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2 S. H. SAKER

1. INTRODUCTION

The study of dynamic equations on time scales, is an area of mathematics that has recently
received a lot of attention. It has been created in order to unify the study of differential and
difference equations, and it also extends these classical cases to cases ” in between”, e.g., to
the so-called—difference equations. Many results concerning differential equations carry over
quite easily to corresponding results for difference equations, while other results seem to be
completely different from their continuous counterparts.

Dynamic equations on a time scale have an enormous potential for applications such as in
population dynamics. For example, it can model insect populations that are continuous while
in season, die out in say winter, while their eggs are incubating or dormant, and then hatch in
a new season, giving rise to a nonoverlapping population. For more details, we refer the reader
to the books by Bohner and Peterson [4, 5] which summarize and organize much of time scale
calculus.

In recent years there has been much research activity concerning the qualitative theory of
dynamic equations on time scales. One of the main subject of the qualitative analysis of the
dynamic equations is the oscillatory behavior. Recently, interesting results are established for
oscillation, nonoscillation, stability and boundedness, we refer the reader to the papers [1, 2, 3,
6,7,[8,9/ 11,12, 13, 14, 15,116,118, 22] 23,124 ,[25] 28, 29]. Following this trend in this paper,
we are concerned with oscillation of the second-order linear delay dynamic equation

(1.1) B2 (t) + p(t)z(7(t)) = 0,

on a time scalé, here the functiom is a positiverd—continuous function defined df, 7(¢) :
T — T, 7(t) < tandlim;_ 7(t) = oo.

Let 7o = min{7(¢) : ¢ > 0} and7_4(t) = sup{s > 0 : 7(s) < ¢t} fort > Ty.
ClearlyT_4(t) > t fort > Ty, 7_1(¢t) is nondecreasing and coincides with the inverse of
when the latter exists. A continuous functien: T — R is said to be a solution of (1.1)
if it is rd—continuous onr_;(ty), o0) along with its derivative and almost every where on
[T_l(t()), OO)

Our attention is restricted to those solutiaris) of (1.1) which exist on some half life,, o)

and satisfysup{|x(¢)| : ¢ > t1} > 0 for anyt; > t,. A solutionz(¢) of (1.1) is said to be oscil-
latory if it is neither eventually positive nor eventually negative. Otherwise it is nonoscillatory.
The equation itself is called oscillatory if all its solutions are oscillatory. Since we are interested
in the oscillatory and asymptotic behavior of solutions near infinity, we assumenth@t= oo,
and define the time scale interjaJ, oo)r by [to, o0)r := [to, 00) N T.
On any time scale we defing (t) := (f o o)(t) = f(o(t)). Afunction f : T — R is called
rd—continuous function provided it is continuous at right-dense points amd its left-sided
limits exist (finite) at left-dense points ifi and the set ofd—continuous functiong : T — R
is denoted by, 4 = C,q(T) =C,4(T, R).

Erbe and Peterson [12] considered the second-order dynamic equation without delay

(1.2) (r()x> () +p(t)z° =0, t €T,

under the assumption that: There exigts T, such that(¢) is bounded above dity, o), and
inf p(t) > 0. By using Riccati technique they proved that if

/oop(t)At = 00,

to

then every solution of (1]2) is oscillatory ¢, oc).
Note that, the results given by Erbe and Peter§on [12], can not be appliedrwham-
boundedy(t) = 0 andp(t) = t~* whena > 1.
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Dosly and Hilger [[9] considered alsp (1.2) and established some necessary and sufficient
conditions for oscillation of all solutions on unbounded time scales. However, the oscillation
criteria require additional assumptions on the unknown solutions, which may not be easy to
check. The results in [9, 12] were improved recently by Seker [22], Bohner and Saker [6] and
Erbe, Peterson and Saker[14].

Agarwal, Bohner and Saker![1] considered the delay dynamic equptian (1.1) on a time scale
and proved that if

(1.3) / o(s)p(s)As = oo,

to
then every bounded solution ¢f (IL.1) oscillates. Also they proved tHat|f (1.3) holds and

*7(s)

(1.4) / —=p(s)As = o0,

to U(S) ( )
then every solution of (1]1) is oscillatory. Moreover they proved that ii (1.3) holds and
(1.5) tlim sup {t/ mp(s)As} = 00,

—00 ¢ S

then every solution of (I]1) oscillates. Also Agarwal, Bohner and Saker [1] proved that the
oscillation of [1.1) is equivalent to the oscillation of a first order delay dynamic inequality and
established some new oscillation criteria which depending on the oscillation results of first order
delay dynamic equations established by Zhang and Deng [28]. They proved that every solution
of (1.1) is oscillatory if

t
1
(1.6) lim sup / p(s)7(s)As > — for somec € (0, 1),
t—o0 T(t) C
or
a.7) lim sup sup fA) <1,

t—00 A>0, —AcpTeRT
where

FA) = Xe_repr(t, T(2)).
For definition of the exponential functiog),(¢,t,) and its properties, we refer the reader to
Chapter 1 inl[4]. Note that the conditign (IL.6) is not sharp, since it is depending on the constant
ce(0,1).

