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2 S. H. SAKER

1. I NTRODUCTION

The study of dynamic equations on time scales, is an area of mathematics that has recently
received a lot of attention. It has been created in order to unify the study of differential and
difference equations, and it also extends these classical cases to cases ” in between”, e.g., to
the so-calledq−difference equations. Many results concerning differential equations carry over
quite easily to corresponding results for difference equations, while other results seem to be
completely different from their continuous counterparts.

Dynamic equations on a time scale have an enormous potential for applications such as in
population dynamics. For example, it can model insect populations that are continuous while
in season, die out in say winter, while their eggs are incubating or dormant, and then hatch in
a new season, giving rise to a nonoverlapping population. For more details, we refer the reader
to the books by Bohner and Peterson [4, 5] which summarize and organize much of time scale
calculus.

In recent years there has been much research activity concerning the qualitative theory of
dynamic equations on time scales. One of the main subject of the qualitative analysis of the
dynamic equations is the oscillatory behavior. Recently, interesting results are established for
oscillation, nonoscillation, stability and boundedness, we refer the reader to the papers [1, 2, 3,
6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 18, 22, 23, 24, 25, 28, 29]. Following this trend in this paper,
we are concerned with oscillation of the second-order linear delay dynamic equation

(1.1) x∆∆(t) + p(t)x(τ(t)) = 0,

on a time scaleT, here the functionp is a positiverd−continuous function defined onT, τ(t) :
T → T, τ(t) ≤ t andlimt→∞ τ(t) = ∞.

Let T0 = min{τ(t) : t ≥ 0} and τ−1(t) = sup{s ≥ 0 : τ(s) ≤ t} for t ≥ T0.
Clearly τ−1(t) ≥ t for t ≥ T0, τ−1(t) is nondecreasing and coincides with the inverse ofτ
when the latter exists. A continuous functionx : T → R is said to be a solution of (1.1)
if it is rd−continuous on[τ−1(t0),∞) along with its derivative and almost every where on
[τ−1(t0),∞).

Our attention is restricted to those solutionsx(t) of (1.1) which exist on some half line[tx,∞)
and satisfysup{|x(t)| : t > t1} > 0 for anyt1 ≥ tx. A solutionx(t) of (1.1) is said to be oscil-
latory if it is neither eventually positive nor eventually negative. Otherwise it is nonoscillatory.
The equation itself is called oscillatory if all its solutions are oscillatory. Since we are interested
in the oscillatory and asymptotic behavior of solutions near infinity, we assume thatsup T = ∞,
and define the time scale interval[t0,∞)T by [t0,∞)T := [t0,∞) ∩ T.
On any time scale we definefσ(t) := (f ◦ σ)(t) = f(σ(t)). A function f : T → R is called
rd−continuous function provided it is continuous at right-dense points inT and its left-sided
limits exist (finite) at left-dense points inT and the set ofrd−continuous functionsf : T → R
is denoted byCrd = Crd(T) =Crd(T, R).

Erbe and Peterson [12] considered the second-order dynamic equation without delay

(1.2) (r(t)x∆(t))∆ + p(t)xσ = 0, t ∈ T,

under the assumption that: There existst0 ∈ T, such thatr(t) is bounded above on[t0,∞), and
inf µ(t) > 0. By using Riccati technique they proved that if∫ ∞

t0

p(t)∆t = ∞,

then every solution of (1.2) is oscillatory on[t0,∞).
Note that, the results given by Erbe and Peterson [12], can not be applied whenr is un-

bounded,µ(t) = 0 andp(t) = t−α whenα > 1.
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Došlý and Hilger [9] considered also (1.2) and established some necessary and sufficient
conditions for oscillation of all solutions on unbounded time scales. However, the oscillation
criteria require additional assumptions on the unknown solutions, which may not be easy to
check. The results in [9, 12] were improved recently by Saker [22], Bohner and Saker [6] and
Erbe, Peterson and Saker [14].

