(2.14) ( = Ho(C, o, Ru([uy)), Ro([u,])), onTy x (0,7),
(2.15) ol =o? =0, whereo, = —p,([u,]) +v,*R,([u,]) onTs x (0,7),
( oﬁ = —0'2 =0,
o + 7, CR-([u.)|| < ppo([w)),
(2.16) lor + 7. CR([u.)|| < ppo([u]) = [@ ] = 0, on 'y x (0,7,
o + 7R ([ur]) || = s ([w]) = 3A
such that o, + 7. ¢*R.([u,]) = [1'1,7]
(2.17) =0 onT? x (0,7),
(2.18) DV =¢, onTix(0,7T),
Z

(2.19) KO% -+ A7 =0 onT‘x (0,7T),
(2.20) " _ 0 onrx % (0,T)

. 81/6 Y 9
(2.21) u'(0) = uy, 7°(0) =75, “(0) =g nQ,
(2.22) ¢(0)=¢, onTls.

Here and belows? denotes the space of second order symmetric tensoi®?pwhereas
7.7 and||.|| represent the inner product and the Euclidean norfi‘oandR?, respectivelyy*
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is the unit outer normal vector arf, equations[(2]6) and (2.7) represent the thermo-electro-
viscoelastic constitutive law with long term-memory and damage. Equatioh (2.8) represents
the energy conservation whe#¥ is a nonlinear constitutive function which represents the heat
generated by the work of internal forces ads a given volume heat source. Inclusion {2.9)
describes the evolution of the damage field. Equatipns](2.10)[and (2.11) are the equilibrium
equations for the stress and electric-displacement fields, respectively. Next, the equations (2.12)
and [2.1B) represent the displacement and traction boundary condition, respectively. Condition
(2.18) represents the normal compliance conditions with adhesion whea given adhesion
coefficient,p, is a given positive function which will be described below dnd = u! + u?

stands for the displacements in normal direction, in this condition the interpenetrability between
two bodies, that i$u, | can be positive of's.

v if [v] <L,
L if jv] > L.

vl

L it s<-—L,
(2.23) R,(s)=< —s if —L<s<0, R,(v)= {
0 if s>0.

HereL > 0isthe characteristic length of the bond, beyond which it does not offer any additional
traction (see, e.g!, [22]). Conditign (2]16) are a non local Coulomb’s friction law conditions cou-
pled with adhesive, whefle,| = u! —u? stands for the jump of the displacements in tangential
direction. Equatior] (2.14) represents the ordinary differential equation which describes the evo-
lution of the bonding field and it was already used.inl [26, 2]7/]. (2.17) and](2.18) represent the
electric boundary conditions. The relatipn (2.19) represent a Fourier boundary condition for the
temperature ofi*. The relation[(2.20) represents a homogeneous Neumann boundary condition
for the damage field oR‘. Finally the functionsu,, 7o, 5o and(, in (2.21)-[2.22) are the initial

data.

We now proceed to obtain a variational formulation of Probl&nFor this purpose, we
introduce additional notation and assumptions on the problem data. Here and in what follows
the indicesi andj run betweenl andd, the summation convention over repeated indices is
adopted and the index that follows a comma indicates a partial derivative with respect to the
corresponding component of the independent variable. H'et= L?(Q°)¢, H! = H'(Q%)?,

HE = L2(Q)24, HE = {6 = (0);) € H; dive’ € H'}. The spacesi’, H{, H® andH{ are
real Hilbert spaces endowed with the canonical inner products given by

(ug,vé)Hz:/ u’ vide, (ug,vﬁ)Hf:/ u'vldr + | Vu'.Vo'dr,
Qf Qr QL

(0,0 = /m o'.0'dr, (0'6,0’2)7% = /Qe o'.0'dr + /QZ div o. Div 8“dx,
and the associated norfis| e, || ¢, [|-[lxe, and||.[[;;« respectively.
We introduce for the bonding field the set
Z={BeL®0,T;L*T3)); 0 <B(t) <1 Vte[0,T], ae. onT;},

and for the displacement field we need the closed subspadé défined by
Vi={v'e H{; v'=00onT}}.

