
Aust. J. Math. Anal. Appl.
Vol. 17 (2020), No. 1, Art. 6, 20 pp.
AJMAA

ANALYSIS OF A FRICTIONAL CONTACT PROBLEM FOR VISCOELASTIC
PIEZOELECTRIC MATERIALS

MEZIANE SAID AMEUR, TEDJANI HADJ AMMAR AND LAID MAIZA

Received 7 September, 2019; accepted 5 March, 2020; published 31 March, 2020.

DEPARTEMENT OFMATHEMATICS, EL OUED UNIVERSITY, P.O. BOX 789, 39000 EL OUED, ALGERIA.
said-ameur-meziane@univ-eloued.dz

DEPARTEMENT OFMATHEMATICS, EL OUED UNIVERSITY, P.O. BOX 789, 39000 EL OUED, ALGERIA.
hadjammar-tedjani@univ-eloued.dz

DEPARTMENT OFMATHEMATICS, KASDI MERBAH UNIVERSITY, 30000 OUARGLA , ALGERIA.
maiza.laid@univ-ouargla.dz

ABSTRACT. In this paper, we consider a mathematical model that describes the quasi-static
process of contact between two thermo-electro-viscoelastic bodies with damage and adhesion.
The damage of the materials caused by elastic deformations. The contact is frictional and mod-
eled with a normal compliance condition involving adhesion effect of contact surfaces. Evolu-
tion of the bonding field is described by a first order differential equation. We derive variational
formulation for the model and prove an existence and uniqueness result of the weak solution.
The proof is based on arguments of evolutionary variational inequalities, parabolic inequalities,
differential equations, and fixed point theorem.
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1. I NTRODUCTION

The piezoelectric phenomenon represents the coupling between the mechanical and electrical
behavior of a class of materials, called piezoelectric materials. In simplest terms, when a piezo-
electric material is squeezed, an electric charge collects on its surface, conversely, when a piezo-
electric material is subjected to a voltage drop, it mechanically deforms. Many crystalline mate-
rials exhibit piezoelectric behavior. A few materials exhibit the phenomenon strongly enough to
be used in applications that take advantage of their properties. These include quartz, Rochelle
salt, lead titanate zirconate ceramics, barium titanate and polyvinylidene flouride (a polymer
film). Piezoelectric materials are used extensively as switches and actually in many engineering
systems in radioelectronics, electroacoustics and measuring equipment.

Different models have been developed to describe the interaction between the electric and
mechanical fields (see, e.g.[2, 9, 10, 21, 25]). Therefore there is a need to extend the results
on models for contact with deformable bodies which include coupling between mechanical and
electrical properties.

General models for elastic materials with piezoelectric effects can be found in [7, 9, 15, 16]
and more recently in [1], viscoelastic piezoelectric materials in [21, 25] or elasto-viscoplastic
piezoelectric materials have been studied in [12]. The coupling between the thermal, electric
and mechanical fields in piezo electric materials provides a mechanism for sensing thermo
mechanical disturbances from measurements of induced electric potentials, and for altering
structural responses via applied electric fields.

One of the applications of the thermo-piezoelectric material is to detect the responses of a
structure by measuring the electric charge, sensing or to reduce excessive responses by ap-
plying additional electric forces or thermal forces actuating. If sensing and actuating can be
integrated smartly, a so-called intelligent structure can be designed. The piezoelectric materials
are also often used as resonators whose frequencies need to be precisely controlled. The cou-
pling between the thermo-piezoelectric and pyroelectric effects, it is important to qualify the
effect of heat dissipation on the propagation of wave at low and high frequencies.

The thermo- piezoelectric theory was first proposed by Mindlin [14], later he derived the
governing equations of a thermo-piezoelectric plate [17]. The physical laws for the thermo-
piezoelectric materials have been discussed by [19, 20]. Chandrasekhariah [4, 5] presented the
generalized theory of thermo-piezoelectricity by taking into account the finite speed of prop-
agation of thermal disturbance. Yang and Batra [28] studied the effect of heat conduction on
shift in the frequencies of a freely vibrating linear thermo-piezoelectric body with the help of
perturbation methods. Sharma and Walia [24] presented the propagation of straight and circu-
lar crested waves in generalized piezo thermoelastic materials. The normal compliance contact
condition was first considered in [21, 25, 26] in the study of dynamic problems with linearly
elastic and viscoelastic materials and then it was used in various references, see e.g. [23]. This
condition allows the interpenetration of the body’s surface into the obstacle and it was justified
by considering the interpenetration and deformation of surface asperities. The adhesive contact
between deformable bodies, when a glue is added to prevent relative motion of the surfaces,
has received recently increased attention in the mathematical literature. Analysis of models for
adhesive contact can be found in [9, 10, 11, 22] and recently in the monographs [18].

In these papers, the bonding field, denoted byζ, it describes the point wise fractional density
of adhesion of active bonds on the contact surface, and some times referred to as the intensity
of adhesion. Following [6], the bonding field satisfies the restriction0 ≤ ζ ≤ 1, whenζ = 1 at
a point of the contact surface, the adhesion is complete and all the bonds are active, whenζ = 0
all the bonds are inactive, severed, and there is no adhesion, when0 < ζ < 1 the adhesion is
partial and only a fractionζ of the bonds is active. The novelty of this work lies in the analysis
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of a system that contains strong couplings in the multivalued boundary conditions: both the
normal compliance and the friction law depend on the adhesion (see (2.15) and (2.16)), and the
adhesion be written by the differential equation of the form

ζ̇ = Had

(
ζ, αζ , Rν(u

1
ν + u2

ν),Rτ (u
1
τ − u2

τ )
)
.

Here,Had is theadhesion evolution rate function. Then, the adhesion rate function was assumed
to depend, in addition toζ, Rν(u

1
ν + u2

ν), Rτ (u
1
τ −u2

τ ) andαζ , where, the truncation operators
Rν ,Rτ are defined by (2.23), andαζ(x, t) =

∫ t

0
ζ(x, s)ds.We use it inHad, since usually when

the glue is stretched beyond the limitL it does not contribute more to the bond strength. An
example of such a function, used in [6], the following form of the evolution of the bonding
field was employeḋζ = −ζ

+
γnRν(uν)

2, whereγn is the normal rate coefficient andγnL is the
maximal tensile normal traction that the adhesive can provide andζ

+
= max(0, ζ). We note

that in this case, only debonding is allowed. A different rate equation for the the evolution of the
bonding field isζ̇ = −(ζ

(
γnRν(u

1
ν +u2

ν)
2 +γt|Rτ (u

1
τ −u2

τ )|2
)
− εa)+, see, e.g., [9, 10]. Here,

γt is the tangential rate coefficient, which may also be interpreted as the tangential stiffness
coefficient of the interface when the adhesion is complete(ζ = 1). However, the bonding
cannot exceedζ = 1 and, moreover, the rebonding becomes weaker as the process goes on,
which is represented by the factor1 + α2

ζ in the denominator. In all these papers the damage of
the material is described with a damage functionς`, restricted to have values between zero and
one. Whenς` = 1, there is no damage in the material, whenς` = 0, the material is completely
damaged, when0 < ς` < 1 there is partial damage and the system has a reduced load carrying
capacity.

In this paper, we study the quasi-static frictional contact problem between two viscoelas-
tic piezoelectric bodies with damage, adhesion and normal compliance. In Section 2, we de-
scribe the mathematical models for the frictional contact problem between two thermo-electro-
viscoelastic bodies with long-term memory and damage. The contact is modelled with normal
compliance and adhesion. We introduce some notation, list the assumptions on the problem’s
data, and derive the variational formulation of the model. We prove in Section 3 the existence
and uniqueness of the solution, where it is carried out in several steps and is based on arguments
of evolutionary variational equalities, differential equations and Banach fixed point theorem.