Equation[(1.1L) in its general form involve some different types of differential and difference

equations depending on the choice of the time s@ald-or example whefl' = R, we have
o(t)=t, u(t) =0,

20 = £ (), / F(H)AL = / F(tydt,

and [1.1) becomes the second-order delay differential equation

(1.8) () + p(t)a(r(t) =0, ¢ =1,
and [1.6) and (1]7) become

! 1
1.9 lim su s)T(s)ds > —,
1.9 swp [ poyr(oyis >
and

t
FO) = Aerepe (£, 7(8)) = A= whereM — / ep(s)r(s)ds,
7(t)
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for somec € (0,1). For \* := 1/M, we havef (\*) = 0, andf"(\*) < 0. Thus

1
sup e aepr (B, 7(1) = f(N') = —,
A>0, —AcpreR+ pepr (£ 7() ) Me
so that for some € (0,1)
¢

: 1
(1.10) lim sup sup f) <1, if  lim inf/ p(s)7(s)ds > —.
t—00 A>0, —AcpreR+ =00 T(t) ce

For oscillation of second-order differential equatipn (1.8) whén = ¢, Hille [19] proved that
if

. r 1
(1.11) thrn mft/p(s)ds > 7

t

then every solution of (1]8) oscillates.
Nehari [21] also consideref (1.8), wheft) = ¢, and proved that if

t

1 1
(1.12) liminf = [ s%p(s)ds > -,
t—oo 4

to

then every solution of (1]8) oscillates.
Wong [26] generalized the Hille-type condition for ({L.8) and proved thaftf > at with
0<a<l1,and

o 1
(1.13) lim inft/ p(s)ds > —,
t

t—o0 4o

then every solution of (1]8) is oscillatory.
Erbe [10] improved the conditior (1.13), without any additional assumption(én and
proved that if

(1.14) lim inft/oo p(s)ﬂds > —

t—oo

then every solution of (1]8) is oscillatory.
WhenT = Z, we haveo(t) = t + 1, u(t) = 1, f2(t) = Af(t), [7 f(t)At = 307} f(#), and
(1.1) becomes the delay difference equation

(1.15) A%z (t) + p(t)z(7(t)) = 0.
Li and Jiang[[20] considerefl (1]15) wheft) = ¢ and proved that if
1 — 1
. . - 2 -
lim inf Zs p(s) > 7

t—00 t
s=tg

then every solution of (1.15) oscillates. We note that the last condition of Li and Jiang [20] is
the discrete analogy of the Nehari[21] conditipn (1.12).
WhenT =hZ, h > 0, we haveo(t) = t + h, u(t) = h, 22(t) = Apa(t) = (x(t + h) —

x(t))/h, fabf(t)At = Z,:’éfh f(a + kh)h, and ) becomes the generalized second-order
delay difference equation

(1.16) Alz(t) + p(t)z(r(t)) = 0.
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WhenT = {t : t = ¢*, k € Ny, ¢ > 1}, we haveo(t) = gt, u(t) = (¢—1)t, 22(t) = Aa(t) =
(x(qt) —x(t)) /(g — 1), [ f(O)At =372, f(g")u(g"), and ) becomes the second-order
delayq—difference equation

(1.17) AZz(t) + p(t)x(r(t) = 0.

WhenT =N} = {£? : t € Ny}, we haves(t) = (vt + 12 andu(t) = 1 + 2V, 22(t) =
Aoz (t) = (x((Vt+1)*) —z(t))/1+2vt, and ) becomes the second-order delay difference
equation

(1.18) Abz(t) + p(t)z((t)) = 0.