SincemeasI > 0, the following Korn’s inequality holds (see [18]) :

(2.24) le(@)lse = excllvf e Vo' € V"

Over the spac&* we consider the inner product given by

(2.25) (uf, v e = (e(u), e(v"))pe, Vu' v’ e VY
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and let||.||,« be the associated norm. It follows from Korn’s inequality (2.24) that the norms
Il ¢ @and]|. ||« are equivalent o*. Then(V*, |.||y«) is a real Hilbert space. Moreover, by

the Sobolev trace theorem afd (2.25), there exists a congtant, depending only of’, T
andI'; such that

(2.26) 10"l < collo’lve Vo' € V.
We also introduce the spaces
Li=1*QY, Li=H'(Q), W'={p'ell;y'=00onTi},
W= {D"= (D}); D! € L*(Q"), divD" € L*(Q)}.
SincemeasI > 0, the following Friedrichs-Poincaré inequality holds:
(2.27) IV e > crllellmn Vo' € W,

wherecr > 0 is a constant which depends only 9 T. Over the spac&/’*, we consider the
inner product given by

(2.28) (€0 we = [ VEVda

and let||.|[, be the associated norm. It follows frofn (2.27) thiat ;1o and||. ||y« are
equivalent norms ofi’* and therefor¢W*, ||.||,«) is areal Hilbert space. The spa¥ is real
Hilbert space with the inner product

(D", ®")e = [ D".®"dx + / div D. div ®*dz,
Q¢ Qf
wherediv D = (D), and the associated nofri| .
In order to simplify the notations, we define the product spaces

V=VxV? H=H'x H> H, = H}! x H>, H=H" x H?, H, = H} x H>,
Lo=Lix L3, Li=Ly x L3 W=W'xW? W=Wx W

The space¥’, L, W andWV are real Hilbert spaces endowed with the canonical inner products
denoted by(., v, (., .)z,, (-, )w and(., .

In the study of the ProblerR, we consider the following assumptions:
The viscosity function A’ : Q° x S — S satisfies:

((a) There exists L 4 > 0 such that : Vw,,w, € S7,
|AY (2, wi) — Az, ws)| < Lye|lwy — ws|, ae xe Q.
(b) There exists m 4 > 0 such that : Vw;, wy € %,
(A, w1) — Az, ws)) - (W1 — wy) > mye|w — wyl?, ae.x € O
(c) The mapping & — A’(x, w) is measurable on Qf, Vw € S%.
| (d) The mapping @ — A¥(z,0) is continuous on S%, a.e. x € QF.

The elasticity operator3* : Q° x S? x R x R — S satisfies:

'(a) There exists Lge > 0 such that : Vwq,wq € S¢, 71,79, d1,ds € R,
|B€(ZE,UJ1,’T‘1, dl) — Be(a:,wg,m, d2)| S LBZ (w1 — C.UQ| + |T1 — 7"2|+
(230) ’dl — dQ‘)7 a.e.x Qe.

(b) The mapping & — Bf(x,w,r, d) is measurable in ¢, Vw € S r,d € R.
 (¢) The mapping  — B*(x,0,0,0) belongs to H".

(2.29)
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Therelaxation functionQ’ : Qf x (0,7) x S x R x R — S? satisfies:

'(a) There exists Lge > 0 such that :Vw;, wy € S%, 71,79, dy,dy € R,
|Q€(CL', t, wi, 1, dl) — Qé(a}, t, Wwa, g, d2)| S LQE (w1 — Ld2|+
Iri = ro| + |di — da), forallt € (0,T), ae. @ e Q.

(b) The mapping x — Q(x,t,w,r, d) is measurable in QF,
forany t € (0,7), w eS¢, r,deR.

(c) The mapping t — Qf(x,t,w,,d) is continuous in (0, T),
forany w € S, r,d € R, a.e.x € QL.

| (d) The mapping = — Q% (x,t,0,0,0) belongs to H*,Vt € (0,T).

The energy function®’ : Q° x $? x $* x R x R — R satisfies:

(2.31)

((a) There exists Lge > 0 such that -V n,, 1y, w1, ws € S%, aq, a9, dy, dy € R,
|@£(CB, T, W1, O, dl) - @é(a"v M2, W2, (2, d2)| < Ler (|771 - 772|+
w1 — wa| + g — | + |dy — o), ae. x € Q.
(2.32) < (b) The mapping « — O%(x,n, w, a, d) is measurable on QF,
for any n,w € S? and o, d € R,
(c) The mapping & — ©*(x,0,0,0,0) belongs to L?(Q°),
L(d) Oz, n,w,a,d) is bounded for all ,w € S¢ a,d € R a.e. x € QF.

The adhesion rate function,; : I's x R x R x R x R¢! — R satisfies:

((a) There exists Lqg > 0 such that :V ¢y, (o, w1, wa, 71,72 € R, dy, dy € R
|Hoa(2, C1ywi,m1,d1) — Haa(x, (o wo, ma, do)| < Ly|Cy — (o + w1 — wal+
‘7'1 - 7'2‘ + ‘dl — d2|, a.e. x € Fg.