2. PROBLEM STATEMENT AND VARIATIONAL FORMULATION

We describe the model for the process, we present its variational formulation. The physical
setting is the following. Let us consider two thermo-electro-viscoelastic bodies with long-term
memory, occupying two bounded domainsΩ1, Ω2 of the spaceRd(d = 2, 3). We put a super-
script ` to indicate that the quantity is related to the domainΩ`, ` = 1, 2. In the following,
the superscript̀ ranges between1 and2. For each domainΩ`, (` = 1, 2) the boundaryΓ` is
assumed to be Lipschitz continuous, and is partitioned into three disjoint measurable partsΓ`

1,
Γ`

2 andΓ`
3, on one hand, and on two measurable partsΓ`

a andΓ`
b, on the other hand, such that

measΓ`
1 > 0, measΓ`

a > 0. LetT > 0 and let[0, T ] be the time interval of interest. TheΩ` body
is submitted tof `

0 forces and volume electric charges of densityq`
0. The bodies are assumed to

be clamped onΓ`
1 × (0, T ), so the displacement field vanishes there. The surface tractionsf `

2

act onΓ`
2 × (0, T ). We also assume that the electrical potential vanishes onΓ`

a × (0, T ) and a
surface electric charge of densityq`

2 is prescribed onΓ`
b × (0, T ). The two bodies are in contact

along the common partΓ1
3 = Γ2

3, which will be denotedΓ3 below. The bodies is in adhesive
contact, over the contact surfaceΓ3, the contact is frictional and is modeled with the normal
compliance condition and a version of Coulomb’s law of friction. The process is assumed to be
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isothermal, electrically static, i.e., all radiation effects are neglected, and mechanically quasi-
static; i.e., the inertial terms in the momentum balance equations are neglected. We denote by
u` the displacement field, byσ` the stress field and byε(u`) the linearized strain tensor. We
use an thermo-electro-viscoelastic constitutive law with damage given by

σ` = A`ε(u̇`) + B`
(
ε(u`), τ `, ς`

)
+

∫ t

0

Q`
(
t− s, ε(u`(s)), τ `(s), ς`(s)

)
ds− (E `)∗E`(ξ`),

(2.1)

whereA` is a given nonlinear operator,Q` is the relaxation operator,B` represents the elastic-
ity operator, whereτ ` represents the absolute temperature andς` is the damage field.E(ξ`) =
−∇ξ` is the electric field,E ` represents the third order piezoelectric tensor,(E `)∗ is its transposi-
tion. We study a quasi-static Coulomb’s frictional contact problem between two thermo-electro-
viscoelastic bodies with long-term memory and damage. The contact is modelled with normal
compliance where the adhesion of the contact surfaces is taken into account and is modelled
with a surface variable, the bonding field. We derive a variational formulation of the problem
and prove the existence of a unique weak solution.

In (2.1) and everywhere in this paper the dot above a variable represents derivative with
respect to the time variablet. It follows from (2.1) that at each time moment, the stress tensor
σ`(t) is split into three parts:σ`(t) = σ`

V (t) + σ`
E(t) + σ`

R(t), whereσ`
V (t) = A`ε(u̇`(t))

represents the purely viscous part of the stress,σ`
E(t) = (E `)∗∇ξ`(t) represents the electric part

of the stress andσ`
R(t) satisfies a rate-type elastic relation

σ`
R(t) = B`

(
ε(u`(t)), τ `(t), ς`(t)

)
+

∫ t

0

Q`
(
t− s, ε(u`(s)), τ `(s), ς`(s)

)
ds.

Note also that whenQ` = 0 the constitutive law (2.1) becomes the Kelvin-Voigt viscoelastic
piezoelectric with damage and thermal effects constitutive relation,

σ`(t) = A`ε(u̇`(t)) + B`
(
ε(u`(t)), τ `(t), ς`(t)

)
+ (E `)∗∇ξ`(t).

Quasistatic evolution of damage in viscoplastic materials has been studied in [13]. According
to Batra and Yang [1] the following constitutive law is employed for the electric potential:

D` = E `ε(u`) + G`
(
E`(ξ`)

)
,(2.2)

whereD` is the electric displacement field andG` is the electric permittivity tensor.
The differential inclusion used for the evolution of the damage field is

ς̇`−κ`∆ς`+∂ψK`(ς`)3Ψ`
(
σ`−A`ε(u̇`), ε(u`), ς`

)
in Ω` × (0, T ),(2.3)

whereK` denotes the set of admissible damage functions defined by

(2.4) K` = {α ∈ H1(Ω`); 0 ≤ α ≤ 1, a.e. in Ω`},

κ` is a positive coefficient,∂ψK` represents the subdifferential of the indicator function of the
setK` andφ` is a given constitutive function which describes the sources of the damage in
the system. Whenς` = 1, there is no damage in the material, whenς` = 0, the material is
completely damaged, when0 < ς` < 1 there is partial damage and the system has a reduced
load carrying capacity. Contact problems with damage have been investigated in [9, 25, 26].

The thermo-electro-viscoelastic constitutive law (2.1) includes a temperature effects described
by the parabolic aquation given by

(2.5) τ̇ ` − κ`
0∆τ

` = Θ`
(
σ`, ε(u`), τ `, ς`

)
+ ρ`.
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With these assumptions, the classical formulation of the quasi-static problem for frictional
contact problem between two thermo-electro-viscoelastic bodies with damage, normal compli-
ance and adhesion is the following.

Problem P. For ` = 1, 2, find a displacement fieldu` : Ω` × (0, T ) −→ Rd, a stress
field σ` : Ω` × (0, T ) −→ Sd, , a temperatureτ ` : Ω` × (0, T ) −→ R, a damage field
ς` : Ω` × (0, T ) −→ R, an electric potential fieldξ` : Ω` × (0, T ) −→ R, a bonding field
ζ : Γ3 × (0, T ) −→ R and a electric displacement fieldD` : Ω` × (0, T ) −→ Rd such that

σ`(t) = A`ε(u̇`(t)) + B`
(
ε(u`(t)), τ `(t), ς`(t)

)
+∫ t

0

Q`
(
t− s, ε(u`(s)), τ `(s), ς`(s)

)
ds− (E `)∗E`(ξ`(t)),

in Ω`×(0, T ),(2.6)

D` = E `ε(u`) + G`
(
E`(ξ`)

)
, in Ω` × (0, T ),(2.7)

τ̇ ` − κ`
0∆τ

` = Θ`
(
σ`, ε(u`), τ `, ς`

)
+ ρ` in Ω` × (0, T ),(2.8)

ς̇`−κ`∆ς`+∂ψK`(ς`)3Ψ`
(
σ`−A`ε(u̇`), ε(u`), ς`

)
in Ω` × (0, T ),(2.9)

Div σ` + f `
0 = 0 in Ω` × (0, T ),(2.10)

div D` − q`
0 = 0 in Ω` × (0, T ),(2.11)

u` = 0 on Γ`
1 × (0, T ),(2.12)

σ`ν` = f `
2 on Γ`

2 × (0, T ),(2.13)

ζ̇ = Had

(
ζ, αζ , Rν([uν ]),Rτ ([uτ ])

)
, on Γ3 × (0, T ),(2.14)

σ1
ν = σ2

ν ≡ σν , whereσν = −pν([uν ]) + γνζ
2Rν([uν ]) on Γ3 × (0, T ),(2.15) 

σ1
τ = −σ2

τ ≡ στ ,∥∥στ + γτζ
2Rτ ([uτ ])

∥∥ ≤ µpν([uν ]),∥∥στ + γτζ
2Rτ ([uτ ])

∥∥ < µpν([uν ]) ⇒ [u̇τ ] = 0,∥∥στ + γτζ
2Rτ ([uτ ])

∥∥ = µpν([uν ]) ⇒ ∃λ ≥ 0

such that στ + γτζ
2Rτ ([uτ ]) = −λ[u̇τ ]

on Γ3 × (0, T ),(2.16)

ξ` = 0 on Γ`
a × (0, T ),(2.17)

D`.ν` = q`
2 on Γ`

b × (0, T ),(2.18)

κ`
0

∂`τ `

∂ν`
+ λ`

0τ
` = 0 onΓ` × (0, T ),(2.19)

∂ς`

∂ν`
= 0 on Γ` × (0, T ),(2.20)

u`(0) = u`
0, τ

`(0) = τ `
0, ς

`(0) = ς`0 in Ω`,(2.21)

ζ(0) = ζ0 on Γ3.(2.22)

Here and belowSd denotes the space of second order symmetric tensors onRd, whereas
”.” and‖.‖ represent the inner product and the Euclidean norm onSd andRd, respectively;ν`
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is the unit outer normal vector onΓ`, equations (2.6) and (2.7) represent the thermo-electro-
viscoelastic constitutive law with long term-memory and damage. Equation (2.8) represents
the energy conservation whereΘ` is a nonlinear constitutive function which represents the heat
generated by the work of internal forces andρ` is a given volume heat source. Inclusion (2.9)
describes the evolution of the damage field. Equations (2.10) and (2.11) are the equilibrium
equations for the stress and electric-displacement fields, respectively. Next, the equations (2.12)
and (2.13) represent the displacement and traction boundary condition, respectively. Condition
(2.15) represents the normal compliance conditions with adhesion whereγν is a given adhesion
coefficient,pν is a given positive function which will be described below and[uν ] = u1

ν + u2
ν

stands for the displacements in normal direction, in this condition the interpenetrability between
two bodies, that is[uν ] can be positive onΓ3.