Agarwal, Bohner and Saker [1] considered the delay dynamic equation (1.1) on a time scale
and proved that if

(1.3)
∫ ∞

t0

σ(s)p(s)∆s = ∞,

then every bounded solution of (1.1) oscillates. Also they proved that if (1.3) holds and

(1.4)
∫ ∞

t0

τ(s)

σ(s)
p(s)∆s = ∞,

then every solution of (1.1) is oscillatory. Moreover they proved that if (1.3) holds and

(1.5) lim
t→∞

sup

{
t

∫ ∞

t

τ(s)

s
p(s)∆s

}
= ∞,

then every solution of (1.1) oscillates. Also Agarwal, Bohner and Saker [1] proved that the
oscillation of (1.1) is equivalent to the oscillation of a first order delay dynamic inequality and
established some new oscillation criteria which depending on the oscillation results of first order
delay dynamic equations established by Zhang and Deng [28]. They proved that every solution
of (1.1) is oscillatory if

(1.6) lim sup
t→∞

∫ t

τ(t)

p(s)τ(s)∆s >
1

c
for somec ∈ (0, 1),

or

(1.7) lim sup
t→∞

sup
λ>0, −λcpτ∈<+

f(λ) < 1,

where
f(λ) = λe−λcpτ (t, τ(t)).

For definition of the exponential functionep(t, t0) and its properties, we refer the reader to
Chapter 1 in [4]. Note that the condition (1.6) is not sharp, since it is depending on the constant
c ∈ (0, 1).

Equation (1.1) in its general form involve some different types of differential and difference
equations depending on the choice of the time scaleT. For example whenT = R, we have
σ(t) = t, µ(t) = 0,

f∆(t) = f
′
(t),

∫ b

a

f(t)∆t =

∫ b

a

f(t)dt,

and (1.1) becomes the second-order delay differential equation

(1.8) x
′′
(t) + p(t)x(τ(t)) = 0, t ≥ t0,

and (1.6) and (1.7) become

(1.9) lim sup
t→∞

∫ t

τ(t)

p(s)τ(s)ds >
1

c
,

and

f(λ) = λe−λcpτ (t, τ(t)) = λe−Mλ, whereM =

∫ t

τ(t)

cp(s)τ(s)ds,
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for somec ∈ (0, 1). Forλ∗ := 1/M, we havef
′
(λ∗) = 0, andf

′′
(λ∗) < 0. Thus

sup
λ>0, −λcpτ∈<+

λe−λcpτ (t, τ(t)) = f(λ∗) =
1

Me
,

so that for somec ∈ (0, 1)

(1.10) lim sup
t→∞

sup
λ>0, −λcpτ∈<+

f(λ) < 1, if lim
t→∞

inf

∫ t

τ(t)

p(s)τ(s)ds >
1

ce
.

For oscillation of second-order differential equation (1.8) whenτ(t) = t, Hille [19] proved that
if

(1.11) lim
t→∞

inf t

∞∫
t

p(s)ds >
1

4
,

then every solution of (1.8) oscillates.
Nehari [21] also considered (1.8), whenτ(t) = t, and proved that if

(1.12) lim inf
t→∞

1

t

t∫
t0

s2p(s)ds >
1

4
,

then every solution of (1.8) oscillates.
Wong [26] generalized the Hille-type condition for (1.8) and proved that ifτ(t) ≥ αt with

0 < α < 1, and

(1.13) lim
t→∞

inf t

∫ ∞

t

p(s)ds >
1

4α
,

then every solution of (1.8) is oscillatory.
Erbe [10] improved the condition (1.13), without any additional assumption onτ(t), and

proved that if

(1.14) lim
t→∞

inf t

∫ ∞

t

p(s)
τ(s)

s
ds >

1

4
,

then every solution of (1.8) is oscillatory.
WhenT = Z, we haveσ(t) = t + 1, µ(t) = 1, f∆(t) = ∆f(t),

∫ b

a
f(t)∆t =

∑b−1
t=a f(t), and

(1.1) becomes the delay difference equation

(1.15) ∆2x(t) + p(t)x(τ(t)) = 0.

Li and Jiang [20] considered (1.15) whenτ(t) = t and proved that if

lim
t→∞

inf
1

t

t−1∑
s=t0

s2p(s) >
1

4
,

then every solution of (1.15) oscillates. We note that the last condition of Li and Jiang [20] is
the discrete analogy of the Nehari [21] condition (1.12).