(b) The mappinge — H,4(x, (,w,r,d) is measurable ohs,
forany(,w,r € R, d € R4!,

(c) The mapping(, w,r,d) — Hqq(x, (,w,r,d) iS continuous on
RxRxRxR! ae xel;,

(d) Hyg(x,0,w,7,d) =0,¥¢,r € R, d € R ae. x €T,

(e) Hyg(x, (,w,r,d) >0, V¢(<0,w,r €R, de€ R ae xels and

{ Hu(z,(w,rd) <0, V(>1,w,reR deR¥ ae xels.

Thepiezoelectric tenso€’ : Qf x S¢ — R satisfies:
(2.34) (a) EXm, 7) = (el (®)Tsn), VT =(75) €S? ae x Q.
' (b) ef;, = ef; € L2(Q), 1 <i,5,k <d.

ikj

(2.33)

The damage source functiod’ : Q° x S? x S? x R — R satisfies:

((a) There exists Lye > 0 such that : V1, m,, w1, ws € S%, a1, a3 € R,
W (@, my, wi, 1) — U@, My, wa, a2)| < Lye (|11 — M| + w1 — wal+
|Oé1 — Oé2|), a.e.x € QE.
(2.35) ¢ (b) The mapping & — ¥*(x,n,w, a) is measurable on Q°,
for any n,w € S? and a € R,
(¢) The mapping & — ¥¥(x,0,0,0) belongs to L*(Q°),
L(d) U (x,n,w,a) is bounded, Vn,w € S¥, a € R a.e. x € O,

The electric permittivity operatog’ : Qf x R? — R?, satisfies:
(a) G(x, B) = (b;(x) E)), bf; = b, bf; € Lo(Q), 1<i,j<d

ji

(2.36) < (b) There exists mge > 0 such that :
G'E.E > mg|E]?, VE € R a.e.x € Q.
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The normal compliance function, : I's x R — R, satisfies:

(a) There exists L, > 0 such that :Vry,ry € R,
lpu(x, 1) — po(,12)| < Ly|ry — 19, ace. @ € I's.
(b) (pu(x,71) — pu(@,72))(r1 —12) >0, Vri,r €R, ae x el
(c) The mappinge — p,(x,r) is measurable oh, Vr € R.
(d) pu(x,r) =0, forall » <0, a.e. x € I's.

The adhesion coefficients, and~, satisfy the conditions

(2.38) Yoy Ve € L2(T3), 7,,7, >0, a.e. on I's.
Theforces, tractionave the regularity

fy € C(0.T; L*(Q)), £ € C(0,T; LA(T3)"),

g € C(0,T; L*()), g € C(0,T; L*(Ty)), p° € C(0,T; L ().
The energy coefficient|, and the microcrack diffusion coefficient satisfies :
(2.40) Ky >0, K'>0.
Finally, the friction coefficient and the initial data satisfy:
pwe L>2(s), p(xr) >0 ae onlly,

uyb e VS e K rie Lt (, e L*(T's), 0< (¢, <1, a.e. onTs.
Next, we define the mappinds= (f',f?) : [0,7] — V,q = (¢*,¢*) : [0,T] — W, ay :

LixLi - Ra:Li xL =R, juq:L2T3)xVxV >R j,.:VxV —Rand
Jr 1V x V. — R, respectively, by

2 2
Z/ fg(t)-vdeZ/ fi(t) - v'da Yv eV,
Q =1 /1%

(243)  (q(t). O)w = /Q

(2.37)

(2.39)

(2.41)

(2.42) (f(t),v)v

2
(00 dr =3 [ s’ da voew
=1 7T

2 2
(2.44) ao(r,a) = >k / Vi Valds +) X / m'a'da,

=1 @ =1 r

2
(2.45) a(s,a) = Z/@f/ Vet . Vatdr,
0

@48) ¢ )= [ (=GRl + 7R () o)) da,

@47)  julu,v) = /F P[] [04] da,
@48) ()= [ )] de

By a standard procedure based on Green’s formula we can derive the following variational
formulation of the contact problerp (2.6)—(222).