(2.23) Rν(s) =

 L if s < −L,
−s if −L ≤ s ≤ 0,
0 if s > 0.

Rτ (v) =

{
v if |v| ≤ L,

L v
|v| if |v| > L.

HereL > 0 is the characteristic length of the bond, beyond which it does not offer any additional
traction (see, e.g., [22]). Condition (2.16) are a non local Coulomb’s friction law conditions cou-
pled with adhesive, where[uτ ] = u1

τ−u2
τ stands for the jump of the displacements in tangential

direction. Equation (2.14) represents the ordinary differential equation which describes the evo-
lution of the bonding field and it was already used in [26, 27]. (2.17) and (2.18) represent the
electric boundary conditions. The relation (2.19) represent a Fourier boundary condition for the
temperature onΓ`. The relation (2.20) represents a homogeneous Neumann boundary condition
for the damage field onΓ`. Finally the functionsu0, τ 0, ς0 andζ0 in (2.21)-(2.22) are the initial
data.

We now proceed to obtain a variational formulation of ProblemP. For this purpose, we
introduce additional notation and assumptions on the problem data. Here and in what follows
the indicesi and j run between1 andd, the summation convention over repeated indices is
adopted and the index that follows a comma indicates a partial derivative with respect to the
corresponding component of the independent variable. LetH` = L2(Ω`)d, H`

1 = H1(Ω`)d,
H` = L2(Ω`)d×d

s , H`
1 = {θ` = (θ`

ij) ∈ H`; divθ` ∈ H`}. The spacesH`, H`
1, H` andH`

1 are
real Hilbert spaces endowed with the canonical inner products given by

(u`,v`)H` =

∫
Ω`

u`.v`dx, (u`,v`)H`
1

=

∫
Ω`

u`.v`dx+

∫
Ω`

∇u`.∇v`dx,

(σ`,θ`)H` =

∫
Ω`

σ`.θ`dx, (σ`,θ`)H`
1

=

∫
Ω`

σ`.θ`dx+

∫
Ω`

div σ`.Div θ`dx,

and the associated norms‖.‖H` , ‖.‖H`
1
, ‖.‖H` , and‖.‖H`

1
respectively.

We introduce for the bonding field the set

Z =
{
β ∈ L∞

(
0, T ;L2(Γ3)

)
; 0 ≤ β(t) ≤ 1 ∀t ∈ [0, T ], a.e. on Γ3

}
,

and for the displacement field we need the closed subspace ofH`
1 defined by

V ` =
{
v` ∈ H`

1; v` = 0 on Γ`
1

}
.

SincemeasΓ`
1 > 0, the following Korn’s inequality holds (see [18]) :

‖ε(v`)‖H` ≥ cK‖v`‖H`
1

∀v` ∈ V `.(2.24)

Over the spaceV ` we consider the inner product given by

(u`,v`)V ` = (ε(u`), ε(v`))H` , ∀u`,v` ∈ V `,(2.25)
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and let‖.‖V ` be the associated norm. It follows from Korn’s inequality (2.24) that the norms
‖.‖H`

1
and‖.‖V ` are equivalent onV `. Then(V `, ‖.‖V `) is a real Hilbert space. Moreover, by

the Sobolev trace theorem and (2.25), there exists a constantc0 > 0, depending only onΩ`, Γ`
1

andΓ3 such that

‖v`‖L2(Γ3)d ≤ c0‖v`‖V ` ∀v` ∈ V `.(2.26)

We also introduce the spaces

L`
0 = L2(Ω`), L`

1 = H1(Ω`), W ` =
{
ψ` ∈ L`

1; ψ
` = 0 on Γ`

a

}
,

W` =
{
D` = (D`

i ); D
`
i ∈ L2(Ω`), div D` ∈ L2(Ω`)

}
.

SincemeasΓ`
a > 0, the following Friedrichs-Poincaré inequality holds:

‖∇ψ`‖W ` ≥ cF‖ψ`‖H1(Ω`) ∀ψ` ∈ W `,(2.27)

wherecF > 0 is a constant which depends only onΩ`, Γ`
a. Over the spaceW `, we consider the

inner product given by

(ξ`, ψ`)W ` =
∫

Ω` ∇ξ`.∇ψ`dx(2.28)

and let‖.‖W ` be the associated norm. It follows from (2.27) that‖.‖H1(Ω`) and ‖.‖W ` are
equivalent norms onW ` and therefore(W `, ‖.‖W `) is areal Hilbert space. The spaceW` is real
Hilbert space with the inner product

(D`,Φ`)W` =

∫
Ω`

D`.Φ`dx+

∫
Ω`

div D`. div Φ`dx,

wherediv D` = (D`
i,i), and the associated norm‖.‖W` .

In order to simplify the notations, we define the product spaces

V = V 1 × V 2, H = H1 ×H2, H1 = H1
1 ×H2

1 , H = H1 ×H2, H1 = H1
1 ×H2

1,

L0 = L1
0 × L2

0, L1 = L1
1 × L2

1, W = W 1 ×W 2, W = W1 ×W2.

The spacesV , L1, W andW are real Hilbert spaces endowed with the canonical inner products
denoted by(., .)V , (., .)L1 , (., .)W and(., .)W .

In the study of the ProblemP, we consider the following assumptions:

The viscosity functionA` : Ω` × Sd → Sd satisfies:

(a) There exists LA` > 0 such that : ∀ω1,ω2 ∈ Sd,
|A`(x,ω1)−A`(x,ω2)| ≤ LA` |ω1 − ω2|, a.e. x ∈ Ω`.

(b) There exists mA` > 0 such that : ∀ω1,ω2 ∈ Sd,
(A`(x,ω1)−A`(x,ω2)) · (ω1 − ω2) ≥ mA` |ω1 − ω2|2, a.e. x ∈ Ω`.

(c) The mapping x 7→ A`(x,ω) is measurable on Ω`, ∀ω ∈ Sd.
(d) The mapping x 7→ A`(x,0) is continuous on Sd, a.e. x ∈ Ω`.

(2.29)

The elasticity operatorB` : Ω` × Sd × R× R → Sd satisfies:
(a) There exists LB` > 0 such that : ∀ω1,ω2 ∈ Sd, r1, r2, d1, d2 ∈ R,

|B`(x,ω1, r1, d1)− B`(x,ω2, r2, d2)| ≤ LB`

(
ω1 − ω2|+ |r1 − r2|+

|d1 − d2|
)
, a.e.x ∈ Ω`.

(b) The mapping x 7→ B`(x,ω, r, d) is measurable in Ω`, ∀ω ∈ Sd, r, d ∈ R.
(c) The mapping x 7→ B`(x,0, 0, 0) belongs toH`.

(2.30)

AJMAA, Vol. 17 (2020), No. 1, Art. 6, 20 pp. AJMAA
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Therelaxation functionQ` : Ω` × (0, T )× Sd × R× R → Sd satisfies:

(a) There exists LQ` > 0 such that :∀ω1,ω2 ∈ Sd, r1, r2, d1, d2 ∈ R,
|Q`(x, t,ω1, r1, d1)−Q`(x, t,ω2, r2, d2)| ≤ LQ`

(
ω1 − ω2|+

|r1 − r2|+ |d1 − d2|
)
, for all t ∈ (0, T ), a.e. x ∈ Ω`.