WhenT =T, = {t, : n € N} where (,} is the harmonic numbers that are defined by

to = 0 andt, = Y_,_, 1, n € N, we haveo(t,) = tni1, p(tn) = 77, 22(t) = Aqa(t,) =

(n + 1)z(t,) and [1.1) becomes the second-order delay difference equation
(1.19) Afz(t,) + pt)x((t,))) = 0.
WhenTy,={\/n : n € Ny}, we haver(t) = /12 + 1,

p(t) = Ve +1—t, 2(t) = Dgz(t) = (x(VE+1) — 2(t))/VEE+1 -1,
and [1.1) becomes the second-order delay difference equation
(1.20) Aja(t) + p(t)a(r(t)) = 0.
WhenTs={{/n : n € Ny}, we haver(t) = /13 + 1 and

p(t) = Ve +1—t, 22t) = Asz(t) = (VB + 1) —2(t))/VB+1—1t,
and [1.1) becomes the second-order delay difference equation
(1.21) Ajz(t) + p(t)z(r(t)) = 0.
Note that the integration formula on a discrete time scale is defined by

S FOAE =3y fOn():

The objective of this paper is to establish some new oscillation criterig fgr (1.1). First, we
establish some new integral oscillation criteria for (1.1) which are formulated in terms of solu-
tions of certain inequalities and enable us to obtain some new effective sufficient conditions for
the oscillation of[(1.1l) which improve the conditions (1.4),1.5),](1.6) (1.7) established by
Agarwal, Bohner and Saker inl[1]. Second by employing the Riccati transformation technique
and analyzing the Riccati dynamic inequality, we formulate another sufficient conditions for
oscillation of [1.1) which can be applied on the delay case as well as in the nondelay case. Our
results in the special case whéh= R include the oscillation condition§ (1]11), (1}12) and
(1.14) established by Hillé [19], Nehatri[21] and Erbel[10] and improve the condjtion| (1.13) es-
tablished by Wond [26] and also the results established by[Yan [27]. In the caserWhent
andT = Z, i.e., for difference equations without delay, our results include the oscillation results
established by Li and Jiang [20] for difference equatidi®e results are essentially new for the
equations[(1.16)-(1.21). An example is considered to illustrate the main results.

2. MAIN OSCILLATION RESULTS

In what follows and later, we assume that

(2.1) /OO a(s)p(s)As = oo.

to
We start with the following lemmas which we will use in the proof or our main results.

Lemma 2.1.[1]. Letx be a positive solution of (I.1) dn, oc) andT = 7_;(t). Then
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(i) 22(t) > 0, x(t) > ta®(t) fort > T;
(i) = is nondecreasing, while(t)/t is nonincreasing offil’,00).
Lemmd 2.1 immediately implies the following lemma.

Lemma 2.2. Let z(¢) be a positive solution of (I.1) oy, co) andT" = 7_;(ty). Then the
functiony(t) defined by (t) = 22(t) is a positive solution of the delay dynamic inequality

(2.2) y2 (1) + 7()p(y(7(t)) < 0.
From Lemma 22 we see that that the oscillatior) of|(1.1) is equivalent to the oscillation of the
first order dynamic inequality (2.2) and this is formulated in the following theorem.

Theorem 2.3. Assume that the differential inequalify (2.2) has no eventually positive solution.
Then the equation (1.1) is oscillatory.

Theorenj 2.3 reduces the question of oscillatiorj of| (1.1) to that of the absence of eventually
positive solutions of the dynamic inequalify (2.2) and follows the argument in Agarwal, Bohner
and Saker[[1] by using Corollary 2 i [28], we obtain the following oscillation criteria which
essentially improve the oscillation conditiofis {1.6) gnd](1.7), since the cond|tiohs (2.8) and (2.4)
does not include any additional constants.

Theorem 2.4. Each one of the conditions

t
(2.3) tlim sup/ p(s)T(s)As > 1,
e (1)
and
(2.4) limsup  sup ey, (£, 7(2)) <1,
t—00 A>0, —ApreR+

guarantees the oscillation df (1.1).

From Lemm& 22, itis clear that the oscillation conditions of the second-order delay dynamic
equation|[(1./l) depending on the estimation

(2.5) z(7(t)) > 7(t)z?(r(t)), fort > T.

This inequality, however, can be improved and lead to new oscillation criteria which further
also improve the conditionp (2.3) aid (2.4).

Lemma 2.5. Letxz be a positive solution of (1.1) dn, oc) andT = 7_;(t,). Then

(2.6) z(1(t)) > 6()x>(r(t)) fort > 7_1(T),
where

7(t)
(2.7) it) =T(t) + /T a(s)7(s)p(s)As.