Problem PV. Find a displacement fieldu = (u!,u?) : [0,7] — V, a stress fiellb =
(o',0?) : [0,T] — H, an electric potential field = (¢',¢%) : [0,7] — W, a temperature
7= (r4,7?) : [0,T] — L, a damage field¢ = (¢*,¢?) : [0,T7] — L;, a bonding field
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¢ :[0,T] — L>(T'3) and a electric displacement field = (D', D?) : [0,7] — W such
that, for a.e. t € (0,7),

(2.49)
o' = Ale(a) + B (e(u). ) / Q! (1 s.£(u'()),7'(5).¢'(5)) ds — (€ E(€"),

(2.50) = &(u’) + G*(E'(€Y)),

(ot =) - s<u@<t>>>w + JaalC(0), ult), v = (t)) + i (u(t), v) }
(2.51)

s le) (1) + ) v = 0) 2 (£0) 0 = &ty Vo € V.
(2.52) Z (') + G (B ). Vo') = (=at). O)w Yo € W,

Vo€ Ly, Y (7(t) = p'(t), @) 2gar) + ao(7(t), a) =
(2.53) ) =t
> (e 0 e, 7 0.5 0) )

(t) € K, Vae K, Y70, 0" = (1) a0 +als(t), a = (1) =
(2.54) ,

St (W (o (1) = Aol (1), e (1)), 5" (1), 0 = ) ,
(2.55) (t) = HaalC(0), ac(0), Ru [ (1)), R ([ (1),
(2.56) u(0) = ug, 7(0) =70, <(0) =50, ¢(0)=2¢,.

We notice that the variational ProbleRV is formulated in terms of a displacement field, a
stress field, an electrical potential field, a bonding field and a electric displacement field. The
existence of the unique solution of Probl&¥ is stated and proved in the next section.

Remark 2.1. We note that, in Probler® and in ProblenPV, we do not need to impose ex-
plicitly the restriction0 < ¢ < 1. Indeed, equatiorj (2.55) guarantees that t) < (,(z) and,
therefore, assumptiop (2)41) shows that,t) < 1 fort > 0, a.e.x € I';. On the other hand, if
C(z,t,) = 0 at timet,, then it follows from [2.5b) thaf (z, ¢) = 0 for all t > t, and therefore,
((z,t) =0forallt > ty, a.e.x € I's. We conclude thatt < ((z,t) < 1forallt € [0,7], a.e.
S Fg‘

First, we note that the functiongl, andj,. are linear with respect to the last argument and,
therefore,

Jad(B, 1w, —v) = —Jaa(B, u,v),
Jue(t, =v) = —jue(u, v).
Next, using[(2.4]7) and (2.87.b) imply
(2.58)  Jue(w1,v2) = Jue(tr, v1) + Jue(uz, v1) = jue(t, v2) <0, YUy, ug, v1,v2 €V,
and use[(2.48)[ (2.87)(a), keeping in mipd (2.26), we obtain
Jpr(wr,v2) = Jpr(wn, v1) + Jpr (w2, v1) = Jpr (U2, v2)

< C(2)L1/HM”L°°(F3)||u1 - U2||V||U1 - 'U2HV; Vg, ug, v1,v2 € V.

(2.57)

(2.59)
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3. MAIN RESULTS

The main results are stated by the following theorems.

Theorem 3.1. Assume thaf2.29)}-(2.41)hold. Then there exists a unique solution of Problem
PV. Moreover, the solution satisfies

(3.1) u € CH0,T;V),

(3.2) £ C,T;W),

(3.3) ¢ e Whe(0,T; L*(T3) N Z,
(3.4) o cC0,T;H,),

(3.5) 7€ L*0,T; L) N HY0,T; Ly),
(3.6) ¢ € L*0,T; L) N HY0,T; Ly),
(3.7) DcC0,T;W).

The proof of Theorem 3|1 is carried out in several steps that we prove in what follows,
everywhere in this section we assume in what follows {hat [2.29)4(2.41) hold, and we consider
thatC' is a generic positive constant which depends®¥nr{, ¢, I's, p,, p., A, B¢, G¢, Q°,

E' Haug, v, 7., ©F, W kS, k% andT with ¢ = 1,2. but does not depend @mor of the rest of
input data, and whose value may change from place to place.

In the first step. Let\, u) € C(0,T; Ly x Ly) and consider the auxiliary problem.

Problem PV, ,y. Find 7y : [0,T] — Lo, andg, : [0,7] — Ly, such that

su(t) e K
(3.8) Sy (FA(E) = X() = pf(1), @) gy + ao(75(t), @) = 0, Va € Ly,
(B.9) i (h(t) — p(t), o — (1)) r2iary + alsu(t), o — cu(t) > 0, Va € K,
(3.10) 72(0) = 70, <u(0) = <o,

whereK = K!' x K2.