(b) The mapping x 7→ Q`(x, t,ω, r, d) is measurable in Ω`,
for any t ∈ (0, T ), ω ∈ Sd, r, d ∈ R.

(c) The mapping t 7→ Q`(x, t,ω, r, d) is continuous in (0, T ),
for any ω ∈ Sd, r, d ∈ R, a.e. x ∈ Ω`.

(d) The mapping x 7→ Q`(x, t,0, 0, 0) belongs toH`,∀t ∈ (0, T ).

(2.31)

The energy functionΘ` : Ω` × Sd × Sd × R× R → R satisfies:

(a) There exists LΘ` > 0 such that :∀η1,η2,ω1,ω2 ∈ Sd, α1, α2, d1, d2 ∈ R,
|Θ`(x,η1,ω1, α1, d1)−Θ`(x,η2,ω2, α2, d2)| ≤ LΘ`

(
|η1 − η2|+

|ω1 − ω2|+ |α1 − α2|+ |d1 − d2|
)
, a.e. x ∈ Ω`.

(b) The mapping x 7→ Θ`(x,η,ω, α, d) is measurable on Ω`,
for any η,ω ∈ Sd and α, d ∈ R,

(c) The mapping x 7→ Θ`(x,0,0, 0, 0) belongs to L2(Ω`),
(d) Θ`(x,η,ω, α, d) is bounded for all η,ω ∈ Sd, α, d ∈ R a.e. x ∈ Ω`.

(2.32)

The adhesion rate functionHad : Γ3 × R× R× R× Rd−1 → R satisfies:

(a) There exists Lad > 0 such that :∀ ζ1, ζ2, ω1, ω2, r1, r2 ∈ R, d1, d2 ∈ Rd−1,
|Had(x, ζ1, ω1, r1, d1)−Had(x, ζ2, ω2, r2, d2)| ≤ Lν |ζ1 − ζ2|+ |ω1 − ω2|+
|r1 − r2|+ |d1 − d2|, a.e. x ∈ Γ3.

(b) The mappingx 7→ Had(x, ζ, ω, r, d) is measurable onΓ3,
for anyζ, ω, r ∈ R, d ∈ Rd−1,

(c) The mapping(ζ, ω, r, d) 7→ Had(x, ζ, ω, r, d) is continuous on
R× R× R× Rd−1 , a.e. x ∈ Γ3,

(d) Had(x, 0, ω, r, d) = 0,∀ ξ, r ∈ R, d ∈ Rd−1 , a.e. x ∈ Γ3,
(e) Had(x, ζ, ω, r, d) ≥ 0, ∀ ζ ≤ 0, ω, r ∈ R, d ∈ Rd−1 , a.e. x ∈ Γ3, and

Had(x, ζ, ω, r, d) ≤ 0, ∀ ζ ≥ 1, ω, r ∈ R, d ∈ Rd−1 , a.e. x ∈ Γ3.

(2.33)

Thepiezoelectric tensorE ` : Ω` × Sd → Rd satisfies:{
(a) E `(x, τ) = (e`

ijk(x)τ jk), ∀τ = (τ ij) ∈ Sd a.e. x ∈ Ω`.
(b) e`

ijk = e`
ikj ∈ L∞(Ω`), 1 ≤ i, j, k ≤ d.

(2.34)

The damage source functionΨ` : Ω` × Sd × Sd × R → R satisfies:

(a) There exists LΨ` > 0 such that : ∀η1,η2,ω1,ω2 ∈ Sd, α1, α2 ∈ R,
|Ψ`(x,η1,ω1, α1)−Ψ`(x,η2,ω2, α2)| ≤ LΨ`

(
|η1 − η2|+ |ω1 − ω2|+

|α1 − α2|
)
, a.e. x ∈ Ω`.

(b) The mapping x 7→ Ψ`(x,η,ω, α) is measurable on Ω`,
for any η,ω ∈ Sd and α ∈ R,

(c) The mapping x 7→ Ψ`(x,0,0, 0) belongs to L2(Ω`),
(d) Ψ`(x,η,ω, α) is bounded, ∀η,ω ∈ Sd, α ∈ R a.e. x ∈ Ω`.

(2.35)

The electric permittivity operatorG` : Ω` × Rd → Rd, satisfies:(a) G`(x,E) = (b`ij(x)Ej), b
`
ij = b`ji, b

`
ij ∈ L∞(Ω`), 1 ≤ i, j ≤ d.

(b) There exists mG` > 0 such that :
G`E.E ≥ mG` |E|2, ∀E ∈ Rd, a.e.x ∈ Ω`.

(2.36)
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The normal compliance functionpν : Γ3 × R → R+ satisfies:
(a) There exists Lν > 0 such that :∀ r1, r2 ∈ R,
|pν(x, r1)− pν(x, r2)| ≤ Lν |r1 − r2|, a.e. x ∈ Γ3.

(b) (pν(x, r1)− pν(x, r2))(r1 − r2) ≥ 0, ∀ r1, r2 ∈ R, a.e. x ∈ Γ3.
(c) The mappingx 7→ pν(x, r) is measurable onΓ3, ∀r ∈ R.
(d) pν(x, r) = 0, for all r ≤ 0, a.e. x ∈ Γ3.

(2.37)

The adhesion coefficientsγν andγτ satisfy the conditions

γν , γτ ∈ L∞(Γ3), γν , γτ ≥ 0, a.e. on Γ3.(2.38)

Theforces, tractionshave the regularity

f `
0 ∈ C(0, T ;L2(Ω`)d), f `

2 ∈ C(0, T ;L2(Γ`
2)

d),

q`
0 ∈ C(0, T ;L2(Ω`)), q`

2 ∈ C(0, T ;L2(Γ`
b)), ρ

` ∈ C(0, T ;L2(Ω`)).
(2.39)

The energy coefficientκ`
0 and the microcrack diffusion coefficientκ` satisfies :

κ`
0 > 0, κ` > 0.(2.40)

Finally, the friction coefficient and the initial data satisfy:

µ ∈ L∞(Γ3), µ(x) ≥ 0 a.e. on Γ3,

u`
0 ∈ V `, ς`0 ∈ K`, τ `

0 ∈ L`
1, ζ0 ∈ L2(Γ3), 0 ≤ ζ0 ≤ 1, a.e. on Γ3.

(2.41)

Next, we define the mappingsf = (f1, f2) : [0, T ] → V , q = (q1, q2) : [0, T ] → W, a0 :
L1 × L1 → R, a : L1 × L1 → R, jad : L2(Γ3) × V × V → R, jνc : V × V → R and
jfr : V × V → R, respectively, by

(f(t),v)V =
2∑

`=1

∫
Ω`

f `
0(t) · v` dx+

2∑
`=1

∫
Γ`

2

f `
2(t) · v` da ∀v ∈ V ,(2.42)

(q(t), φ)W =
2∑

`=1

∫
Ω`

q`
0(t)φ

` dx−
2∑

`=1

∫
Γ`

b

q`
2(t)φ

` da ∀φ ∈ W,(2.43)

a0(τ , α) =
2∑

`=1

κ`
0

∫
Ω`

∇τ `.∇α`dx+
2∑

`=1

λ`
0

∫
Γ`

τ `α`da,(2.44)

a(ς, α) =
2∑

`=1

κ`

∫
Ω`

∇ς`.∇α`dx,(2.45)

jad(ζ,u,v) =

∫
Γ3

(
− γνζ

2Rν([uν ])[vν ] + γτζ
2Rτ ([uτ ]).[vτ ]

)
da,(2.46)

jνc(u,v) =

∫
Γ3

pν([uν ])[vν ] da,(2.47)

jfr(u,v) =

∫
Γ3

µpν([uν ])
∥∥[vτ ]

∥∥ da.(2.48)

By a standard procedure based on Green’s formula we can derive the following variational
formulation of the contact problem (2.6)–(2.22).