Proof. Integrate the identityz(t) — ta?(t))2 = —o(t)z22(t) = o(t)p(t)z(7(t)), from T to
7(t), we have

7(t)
2(r(t) = 7(H)2(7(1)) = 2(T) + 2> (7(T)) = / o(s)p(s)x(7(s))As.

This implies that

z(r(t) = T(t)va(T(t))HC(T)—CEA(T(T)H/ a(s)p(s)z(r(s))As
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Now, by using the estimation(r(t)) > 7(¢)z*(7(t)), we obtain
7(t)

z(r(1) = T(t)l’A(T(t))Jr/ o (s)p(s)7(s)a" (1(s)) As.

T
Using the fact that“2(t) < 0, we get

7(t)
z(1(t)) > 7(t) x> (1(t)) + xA(T(t))/ o(s)p(s)(s)As, fort > 7_4(T).
T
The last inequality implies (2.6). The proof is complege.
Lemmg 2. immediately implies the following.

Lemma 2.6. Letz be a positive solution of (I.1) dhy, oo) andT" = 7_4(t,). Then the function
y(t) defined by (t) = 22(t) is a positive solution of the delay dynamic inequality

(2.8) v (1) +5(6p()y(7(t) <0,
whered(t) is defined by (2]7).
Lemmd 2.6 immediately implies the following oscillation result.

Theorem 2.7. Assume that the differential inequalify (2.8) has no eventually positive solution.
Then the equation (1.1) is oscillatory.

Again, Theorenj 2]7 reduces the question of oscillatior] of (1.1) to that of the absence of
eventually positive solutions of the dynamic inequality (2.8) and, as in Thegorem 2.8, we obtain
the following results.

Theorem 2.8.. Each one of the conditions

t 7(s)
(2.9) 1tlirn sup/ p(s) (T(S) +/ J(u)T(u)p(u)Au) As > 1,
0 7(t) T
and
(2.10) limsup  sup  f(A) =limsup  sup  Ae_ys(t,7(1)) <1,
t—oo  A>0, —ApdeRt A>0, —ApdeRt

guarantees the oscillation gf (1.1).

We note that, the above results can be applied only in the casemijen ¢. In the following,
we establish some new oscillation criteria which can be applied on the nondelay case as well
as the delay case. In the following theorem, we extend Hille supremum condition for delay
dynamic equatiorj (1] 1).

Theorem 2.9. Assume that

o0

(2.11) tlim supt/p(s)ﬂAs > 1,
—00 S
t

then every solution of (11.1) is oscillatory

Proof. Suppose to the contrary thaft) is a nonoscillatory solution of (1.1). Without loss of
generality, we may assume thdt) is an eventually positive solution ¢f (1.1) such thét) > 0
for all t > T. Then there exists & such thatz(7(t)) > 0 for everyt > T,. From [1.1), we
have

(2.12) —228(1)) = p(t)a(7(t)).
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Integrating [(2.1R) front to 7', we obtain

[ patr(snas < s
and hence
(2.13) /p(s)x(T(s))As < z2(t).

t
Now by Lemma4 2.1, since(t)/t is a nonincearsing function, we have

(2.14) x(r(t)) > @x(t), and z(t)/t > z2(t).
This and[(2.1B) imply that

x(t) > t/p(s)ls)x(s)As.
S
t
Sincez(t) is positive and increasing, it follows that
t/p(s)@As <1,
t

which contradicts (2.11). The proof is complege.

From Theorenj 2]9, we can derive some sufficient conditions for oscillation of equations
(L.9), (1.15){(1.10). In the following we derive some sufficient conditions for oscillation of

(1.8) and[(1.1p) and for the equatiofis (1.16)-(IL.19), the details are left to the reader.
Corollary 2.10. Assume thaf p(s)o(s)ds = oc. If
to

(e o]

(2.15) tlim Supt/p(s)mds > 1,
—00 S
t

then every solution of (1.8) oscillates.

Corollary 2.11. Assume thap_>~, p(s)o(s) = oc. If
: o T(8)
tlirgosuptz;p(s)T > 1,

then every solution of (1.15) oscillates.

Observe thaf (2.15) improves Corollary 2.6 of Yan|[27], since our result does not require the
additional constant, where0 < ¢ < 1.