Lemma 3.2. There exists a unique solutidm, <, } to the auxiliary problenPV, ) satisfying

B3B8

Proof. Furthermore, by an application of the Poincaré-Friedrichs inequality, we can find a con-
stantcy, > 0 such that

)\Z
/ IVa|*dx + —2/ |a*da > co/ laf*dz, Ya € Lt 0=1,2.
94 Ro Jr¢ Q¢

Thus, we obtain
ap(a, ) > cl||a||%1, Ya € Ly,
wherec; = ko min(1, ¢q)/2, which implies that is L; —elliptic. Consequently, based on clas-

sical arguments of functional analysis concerning parabolic equations, the variational equation
(3.9) has a unique solution, satisfyingr,(0) = 7, and the regularity (3]5).

On the other hand, we know that the fomms not L;-elliptic. To solve this problem we
introduce the functions
E(t)=e (), al(t) =eal(t), (=1,2.

H H
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) 4 4 ~{ ~0 14 i i
We remark that if,, o € K* then¢,, " € K. Consequently[(3]9) is equivalent to the

inequality

Su € K, Z — e (), = S () ey + alGu(t), & — () +
(3.11) L
> R S()2qr) >0, Va € K, aet € (0,7).
/=1
The fact that
2 2
(3.12) a(,a) + Y r'(@"a") 0 > Y R, Va e L,
= =1

and using classical arguments of functional analysis concerning parabolic inequalities [3, 8],
implies that[(3.1]1) has a unique solutignhaving the regularity (3|6

In the second step. LéR, ;1,n) € C(0,T; Ly x Ly x V'), we use the{,,¢,} obtained in
Lemmd 3.2 and consider the auxiliary problem.

Problem PV(, .. Findu,, : (0,71 — V,¢ :[0,7] — W,and¢, :[0,7] — L*(T3)
such that

Y (Aelil,) + Ble(ul, ). mhuch), (o) —e(@,, (1)

(B13) ey, (6,0 =, (6) + g (1, (1), 0) = e, (8), i, (1))
(1), v = by, (O)v = (E(F), 0 — 12, ()v, Yo eV,

(314) Yo7, (E'e(ul,, (1) + GBUE,, (1), V') g = (=a(t). O)w, Yo EW,

(315) () =Hu(C  (B)0c - Rullu,,, O), Blu,,, ),

(3.16) u,, (0) =ug, ¢, (0)={,
We have the following result

Apn

Apn

Lemma3.3. (1) ProblemPV, ,, hasa unique solutiofu

the regularity(3-1)-3-3).
(2) If u, andus, are two solutions of3.13)and (3.18)corresponding to the dat@\; , ;, ;)

(A2, 119, m5) € C(0,T; Ly x V'), then there exists > 0 such that, for € [0, 77,

(3.17) 21 (t) = wa(t)llv < e ([lm(t) = na(®)lv + [l (t) — ua(t)||v).-
Proof. To prove [3.1B) and (3.17), we use an abstract existence and unique result which may be
found in [21, Lemma 4.2.]. Next, we consider the fofm W x W — R,
2
(3.18) G(E.0) =D (G'VE V') e VEpeW
/=1

We use|((2.27),(2.28)| (2.B6) ar{d (3.18) to show that the fG@rim bilinear continuous, sym-
metric and coercive o/, moreover using (2.43) and the Riesz representation theorem we may
define an element, , : [0, 7] — W such that

..} Which satisfies

Apn 7 Aun’ C}\

(w,,, (1) O = (a(t), D + S (E el (1)), Ve ) e Vo € Wit € (0.7).
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We apply the Lax-Milgram Theorem to deduce that there exists a unique elemeﬂ)te w
such that

(3.19) G(&,,, 1), 0) = (w,,,(t),)w VoW

It follows from (3.19) that{, is a solution of the equatiof (3]14). Lat i, € (0,77, it
follows from (3.14) that

(3.20) I, (t) =&, ()llw < C(llu,,, (t) —u,,, (t)llv + [lat) — () llw)-

Now, from (2.39),[(3.2D) and,,, € C*(0,T; V'), we obtain that, < C(0,7;W).
On the other hand, we consider the mappihg, : [0, 7] x LQ(FS) — L*(T3),

H/\;m (t’ C) = Haq (C(t% Q¢ RV([UAW,V (t)D7 RT([UAWT (t)]))v

forall ¢t € [0,7] and¢ € L*T3). It follows from the properties of the truncation operator

R, andR; thatH,  is Lipschitz continuous with respect to the second variable, uniformly in
time. Moreover, for al € L*(I's), the mapping — H,  (t,¢) belongs toL>*(0,T’; L*(T's)).