Problem PV. Find a displacement fieldu = (u1,u2) : [0, T ] → V , a stress fieldσ =
(σ1,σ2) : [0, T ] → H, an electric potential fieldξ = (ξ1, ξ2) : [0, T ] → W, a temperature
τ = (τ 1, τ 2) : [0, T ] → L1, a damage field ς = (ς1, ς2) : [0, T ] → L1, a bonding field
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ζ : [0, T ] → L∞(Γ3) and a electric displacement fieldD = (D1,D2) : [0, T ] → W such
that, for a.e. t ∈ (0, T ),

σ` = A`ε(u̇`) + B`
(
ε(u`), τ `, ς`

)
+

∫ t

0

Q`
(
t− s, ε(u`(s)), τ `(s), ς`(s)

)
ds− (E `)∗E`(ξ`),

(2.49)

D` = E `ε(u`) + G`
(
E`(ξ`)

)
,(2.50) ∑2

`=1(σ
`, ε(v`)− ε(u̇`(t)))H` + jad(ζ(t),u(t),v − u̇(t)) + jfr(u(t),v)

−jfr(u(t), u̇(t)) + jνc(u(t),v − u̇(t)) ≥ (f(t),v − u̇(t))V , ∀v ∈ V ,

}
(2.51)

2∑
`=1

(
E `ε(u`(t)) + G`

(
E`(ξ`(t))

)
, ∇φ`

)
H`

= (−q(t), φ)W , ∀φ ∈ W,(2.52)

∀α ∈ L1,
2∑

`=1

(τ̇ `(t)− ρ`(t), α`)L2(Ω`) + a0(τ(t), α) =

2∑
`=1

(
Θ`

(
σ`(t), ε(u`(t)), τ `(t), ς`(t)

)
, α`

)
L2(Ω`)

,

(2.53)

ς(t) ∈ K, ∀α ∈ K,
∑2

`=1(ς̇
`(t), α` − ς`(t))L2(Ω`) + a(ς(t), α− ς(t)) ≥∑2

`=1

(
Ψ`

(
σ`(t)−A`ε(u̇`(t)), ε(u`(t)), ς`(t)

)
, α` − ς`(t)

)
L2(Ω`)

,

(2.54)

ζ̇(t) = Had(ζ(t), αζ(t), Rν([uν(t)]),Rτ ([uτ (t)]),(2.55)

u(0) = u0, τ(0) = τ 0, ς(0) = ς0, ζ(0) = ζ0.(2.56)

We notice that the variational ProblemPV is formulated in terms of a displacement field, a
stress field, an electrical potential field, a bonding field and a electric displacement field. The
existence of the unique solution of ProblemPV is stated and proved in the next section.

Remark 2.1. We note that, in ProblemP and in ProblemPV, we do not need to impose ex-
plicitly the restriction0 ≤ ζ ≤ 1. Indeed, equation (2.55) guarantees thatζ(x, t) ≤ ζ0(x) and,
therefore, assumption (2.41) shows thatζ(x, t) ≤ 1 for t ≥ 0, a.e.x ∈ Γ3. On the other hand, if
ζ(x, t0) = 0 at timet0, then it follows from (2.55) thaṫζ(x, t) = 0 for all t ≥ t0 and therefore,
ζ(x, t) = 0 for all t ≥ t0, a.e.x ∈ Γ3. We conclude that0 ≤ ζ(x, t) ≤ 1 for all t ∈ [0, T ], a.e.
x ∈ Γ3.

First, we note that the functionaljad andjνc are linear with respect to the last argument and,
therefore,

jad(β,u,−v) = −jad(β,u,v),

jνc(u,−v) = −jνc(u,v).
(2.57)

Next, using (2.47) and (2.37.b) imply

jνc(u1,v2)− jνc(u1,v1) + jνc(u2,v1)− jνc(u2,v2) ≤ 0, ∀u1,u2,v1,v2 ∈ V ,(2.58)

and use (2.48), (2.37)(a), keeping in mind (2.26), we obtain

jfr(u1,v2)− jfr(u1,v1) + jfr(u2,v1)− jfr(u2,v2)

≤ c20Lν‖µ‖L∞(Γ3)‖u1 − u2‖V ‖v1 − v2‖V , ∀u1,u2,v1,v2 ∈ V .
(2.59)
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3. M AIN RESULTS

The main results are stated by the following theorems.

Theorem 3.1. Assume that(2.29)–(2.41)hold. Then there exists a unique solution of Problem
PV. Moreover, the solution satisfies

u ∈ C1(0, T ; V ),(3.1)

ξ ∈ C(0, T ;W ),(3.2)

ζ ∈ W 1,∞(0, T ;L2(Γ3)) ∩ Z,(3.3)

σ ∈ C(0, T ;H1),(3.4)

τ ∈ L2(0, T ;L1) ∩H1(0, T ;L0),(3.5)

ς ∈ L2(0, T ;L1) ∩H1(0, T ;L0),(3.6)

D ∈ C(0, T ;W).(3.7)

The proof of Theorem 3.1 is carried out in several steps that we prove in what follows,
everywhere in this section we assume in what follows that (2.29)–(2.41) hold, and we consider
thatC is a generic positive constant which depends onΩ`, Γ`

1, Γ`
1, Γ3, pν , pτ , A`, B`, G`, Q`,

E `, Had, γν , γτ , Θ
`, Ψ`, κ`

0, κ
`, andT with ` = 1, 2. but does not depend ont nor of the rest of

input data, and whose value may change from place to place.
In the first step. Let(λ, µ) ∈ C(0, T ;L0 × L0) and consider the auxiliary problem.

Problem PV(λ,µ). Find τλ : [0, T ] → L0, andςµ : [0, T ] → L0, such that
ςµ(t) ∈ K

∑2
`=1(τ̇

`
λ(t)− λ`(t)− ρ`(t), α`)L2(Ω`) + a0(τ `

λ(t), α) = 0, ∀α ∈ L0,(3.8) ∑2
`=1(ς̇

`
µ(t)− µ`(t), α` − ς`µ(t))L2(Ω`) + a(ςµ(t), α− ςµ(t)) ≥ 0, ∀α ∈ K,(3.9)

τλ(0) = τ 0, ςµ(0) = ς0,(3.10)

whereK = K1 ×K2.

Lemma 3.2. There exists a unique solution{τλ, ςµ} to the auxiliary problemPV(λ,µ) satisfying
(3.5)–(3.6).

Proof. Furthermore, by an application of the Poincaré-Friedrichs inequality, we can find a con-
stantc0 > 0 such that∫

Ω`

|∇α|2dx+
λ`

0

κ`
0

∫
Γ`

|α|2da ≥ c0

∫
Ω`

|α|2dx, ∀α ∈ L`
1, ` = 1, 2.

Thus, we obtain
a0(α, α) ≥ c1‖α‖2

L1
, ∀α ∈ L1,

wherec1 = κ0 min(1, c0)/2, which implies thata0 isL1−elliptic. Consequently, based on clas-
sical arguments of functional analysis concerning parabolic equations, the variational equation
(3.9) has a unique solutionτλ satisfyingτλ(0) = τ 0 and the regularity (3.5).

On the other hand, we know that the forma is notL1-elliptic. To solve this problem we
introduce the functions

ς̃`µ(t) = e−κ`tς`µ(t), α̃`(t) = e−κ`tα`(t), ` = 1, 2.
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We remark that ifς`µ, α` ∈ K` then ς̃`µ, α̃` ∈ K`. Consequently, (3.9) is equivalent to the
inequality

ς̃µ ∈ K,
2∑

`=1

( ˙̃ς`µ(t)− e−κ`tµ`(t), α̃` − ς̃`µ(t))L2(Ω`) + a(ς̃µ(t), α̃− ς̃µ(t))+

2∑
`=1

κ`(ς̃`µ, α̃
` − ς̃`µ(t))L2(Ω`) ≥ 0, ∀α̃ ∈ K, a.e.t ∈ (0, T ).

(3.11)

The fact that

(3.12) a(α̃, α̃) +
2∑

`=1

κ`(α̃`, α̃`)L2(Ω`) ≥
2∑

`=1

κ`‖α̃`‖2
L`

1
∀α̃ ∈ L1,

and using classical arguments of functional analysis concerning parabolic inequalities [3, 8],
implies that (3.11) has a unique solutionς̃µ having the regularity (3.6).