In the following, we employ the Riccati transformation technique and establish some new
oscillation criteria for[(1.Jl). For convenience, we define

00 1 t
(2.16) Py = lim infa(t)/ P(s)As andg, := tlim inf;/ s*P(s)As,

t=o0 (t) to

s

whereP(s) = p(s)%. We assume that the step functip(t) satisfiesu(t) < hy.
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Theorem 2.12.Letz(t) be a nonoscillatory solution df (1.1) such that-(¢)) > 0fort > ¢; >
7_1(to). Letw(t) := =@ and

x(t)
(2.17) ri= tli)rgo info(t)w?, and R := tlggo sup tw?,
then
(2.18) p. <r—r? and ¢ <R-R%
Proof. Sincez(t) be a nonoscillatory solution of (1.1) such th&tr(¢)) > 0 for ¢ > ¢ >
T_1(to), we have by Lemm.l, that'(t) > 0 fort > ¢, and this implies that(t) = % >

0 and satisfies
A _ ave | 1 ° L Aag —22(t) (IA)J L an
w0 = @ 5] 0= e a0
AT A

(l‘ ) Z (t)+ 1 ZEAA(t)

xo  z(t)  x(t)

From Lemml, since(t)/t is nonincreasing we ha\i@% > @ This and ), imply
thatw(t) satisfies the Riccati dynamic inequality

(2.19) w?(t) + P(t) +wt)w® <0, for t >t,.
SinceP(t) > 0, andw(t) > 0 for ¢t > ¢;, we have
w?(t)

< -1 t>1
w(t)w® , Jor b=t

1\~
— —1.
<w<t>> -
Integrating the last inequality from to ¢, we have
(220) (t — tl)w(t) < 1, t > 1,

which implies that
t

1
(2.21) tlim w(t) = 0 and tlim i w(s)As = 0.
— 00 —00 tl
By (2.17), [2.2D) and the fact that(t) > w°, we see that
(2.22) 0<r<1, and 0< R<1.
Hence
(2.23) r—r*>0, and R— R?>>0.

Now, we prove that[(2.18) holds. Integratirig (2.19) fretft) to oo (o(t) > ¢1) and using
(2.21), we have

(2.24) w’ 2/ P(S)As—i—/ w(s)w’As fort > t.
o(t) o(t)

From [2.19), we see that®(¢) < 0, and this implies that(¢) > w?. Using this in[2.1P), we
find that

(2.25) wh(t) + P(t) + (w’)* <0, for t>t.
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Multiplying (2.25) by¢?, and integrating fron, to ¢ (¢ > ¢;) and using the integration by parts,
we obtain

[#rens < - [ cusoas [ @ was

t1 t1 t1

= el + [tras- [ wrpas

= —tPw(t) + Bw(t,) + /t (s+o(s))wAs — /t s% (w?)* As

t
= —tPw(t) + tw(t) +/ 25w’ As — / 5% (w?)? As

t1 t1

+ /t p(s)w’As.

t1

It follows that

2 t t t
tw(t) < fr(h) + @/ w?As — %/ s?P(s)As + %/ 2507 — &7 (wo)z} As.

- t t t1 t1 11
Then, sincev(t) > w?, we have

2w(t ho (* 1/
tw® < 1wt( 1>+70/ ’LUO-AS—g/ Szp(S)AS
t

1 t1

(2.26) + / 2507 — 5° (w”)ﬂ As.

t1

~+ | =

From (2.21), sincéim_. 1 [, w(s)As = 0, andw(t) > w”, we get

2 ho [F w®As
(2.27) lim [tlw(tl) i Ji —0.
t—o00 t t
Using the inequality:® + b* > 2ab, we have
[2sw7 — &7 (w”)2] <1,
and this implies that
1 t
(228) thm sup Z/ [2311)‘7 — g2 (wa)Q} As < 1.
—00 t

From [2.2%) and (Z.26J(Z.28), we find that

tlim info(t)w” =r > p,, and tlim suptw’ = R <1 — g,.

Then it follows that for any) < ¢ < min{r, 1 — R} there exist$, > ¢; such that

r—e<o(t)w’ <r+e andR —e < tw’ < R+,

00 1 t
a(t)/ P(s)As > p, —€, and ;/ $*P(s)As > q, — €, t > ts.

() to
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From (2.24), we get
w’ > / P(S)As+/ w(s)w"Asz/ P(S)As—i-/ W As

t) o(t) s

> /UOOP(S)AH/:O@«—E)Z LA

> /:) P(s)As + (r—e)Q/a: (é)AAs

= /OOP(S)AS—l—Lt(r—e)Q.