Thus using the Cauchy-Lipschitz Theorem (see [26, p.48], we deduce that there exists a unique
function¢, e W>(0,T; L*(I's)) solution of the equatiori (3.1.5). Also, the arguments used

in Remar show that < ¢, (¢) < 1forallt € [0,7], a.e. onl's. Therefore, from the
definition of the setZ, we find that(w € Z. This completes the prooi

In the third step, let us consider the element

(321) II(n, A, p)(t) = (T (n, A, ) (2), TE(m, A, ) (1), TP (m, A, ) (t)) € V% Lo X Lo,

defined by the equations
2
(H (777 A :u Z (c/’f EK Amz g(ve))?-l‘Z +j“d(ckun (t)’u"“" <t>’v)
(=1

(3.22) + th t—s, (uﬁ (s)),74(s), fL(s) ds, e(v") | , YweV,
;(/0 ( e(ul M), 54 (s)) ds, e )

HE

(3.23) I (n, A, 1) = (@1( s ) ),76,), ©2(a? E(Ui,,),fi,gi)),
(3.24) (A ) = (00, el )ioh), W3(0?, e, ).<2)),

where the mapping-ﬁw is given by

(3.25) o = B'(e(u] ).

Mm Apun

/ O (t—s.2(u, (5)). 74(s). s4(5)) ds—(€") B (¢!
Lemma 3.4. The mapping\ has a fixed pointn*, \*, u*) € C'(0,T;V x Ly x Ly).

Proof. Let (1, A1, 1t1), (2, A2, piy) € C(0, 75V x Ly x Ly) and denote by, <;, u;, &;, ¢; and
o;, the functions obtained in Lemmias §.2,|3.3 and the rel&ffion|(3.25)yfar 1) = (1;, Ai, 11;),
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i=1,2. Lett € [0,T]. We use[(2.35)[(2.34), (2.46) and the definitionyf R, we have

L (i, Aay pay) (8) = T (1, Az o) ()11 < D I(E)7VEL() — (€ VE(D) 3+

Z/O HQe(t - 575(“’?(5))77{(3)7 §€(8)) o Qé(t -5 8(“’%(5))7 Tg(s),§g(8)) Hj—[/ ds

+CICE () Ry ([urn (B)]) — G0 R ([uze (D172 ry)
+CIC () Ry ([uar ()]) — G (O R ([wzr (D) 1721y

Therefore,
L (71 A ) (8) — 1 (19, Do ) (8) 3 < 0( / e (5) — ()3 ds +
/0 Ira(s) — ra(s) 2, ds + / loa(s) — ca(s)) 2, ds +

(3.26) €2 (t) = &2 ()15 + 116,(8) — Cz(t)IIQLQ(rg))-

By similar arguments, from (3.23], (3]25) and (2.32) it follows that
1L (11, A, pa0)(8) = T (02, Ao, pa) (D)7, < C(Hul(t) —us(t)[f5,
+/ [wi(s) = wa(s))[[5 ds + [|sa(t) —gz(t))H%oJr/ Is1(s) = s2(s))[17, ds
0 0
(3.27) |71 (t) = T2 ()7, + /0 I71(s) = Ta(s)l70 ds + 1€, (t) — 52(t)||%v>-
Similarly, using [[2.3p) implies
1T (1, A, p10) (8) = T8 (2, Aoy i) (D)7, < C(||u1(t) —us(t)[f3,
[ sl = IRy ds + la®) = <Dl + [ llalo) = o), ds
(3.28) s~ .00 ).
It follows now from (3.26),[(3.27) andl (3.28) that

ITE(4, Avs ) (8) = T2, Aoy 1) () Loy < C(Ilul(t) —w(t)lly
+/0 Hul(S)—W(S))H%/dSJrH<1(t)—€2(t))!|io+/0 l<1(s) = <2())IIZ, ds
+||71(t)—72(t))||§0+/0 I71(s) = m2())IZ, ds

(3.29) 6 ) — O + 1) - <2<t>||%2(r3>)'
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Also, since
t
wl(t) = / al(s)ds + ul(t), tel0,T], £=1,2,
0
we have .
[ur (£) — wa(t) |y < / [ 41 (s) — ta(s))lv ds
0
and using this inequality in (3.117) yields
t t
@:30) Jur(t) ~ wslt)l < C( [ (o) = msDllv s+ [ fuats) = wals)lvds).
0 0
Next, we apply Gronwall’s inequality to deduce
t
(3.31) Jur(£) — us(t))[lv < C/ [71.(5) = ma(s)[lv ds ¥t € [0, T].
0
On the other hand, from the Cauchy problé¢m (B.15) we can write
t
D=Co= | HualGi(5) 06 (), Rl (5)]). e[ () s
and, employing[(2.23) anf (2]33) we obtain that