In the second step. Let(λ, µ, η) ∈ C(0, T ;L0 × L0 × V ), we use the{τλ, ςµ} obtained in
Lemma 3.2 and consider the auxiliary problem.

Problem PV(λ,µ,η). Find u
λµη

: [0, T ] → V , ξ
λµη

: [0, T ] → W, andζ
λµη

: [0, T ] → L2(Γ3)
such that∑2

`=1

(
A`ε(u̇`

λµη
) + B`(ε(u`

λµη
), τ `

λ, ς
`
µ), ε(v`)− ε(u̇`

λµη
(t))

)
H`

+jνc(uλµη
(t),v − u̇µη(t)) + jfr(uλµη

(t),v)− jfr(uλµη
(t), u̇

λµη
(t))

+(η(t),v − u̇
λµη

(t))V ≥ (f(t),v − u̇µη(t))V , ∀v ∈ V ,

(3.13)

∑2
`=1

(
E `ε(u`

λµη
(t)) + G`E`(ξ`

λµη
(t)),∇φ`

)
H` = (−q(t), φ)W , ∀φ ∈ W,(3.14)

ζ̇
λµη

(t) = Had

(
ζ

λµη
(t), αζ

λµη
, Rν([uλµην

(t)]),Rτ ([uλµητ
(t)])

)
,(3.15)

u
λµη

(0) = u0, ζλµη
(0) = ζ0.(3.16)

We have the following result

Lemma 3.3. (1) ProblemPV(λ,µ,η) has a unique solution{u
λµη
, ξ

λµη
, ζ

λµη
} which satisfies

the regularity(3.1)–(3.3).
(2) If u1 andu2 are two solutions of(3.13)and(3.16)corresponding to the data(λ1, µ1, η1),

(λ2, µ2, η2) ∈ C(0, T ;L0 × V ), then there existsc > 0 such that, fort ∈ [0, T ],

‖u̇1(t)− u̇2(t)‖V ≤ c
(
‖η1(t)− η2(t)‖V + ‖u1(t)− u2(t)‖V

)
.(3.17)

Proof. To prove (3.13) and (3.17), we use an abstract existence and unique result which may be
found in [21, Lemma 4.2.]. Next, we consider the formG : W ×W → R,

G(ξ, φ) =
2∑

`=1

(G`∇ξ`,∇φ`)H` ∀ξ, φ ∈ W.(3.18)

We use (2.27), (2.28), (2.36) and (3.18) to show that the formG is bilinear continuous, sym-
metric and coercive onW, moreover using (2.43) and the Riesz representation theorem we may
define an elementw

λµη
: [0, T ] → W such that

(w
λµη

(t), φ)W = (q(t), φ)W +
2∑

`=1

(E `ε(u`
λµη

(t)),∇φ`)H` ∀φ ∈ W, t ∈ (0, T ).
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We apply the Lax-Milgram Theorem to deduce that there exists a unique elementξ
µη

(t) ∈ W
such that

G(ξ
λµη

(t), φ) = (w
λµη

(t), φ)W ∀φ ∈ W.(3.19)

It follows from (3.19) thatξ
λµη

is a solution of the equation (3.14). Lett1, t2 ∈ [0, T ], it
follows from (3.14) that

‖ξ
λµη

(t1)− ξ
λµη

(t2)‖W ≤ C
(
‖u

λµη
(t1)− u

λµη
(t2)‖V + ‖q(t1)− q(t2)‖W

)
.(3.20)

Now, from (2.39), (3.20) andu
λµη

∈ C1(0, T ; V ), we obtain thatξ
λµη

∈ C(0, T ;W ).

On the other hand, we consider the mappingH
λµη

: [0, T ]× L2(Γ3) → L2(Γ3),

H
λµη

(t, ζ) = Had

(
ζ(t), αζ , Rν([uλµην

(t)]),Rτ ([uλµητ
(t)])

)
,

for all t ∈ [0, T ] and ζ ∈ L2(Γ3). It follows from the properties of the truncation operator
Rν andRτ thatH

λµη
is Lipschitz continuous with respect to the second variable, uniformly in

time. Moreover, for allζ ∈ L2(Γ3), the mappingt → H
λµη

(t, ζ) belongs toL∞(0, T ;L2(Γ3)).
Thus using the Cauchy-Lipschitz Theorem (see [26, p.48], we deduce that there exists a unique
functionζ

λµη
∈ W 1,∞(0, T ;L2(Γ3)) solution of the equation (3.15). Also, the arguments used

in Remark 2.1 show that0 ≤ ζ
λµη

(t) ≤ 1 for all t ∈ [0, T ], a.e. onΓ3. Therefore, from the
definition of the setZ, we find thatζ

λµη
∈ Z. This completes the proof.

In the third step, let us consider the element

Π(η, λ, µ)(t) =
(
Π1(η, λ, µ)(t), Π2(η, λ, µ)(t), Π3(η, λ, µ)(t)

)
∈ V × L0 × L0,(3.21)

defined by the equations

(Π1(η, λ, µ)(t),v)V = −
2∑

`=1

(
(E `)∗E`(ξ`

λµη
), ε(v`)

)
H` + jad(ζλµη

(t),u
λµη

(t),v)

+
2∑

`=1

( ∫ t

0

Q`
(
t− s, ε(u`

λµη
(s)), τ `

λ(s), ς
`
µ(s)

)
ds, ε(v`)

)
H`

, ∀v ∈ V ,(3.22)

Π2(η, λ, µ) =
(
Θ1

(
σ1

λµη
, ε(u1

λµη
), τ 1

λ, ς
1
µ

)
, Θ2

(
σ2

λµη
, ε(u2

λµη
), τ 2

λ, ς
2
µ

))
,(3.23)

Π3(η, λ, µ) =
(
Ψ1

(
σ1

λµη
, ε(u1

λµη
), ς1µ

)
, Ψ2

(
σ2

λµη
, ε(u2

λµη
), ς2µ

))
,(3.24)

where the mappingσ`
λµη

is given by

(3.25) σ`
λµη

= B`
(
ε(u`

λµη
), τ `

λ, ς
`
µ

)
+

∫ t

0

Q`
(
t−s, ε(u`

λµη
(s)), τ `

λ(s), ς
`
µ(s)

)
ds−(E `)∗E`(ξ`

λµη
).

Lemma 3.4. The mappingΛ has a fixed point(η∗, λ∗, µ∗) ∈ C(0, T ; V × L0 × L0).

Proof. Let (η1, λ1, µ1), (η2, λ2, µ2) ∈ C(0, T ; V ×L0×L0) and denote byτ i, ς i, ui, ξi, ζ i and
σi, the functions obtained in Lemmas 3.2, 3.3 and the relation (3.25), for(η, λ, µ) = (ηi, λi, µi),
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i = 1, 2. Let t ∈ [0, T ]. We use (2.35), (2.34), (2.46) and the definition ofRν , Rτ , we have

‖Π1(η1, λ1, µ1)(t)− Π1(η2, λ2, µ2)(t)‖2
V ≤

2∑
`=1

‖(E `)∗∇ξ`
1(t)− (E `)∗∇ξ`

2(t)‖2
H`+

2∑
`=1

∫ t

0

∥∥Q`
(
t− s, ε(u`

1(s)), τ
`
1(s), ς

`
1(s)

)
−Q`

(
t− s, ε(u`

2(s)), τ
`
2(s), ς

`
2(s)

)∥∥2

H` ds

+C‖ζ2
1(t)Rν([u1ν(t)])− ζ2

2(t)Rν([u2ν(t)])‖2
L2(Γ3)

+C‖ζ2
1(t)Rτ ([u1τ (t)])− ζ2

2(t)Rτ ([u2τ (t)])‖2
L2(Γ3).