This implies that,

o(t)w? > o(t) / P(s)As+ (r —¢€)*.

o(t)
Then
(2.29) r= tliglo inf o(t)w” > p, — e+ (r—¢)? fort > t,.
Also, from (2.26), we have
(2.30) tlirilosup tw? < —q.+e+ (R+¢€)(2—R—¢), fort >t,.

Then, from[(2.2P) and (2.80) sineas arbitrarily small, we have,
p. <r—r? andq <R-— R’
Thus, [2.18) holds and this completes the prgof.

Now, from Theoren 2.12 we establish some new oscillation criterig fof (1.1) which can be
considered as the extensions of the oscillation conditjons|(1.12) and (1.14) established by Erbe
[10] and Neharil[21] for differential equations.

Theorem 2.13. If
(2.31) lim inf a(t)/ (p(s)ﬁ) As > i,
- s

then every solution of (1.1) oscillates.

Proof. Let z(t) be a nonoscillatory solution df (1.1) such that (¢)) > 0fort > ¢, > 7_(to).
Letr = lim; . inf o(t)w’. Then by Theorer 2.12, we have

pe <7 —1? < 1/4,
and this contradict$ (2.81). The proof is complage.
Theorem 2.14.If
1 [ 1
(2.32) lim inf—/ s (p(s)ﬂ) As > —,
tJi, S 4

t—o00

then every solution of (1.1) oscillates.

Proof. Let z(t) be a nonoscillatory solution df (1.1) such that (¢)) > 0fort > t; > 7_({o).
Let R = limsup,_,, tw’. Then by Theorerph 2.12, we have

¢. < R— R*<1/4,
and this contradict$ (2.82). The proof is complage.
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WhenT = R, we see that the conditiop (2]31) in Theorlem 2.13 becomes
o 1
tliglo inft/t (p(s)@) ds > 7

which is the oscillation conditior] (1.14) established by Efbe [10] and witen = ¢, this
condition becomes the condition (1}11) of Hille [19] . Also form Theofem|2.14 vilhenR
the condition[(2.32) becomes

1 /[t 1
tlggo inf; /to s (p(s)@) ds > 7

and when and(¢) = t, this condition becomes

t—o0 4

which is the oscillation condition (1.12) established by Nehari [21].
WhenT = N, we have from Theorenjs 2]13 and 2.14 the following oscillation results for

€.19).

Corollary 2.15. Each one of the conditions

TS Y A 1
lim inf — [ s"p(s)ds > -,
tJ,

o - 7(s) 1
tlir& mf(t + 1) S;—H (p(S)T) As > Z’
and
t—1

.1 9 7($) 1
tlirgomfg s (p(s)T) > 7

s=to

guarantees the oscillation gf (1]15).

From Corollary 2.1p when(¢) = ¢, we have the following result that has been established
by Li and Jiang[[20].

Corollary 2.16. [20]. If

t—1 1

lim inf — 2 > -,

Jim inf - tsp(s) 1
s=tg

then every solution of second-order difference equation
Ax(t) +p(t)a(t) =0, € [ty,00),
oscillates.

The following example illustrates the main results.

Example 2.1. Consider the second-order delay Euler dynamic equation

(2.33) 228 () + tT’Zt)x(T(t)) —0, teT,

for 7(t) < t andT =[1, cc). Herep(t) = ;1. Note that) holds since

t t
Y Y

> — g .

/10(3)87<8)A5_/1 SAS 00
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To apply Theoremn 2.13, it remains to prove that conditjon (2.31) is satisfied. In our[case (2.31)
reads

lim infa(t)/ p(s)ﬂAs = ~lim info(t)/ %As

t—00 ) S t—o0 (®) S
< 1
>~ lim info(t)/ As
t—o0 o(t) SU(S>

o/ 1\A
= v lim infa(t)/ (—) As = .
fee o(t) \ 5

So by Theorenis 2.]13, every solutiond of (2.33) oscillates:if1/4. Now, we apply Theorem
[2.14. In our cas€ (2.32) reads

I 1
lim inf;/ s <p(s)ﬂ) As = lim inf;/ 2L @As
to S 1

t—o0 t—o0

t

1
= ’yliminfg/ASZ’y.

t—oo

1

So by Theorenis 2114, every solutiong of (2.33) oscillates-ifl /4.

Remark 2.1. Note that, the condition$ (1.3), (1.4), (1.%), (1.6), (1.11), (1.13) cannot be applied
for (2.33). So Theorenjs 2.13 and 2.14 improve the results established by Agarwal, Bohner and

Saker [1] for second-order dynamic equatipn (2.33).
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