130Gt sy <€ f115) = CaM s,

+C OHRu([ulu(S)])—Ru([wu(S)]) ds

lezqr

0 [ Reusr () = Rtz () e

Using the definition of?, and R, and writing¢, = ¢; — {5 + (,, we get
(3.32)

1646) = GOy = € [ 16060 = oo+ [ fn(s) = ()t

Next, we apply Gronwall’s inequality and from the Sobolev trace theorem we obtain

(3.33) 1€ (1) = G2y < 0/0 [wi(s) — ua(s)][7-ds.
We use now((3.14)[ (2.27], (234) and (2.36) to find
(3.34) 1€:(8) = & (O < Cllun(t) — ua ()7

From (3.8) we deduce that
(7"1—7"2,7'1—7'2>L0—|—(I0(7'1—7'277'1—7'2)‘1'<)\1_)\2;91_02)L0 = 0.

We integrate this equality with respect to time, using the initial conditiqii@) = 75(0) = ¢
and inequalityag (71 — 72,71 — T2) > 0, to find

%Hﬁ(t) —72()17, S/O (Mi(s) = Aa(s), 71(s) = T2(s)) ,, ds,

which implies that

Im1() — T2, < t/uA EWH Hmd&+/1vl ) 7o(s)]2, ds.
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This inequality combined with Gronwall’s inequality leads to

t
(3.35) I71(t) = 2 (B)IIZ, < C/ IA1(s) = Aa(s)lE, ds ¥t € [0, T7.
0
Moreover, from[(3.P) we deduce thate. t € (0,7,

(S1 = 2561 = S2) 1o +als1 = S2,61 = 62) < (kg — f12:61 = S2) .,

Integrating the previous inequality with respect to time, using the initial conditipfts =
$2(0) = ¢p and inequalitya(s; — s2,51 — ¢2) > 0, to find

S0 =20l < [ () = (). 1(5) = 2(5) s,

which implies that

o) = Ol < [ ) = o)l s+ [ lals) = o)l s
This inequality combined with Gronwall’s inequality leads to
t
(3.36) l6a(t) = 20, < € [ () = (o), .

We substitute] (3.17), (3.83)-(3136) in (3129) to obtain
||H 7717A17M1)( ) H(n2>/\2>ﬂ2>( )H%/XLOXLO S

/H%Mw1><wbwmw@%m@.

Reiterating this inequalityn times we obtain

||Hm(7717 >‘17 :ul) - Hm(n% )‘27 MQ) ”%’(O,T;VXL()XL()) <
Cme

(015 Ay 1) — (7727)‘QaMQ)H?}(O,T;VxLOXLO)'

Thus, form sufficiently IargeHm is a contraction on the Banach spac@, 7; V x Ly x Ly),
and sall has a unique fixed poing

Let (n*, A", u*) € C(0,T;V x Lo x Ly), be the fixed point of\, and
(337) u* — u/\*y‘*n*u 5* = gk*u*n*7 C* = é‘

) Tx = TX*, Cx = gu*7

(3.38)
o! = Ae(il) + B (e(u TM»t/d —s,e(ul(s)), 7 o (s)) ds — (£ BY(ED),

(3.39) D = £'e(ul) + G (E'(€))).
We use TI' (n*, \*, u*) = n*, IT3(n*, \*, p*) = X*, andIT®(n*, \*, u*) = u*, it follows:

(" (), v)v = = > ((EVEUE(), e(©)), + Jaa(C.(1), wa(t), )

/=1
(3.40)  +>_ (/t Q (t — s,e(ul(s)), T4(s),6(s)) ds, 5(1%)) Yo eV,
/=1 0 HE

(3.41) A(t) = O (al(t), e(ul(t)) ), (=1,2.
(3.42) p(t) = U (ai(t), e(us ( )) ( )), t=
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Existence We prove{u,, o.,&,, 7., ss, ., D, } satisfies[(2.49)-(2.56) and the regularifes|(3.1)—
(3.7). Indeed, we writd (3.13) fdr, A\, 1) = (n*, A", ©*) and use[(3.37) to find
2
Z(Aee(ﬂﬁ), e(v') — e + Z (B (e(ur), 7%,5%), e(v") — e(ul(t)))se
(3.43) +t _
Fve(Us(t), v — (1)) +Jfr<u*( ),0) = Jrr(ws(t), we(t))