Therefore,

‖Π1(η1, λ1, µ1)(t)− Π1(η2, λ2, µ2)(t)‖2
V ≤ C

( ∫ t

0

‖u1(s)− u2(s))‖2
V ds +∫ t

0

‖τ 1(s)− τ 2(s))‖2
L0
ds +

∫ t

0

‖ς1(s)− ς2(s))‖2
L0
ds +

‖ξ1(t)− ξ2(t)‖2
W + ‖ζ1(t)− ζ2(t)‖2

L2(Γ3)

)
.(3.26)

By similar arguments, from (3.23), (3.25) and (2.32) it follows that

‖Π2(η1, λ1, µ1)(t)− Π2(η2, λ2, µ2)(t)‖2
L0
≤ C

(
‖u1(t)− u2(t)‖2

V

+

∫ t

0

‖u1(s)− u2(s))‖2
V ds+ ‖ς1(t)− ς2(t))‖2

L0
+

∫ t

0

‖ς1(s)− ς2(s))‖2
L0
ds

+‖τ 1(t)− τ 2(t))‖2
L0

+

∫ t

0

‖τ 1(s)− τ 2(s))‖2
L0 ds+ ‖ξ1(t)− ξ2(t)‖2

W

)
.(3.27)

Similarly, using (2.35) implies

‖Π3(η1, λ1, µ1)(t)− Π3(η2, λ2, µ2)(t)‖2
L0
≤ C

(
‖u1(t)− u2(t)‖2

V

+

∫ t

0

‖u1(s)− u2(s))‖2
V ds+ ‖ς1(t)− ς2(t))‖2

L0
+

∫ t

0

‖ς1(s)− ς2(s))‖2
L0
ds

‖ξ1(t)− ξ2(t)‖2
W

)
.(3.28)

It follows now from (3.26), (3.27) and (3.28) that

‖Π(η1, λ1, µ1)(t)− Π(η2, λ2, µ2)(t)‖2
V ×L0×L0

≤ C

(
‖u1(t)− u2(t)‖2

V

+

∫ t

0

‖u1(s)− u2(s))‖2
V ds+ ‖ς1(t)− ς2(t))‖2

L0
+

∫ t

0

‖ς1(s)− ς2(s))‖2
L0
ds

+‖τ 1(t)− τ 2(t))‖2
L0

+

∫ t

0

‖τ 1(s)− τ 2(s))‖2
L0
ds

+‖ξ1(t)− ξ2(t)‖2
W + ‖ζ1(t)− ζ2(t)‖2

L2(Γ3)

)
.(3.29)
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Also, since

u`
i(t) =

∫ t

0

u̇`
i(s)ds+ u`

0(t), t ∈ [0, T ], ` = 1, 2,

we have

‖u1(t)− u2(t)‖V ≤
∫ t

0

‖u̇1(s)− u̇2(s))‖V ds

and using this inequality in (3.17) yields

‖u1(t)− u2(t)‖V ≤ C
( ∫ t

0

‖η1(s)− η2(s))‖V ds+

∫ t

0

‖u1(s)− u2(s))‖V ds
)
.(3.30)

Next, we apply Gronwall’s inequality to deduce

‖u1(t)− u2(t))‖V ≤ C

∫ t

0

‖η1(s)− η2(s)‖V ds ∀t ∈ [0, T ].(3.31)

On the other hand, from the Cauchy problem (3.15) we can write

ζ i(t)=ζ0−
∫ t

0

Had

(
ζ i(s), αζi

(s), Rν([uiν(s)]),Rτ ([uiτ (s)])
)
ds

and, employing (2.23) and (2.33) we obtain that∥∥ζ1(t)−ζ2(t)
∥∥
L2(Γ3)

≤C
∫ t

0

∥∥ζ1(s)−ζ2(s)
∥∥
L2(Γ3)

ds

+ C

∫ t

0

∥∥Rν([u1ν(s)])−Rν([u2ν(s)])
∥∥
L2(Γ3)

ds

+ C

∫ t

0

∥∥Rτ ([u1τ (s)])−Rτ ([u2τ (s)])
∥∥

L2(Γ3)
ds.

Using the definition ofRν andRτ and writingζ1 = ζ1 − ζ2 + ζ2, we get
(3.32)∥∥ζ1(t)− ζ2(t)

∥∥
L2(Γ3)

≤ C
( ∫ t

0

‖ζ1(s)− ζ2(s)‖L2(Γ3)ds+

∫ t

0

∥∥u1(s)− u2(s)
∥∥

L2(Γ3)dds
)
.

Next, we apply Gronwall’s inequality and from the Sobolev trace theorem we obtain

‖ζ1(t)− ζ2(t)‖2
L2(Γ3) ≤ C

∫ t

0

‖u1(s)− u2(s)‖2
V ds.(3.33)

We use now (3.14), (2.27), (2.34) and (2.36) to find

‖ξ1(t)− ξ2(t)‖2
W ≤ C‖u1(t)− u2(t)‖2

V .(3.34)

From (3.8) we deduce that

(τ̇ 1 − τ̇ 2, τ 1 − τ 2)L0 + a0(τ 1 − τ 2, τ 1 − τ 2) +
(
λ1 − λ2, θ1 − θ2

)
L0

= 0.

We integrate this equality with respect to time, using the initial conditionsτ 1(0) = τ 2(0) = τ 0

and inequalitya0(τ 1 − τ 2, τ 1 − τ 2) ≥ 0, to find

1

2
‖τ 1(t)− τ 2(t)‖2

L0
≤

∫ t

0

(
λ1(s)− λ2(s), τ 1(s)− τ 2(s)

)
L0
ds,

which implies that

‖τ 1(t)− τ 2(t)‖2
L0
≤

∫ t

0

‖λ1(s)− λ2(s)‖2
L0
ds+

∫ t

0

‖τ 1(s)− τ 2(s)‖2
L0
ds.
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This inequality combined with Gronwall’s inequality leads to

‖τ 1(t)− τ 2(t)‖2
L0
≤ C

∫ t

0

‖λ1(s)− λ2(s)‖2
E0
ds ∀t ∈ [0, T ].(3.35)

Moreover, from (3.9) we deduce thata.e. t ∈ (0, T ),

(ς̇1 − ς̇2, ς1 − ς2)L0 + a(ς1 − ς2, ς1 − ς2) ≤
(
µ1 − µ2, ς1 − ς2

)
L0
,

Integrating the previous inequality with respect to time, using the initial conditionsς1(0) =
ς2(0) = ς0 and inequalitya(ς1 − ς2, ς1 − ς2) ≥ 0, to find

1

2
‖ς1(t)− ς2(t)‖2

L0
≤

∫ t

0

(
µ1(s)− µ2(s), ς1(s)− ς2(s)

)
L0
ds,

which implies that

‖ς1(t)− ς2(t)‖2
L0
≤

∫ t

0

‖µ1(s)− µ2(s)‖2
L0
ds+

∫ t

0

‖ς1(s)− ς2(s)‖2
L0
ds.

This inequality combined with Gronwall’s inequality leads to

‖ς1(t)− ς2(t)‖2
L0
≤ C

∫ t

0

‖µ1(s)− µ2(s)‖2
L0
ds.(3.36)

We substitute (3.17), (3.33)-(3.36) in (3.29) to obtain

‖Π(η1, λ1, µ1)(t)− Π(η2, λ2, µ2)(t)‖2
V ×L0×L0

≤

C

∫ t

0

‖(η1, λ1, µ1)(s)− (η2, λ2, µ2)(s)‖2
V ×L0×L0

ds.

Reiterating this inequalitym times we obtain

‖Πm(η1, λ1, µ1)− Πm(η2, λ2, µ2)‖2
C(0,T ;V ×L0×L0) ≤

CmTm

m!
‖(η1, λ1, µ1)− (η2, λ2, µ2)‖2

C(0,T ;V ×L0×L0).

Thus, form sufficiently large,Πm is a contraction on the Banach spaceC(0, T ; V × L0 × L0),
and soΠ has a unique fixed point.

Let (η∗, λ∗, µ∗) ∈ C(0, T ; V × L0 × L0), be the fixed point ofΛ, and

u∗ = u
λ∗µ∗η∗ , ξ∗ = ξ

λ∗µ∗η∗
, ζ∗ = ζ

λ∗µ∗η∗
, τ ∗ = τλ∗ , ς∗ = ςµ∗ ,(3.37)

σ`
∗ = A`ε(u̇`

∗) + B`
(
ε(u`

∗), τ
`
∗, ς

`
∗
)

+

∫ t

0

Q`
(
t− s, ε(u`

∗(s)), τ
`
∗, ς

`
∗(s)

)
ds− (E `)∗E`(ξ`

∗),

(3.38)

D`
∗ = E `ε(u`

∗) + G`
(
E`(ξ`

∗)
)
.(3.39)

We use :Π1(η∗, λ∗, µ∗) = η∗, Π2(η∗, λ∗, µ∗) = λ∗, andΠ3(η∗, λ∗, µ∗) = µ∗, it follows:

(η∗(t),v)V = −
2∑

`=1

(
(E `)∗E`(ξ`

∗(t)), ε(v
`)

)
H` + jad(ζ∗(t),u∗(t),v)

+
2∑

`=1

( ∫ t

0

Q`
(
t− s, ε(u`

∗(s)), τ
`
∗(s), ς

`
∗(s)

)
ds, ε(v`)

)
H`

, ∀v ∈ V ,(3.40)

λ`
∗(t) = Θ`

(
σ`
∗(t), ε(u`

∗(t)), τ
`
∗(t), ς

`
∗(t)

)
, ` = 1, 2.(3.41)

µ`
∗(t) = Ψ`

(
σ`
∗(t), ε(u`

∗(t)), ς
`
∗(t)

)
, ` = 1, 2.(3.42)
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Existence.We prove{u∗,σ∗, ξ∗, τ ∗, ς∗, ζ∗,D∗} satisfies (2.49)–(2.56) and the regularites (3.1)–
(3.7). Indeed, we write (3.13) for(η, λ, µ) = (η∗, λ∗, µ∗) and use (3.37) to find

2∑
`=1

(A`ε(u̇`
∗), ε(v

`)− ε(u̇`
∗(t)))H` +

2∑
`=1

(B`
(
ε(u`

∗), τ
`
∗, ς

`
∗
)
, ε(v`)− ε(u̇`

∗(t)))H`

+jνc(u∗(t),v − u̇∗(t)) + jfr(u∗(t),v)− jfr(u∗(t), u̇∗(t))

+(η∗(t),v − u̇∗(t)))V ≥ (f(t),v − u̇∗(t))V , ∀v ∈ V .

(3.43)

Substitute (3.40) in (3.43) to obtain

2∑
`=1

(A`ε(u̇`
∗)(t), ε(v

`)− ε(u̇`
∗(t)))H` +

2∑
`=1

(B`
(
ε(u`

∗), τ
`
∗, ς

`
∗
)
, ε(v`)− ε(u̇`

∗(t)))H`

+
2∑

`=1

( ∫ t

0

Q`
(
t− s, ε(u`

∗(s)), τ
`
∗, ς

`
∗(s)

)
ds, ε(v`)− ε(u̇`

∗(t))

)
H`

+jad(ζ∗(t),u∗(t),v − u̇∗(t)) + jνc(u∗(t),v − u̇∗(t)) + jfr(u∗(t),v)

−jfr(u∗(t), u̇∗(t))−
2∑

`=1

(
(E `)∗E`(ξ`

∗(t)), ε(v
`)− ε(u̇`

∗(t))
)
H`

≥ (f(t),v − u̇∗(t))V ∀v ∈ V a.e. t ∈ [0, T ],(3.44)

and we substitute (3.41) in (3.8) to have

2∑
`=1

(τ̇ `
∗(t), α

`)L2(Ω`) + a0(τ
`
∗(t), α) =

2∑
`=1

(
λ`
∗(t) + ρ`(t), α`

)
L2(Ω`)

,(3.45)

for all α ∈ L0, a.e. t ∈ (0, T ).
Next, substitute (3.42) in (2.30) to obtainς∗(t) ∈ K, and

2∑
`=1

(ς̇`∗(t), α
` − ς`∗(t))L2(Ω`) + a(ς∗(t), α− ς∗(t)) ≥

2∑
`=1

(
Ψ`

(
σ`
∗(t)−A`ε(u̇`

∗(t)), ε(u`
∗(t)), ς

`
∗(t)

)
, α` − ς`∗(t)

)
L2(Ω`)

,

(3.46)

for all α ∈ K, a.e. t ∈ (0, T ). We write now (3.15) for(η, λ, µ) = (η∗, λ∗, µ∗) and use (3.37)
to see that

2∑
`=1

(G`E`(ξ`
∗(t)),∇φ`)H` +

2∑
`=1

(E `ε(u`
∗(t)),∇φ`)H` = −(q(t), φ)W ,(3.47)

for all φ ∈ W, a.e. t ∈ (0, T ). Additionally, we useu
λ∗µ∗η∗ in (3.15) and (3.37) to find

ζ̇∗(t) = Had

(
ζ∗(t), αζ∗(t), Rν([u∗ν(t)]),Rτ ([u∗τ (t)])

)
(3.48)

a.e. t ∈ [0, T ]. The relations (3.43)–(3.48), allow us to conclude now that{u∗,σ∗, ξ∗, ς∗, ζ∗,D∗}
satisfies (2.49)–(2.55). Next, (2.56) the regularity (3.1)–(3.3) and (3.6) follow from Lemmas 3.2
and 3.3. Sinceu∗, ξ∗ andς∗ satisfies (3.1), (3.2) and (3.6), respectively, It follows from (3.38)
that

(3.49) σ∗ ∈ C(0, T ;H).

AJMAA, Vol. 17 (2020), No. 1, Art. 6, 20 pp. AJMAA

https://ajmaa.org


18 M. SAID AMEUR, T. HADJ AMMAR AND L. M AIZA

For ` = 1, 2, we choosev = u± φ in (3.44), withφ = (φ1, φ2), φ` ∈ D(Ω`)d andφ3−` = 0, to
obtain

Div σ`
∗(t) = −f `

0(t) ∀t ∈ [0, T ], ` = 1, 2,(3.50)

whereD(Ω`) is the space of infinitely differentiable real functions with a compact support inΩ`.
The regularity (3.4) follows from (2.39), (3.49) and (3.50). Let nowt1, t2 ∈ [0, T ], from (2.27),
(2.34), (2.36) and (3.39), we conclude that there exists a positive constantC > 0 verifying

‖D∗(t1)−D∗(t2)‖H ≤ C (‖ξ∗(t1)− ξ∗(t2)‖W + ‖u∗(t1)− u∗(t2)‖V ) .

The regularity ofu∗ andξ∗ given by (3.1) and (3.2) implies

D∗ ∈ C(0, T ;H).(3.51)

For` = 1, 2, we chooseφ = (φ1, φ2) with φ` ∈ D(Ω`)d andφ3−` = 0 in (3.47) and using (2.43)
we find

div D`
∗(t) = q`

0(t) ∀t ∈ [0, T ], ` = 1, 2.(3.52)

Property (3.7) follows from (2.39), (3.51) and (3.52).

Finally we conclude that the weak solution{u∗,σ∗, ξ∗, τ ∗, ς∗, ζ∗,D∗} of the problemPV
has the regularity (3.1)–(3.7), which concludes the existence part of Theorem 3.1.

Uniqueness. The uniqueness of the solution is a consequence of the uniqueness of the fixed
point of the operatorΠ(., ., .) defined by (3.22)-(3.23) and the unique solvability of the Problems
PV(λ,µ), and PV(λ,µ,η).

4. CONCLUSION

We presented a model for the quasi-static process of frictional contact between two thermo-
electro-viscoelastic bodies with damage. The contact was modeled with the normal compliance
condition and the associated Coulomb’s law of dry friction. The new feature in the model was
the normal compliance and the friction law depend on the adhesion as presented in the differen-
tial equation (2.14). The difficulty of solving this type of problem lies not only in the coupling
of viscoelastic, electrical and thermal aspects, but also in the nonlinearity of the boundary con-
ditions modeling this type of physical phenomena (contact and friction conditions), which gives
us a quasi-variational inequalities and type of nonlinear, parabolic variational equalities. The
existence of the unique weak solution for the problem was established by using arguments from
the theory of evolutionary variational inequalities, parabolic inequalities and fixed point theo-
rem.
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