+(*(t), v — (1)) v > (F(t),v — i.(t))y, Vv € V.
Substitute[(3.40) ir (3.43) to obtain

2

> (Ae(us)(t), e(v) — e + Z (B (e(ul), 7, <L), e(v”) — et (1))

(=1

g —s,e(u Tﬁ,fis ds, e(v') — e(ul
+ (/Ogt ()7L (0) . () = (il (0) )
+Jad( 0), ua(t), v u*(t)) + Jue(wa(t), v — (1)) + Jpr(u(t), v)

—Jpr(ua(t), w. (1)) — Z ((E)E (1), e(v) - e(u, (1),

(=1
(3.44) > (f(t),v —u.(t)y YveV ae. tel0T],
and we substituté (3.41) i (3.8) to have

2

(345) Z(Ti(t) £)L2(Ql) + (10 Z )\E + ;0 )L2(Q4)’

(=1 (=1

foralla € Ly, ae.t € (0,7).
Next, substitute] (3.42) irh (2.80) to obtain(t) € K, and

D GE), af = <L) raae) + alss(t), a — 6u(t)) >
(3.46) =1

2
12

[\

> (W(okt) - Alelil (). eul(®). <L 0).a” = <L0)

=1

foralla € K, ae. t € (0,7). We write now [3.Ip) for(n, \, u) = (n*, X", u*) and use[(3.37)
to see that
2

(347) Y (G'EU(ED), Vo' Hz+2 (Ee(ul(1)), Vo ) e = —(a(t), O)w,

(=1

forallg € W, a.e.t € (0,7). Additionally, we useu,, . . in (3.158) and[(3.37) to find

(3.48) C(t) = Haa(C (1) ac, (1), Ry ([ (1)), Re ([uer (1)]))

a.e.t € [0,T]. The relationg(3.43)(3.48), allow us to conclude now that o, &, 5., (., D.}

satisfies[(2.49)(2.55). Next, (2]56) the regulafity|(3[1)4(3.3)[and (3.6) follow from Lemnas 3.2
and[3.8. Since,, ¢, andg, satisfies[(3]1)[(3]2) anf (3.6), respectively, It follows frgm (B.38)
that

(3.49) o, €C0,T;H).
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For¢ = 1,2, we choosa = u + ¢ in (3:4%), withg = (¢*, #%), ¢ € D(QY)? and¢®* =0, to
obtain

(3.50) Divel(t) = —f5(t) Vte[0,T], £=1,2,

whereD(Q') is the space of infinitely differentiable real functions with a compact supp&t.in

The regularity[(3.4) follows fron{ (2.39), (3.49) arid (3.50). Let nqw, € [0, T, from (2.27),
(2.34), (2.36) and (3.39), we conclude that there exists a positive codstartt verifying

[D.(t1) — Di(t)lm < C([|€.(01) — & () [lw + [[us(tr) — wa(t2)lv) -
The regularity ofu, and¢, given by [3.1) and (3]2) implies
(3.51) D, eC(0,T;H).

For/ = 1,2, we choose = (¢', ¢?) with ¢* € D(Q¢)¢ and¢®~* = 0in (3.47) and usind (2.33)
we find

(3.52) div DY(t) = gi(t) Vte[0,T], £=1,2.
Property|[(3.J7) follows from[ (2.39)] (3.51) arid (3.52).

Finally we conclude that the weak soluti¢m.., o .., &, , 7., s, C,, D.} of the problemPV
has the regularity (311)=(3.7), which concludes the existence part of Thgorem 3.1.

Unigueness. The uniqgueness of the solution is a consequence of the uniqueness of the fixed
point of the operatofl(., ., .) defined by[(3.22)F(3.23) and the unique solvability of the Problems
PV()\#), and PV()\#”]). 1

4. CONCLUSION

We presented a model for the quasi-static process of frictional contact between two thermo-
electro-viscoelastic bodies with damage. The contact was modeled with the normal compliance
condition and the associated Coulomb’s law of dry friction. The new feature in the model was
the normal compliance and the friction law depend on the adhesion as presented in the differen-
tial equation[(2.14). The difficulty of solving this type of problem lies not only in the coupling
of viscoelastic, electrical and thermal aspects, but also in the nonlinearity of the boundary con-
ditions modeling this type of physical phenomena (contact and friction conditions), which gives
us a quasi-variational inequalities and type of nonlinear, parabolic variational equalities. The
existence of the unique weak solution for the problem was established by using arguments from
the theory of evolutionary variational inequalities, parabolic inequalities and fixed point theo-
rem.
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