WhenT =hZ, h > 0, we haveσ(t) = t + h, µ(t) = h, x∆(t) = ∆hx(t) = (x(t + h) −
x(t))/h,

∫ b

a
f(t)∆t =

∑ b−a−h
h

k=0 f(a + kh)h, and (1.1) becomes the generalized second-order
delay difference equation

(1.16) ∆2
hx(t) + p(t)x(τ(t)) = 0.
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WhenT = {t : t = qk, k ∈ N0, q > 1}, we haveσ(t) = qt, µ(t) = (q−1)t, x∆(t) = ∆qx(t) =
(x(q t)− x(t))/(q− 1) t,

∫∞
t0

f(t)∆t =
∑∞

k=0 f(qk)µ(qk), and (1.1) becomes the second-order
delayq−difference equation

(1.17) ∆2
qx(t) + p(t)x(τ(t)) = 0.

WhenT = N2
0 = {t2 : t ∈ N0}, we haveσ(t) = (

√
t + 1)2 andµ(t) = 1 + 2

√
t,x∆(t) =

∆0x(t) = (x((
√

t+1)2)−x(t))/1+2
√

t, and (1.1) becomes the second-order delay difference
equation

(1.18) ∆2
0x(t) + p(t)x(τ(t)) = 0.

When T = Tn = {tn : n ∈ N} where (tn} is the harmonic numbers that are defined by
t0 = 0 andtn =

∑n
k=1

1
k
, n ∈ N0, we haveσ(tn) = tn+1, µ(tn) = 1

n+1
, x∆(t) = ∆1x(tn) =

(n + 1)x(tn) and (1.1) becomes the second-order delay difference equation

(1.19) ∆2
1x(tn) + p(t)x(τ(tn))) = 0.

WhenT2={
√

n : n ∈ N0}, we haveσ(t) =
√

t2 + 1,

µ(t) =
√

t2 + 1− t, x∆(t) = ∆2x(t) = (x(
√

t2 + 1)− x(t))/
√

t2 + 1− t,

and (1.1) becomes the second-order delay difference equation

(1.20) ∆2
2x(t) + p(t)x(τ(t)) = 0.

WhenT3={ 3
√

n : n ∈ N0}, we haveσ(t) = 3
√

t3 + 1 and

µ(t) =
3
√

t3 + 1− t, x∆(t) = ∆3x(t) = (x(
3
√

t3 + 1)− x(t))/
3
√

t3 + 1− t,

and (1.1) becomes the second-order delay difference equation

(1.21) ∆2
3x(t) + p(t)x(τ(t)) = 0.

Note that the integration formula on a discrete time scale is defined by∫ b

a
f(t)∆t =

∑
t∈(a,b) f(t)µ(t).

The objective of this paper is to establish some new oscillation criteria for (1.1). First, we
establish some new integral oscillation criteria for (1.1) which are formulated in terms of solu-
tions of certain inequalities and enable us to obtain some new effective sufficient conditions for
the oscillation of (1.1) which improve the conditions (1.4), (1.5), (1.6) and (1.7) established by
Agarwal, Bohner and Saker in [1]. Second by employing the Riccati transformation technique
and analyzing the Riccati dynamic inequality, we formulate another sufficient conditions for
oscillation of (1.1) which can be applied on the delay case as well as in the nondelay case. Our
results in the special case whenT = R include the oscillation conditions (1.11), (1.12) and
(1.14) established by Hille [19], Nehari [21] and Erbe [10] and improve the condition (1.13) es-
tablished by Wong [26] and also the results established by Yan [27]. In the case, whenτ(t) = t
andT = Z, i.e., for difference equations without delay, our results include the oscillation results
established by Li and Jiang [20] for difference equations. The results are essentially new for the
equations (1.16)-(1.21). An example is considered to illustrate the main results.

2. M AIN OSCILLATION RESULTS

In what follows and later, we assume that

(2.1)
∫ ∞

t0

σ(s)p(s)∆s = ∞.

We start with the following lemmas which we will use in the proof or our main results.

Lemma 2.1. [1]. Letx be a positive solution of (1.1) on[t0,∞) andT = τ−1(t0). Then
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(i) x∆(t) ≥ 0, x(t) ≥ tx∆(t) for t ≥ T ;
(ii) x is nondecreasing, whilex(t)/t is nonincreasing on[T ,∞).
Lemma 2.1 immediately implies the following lemma.

Lemma 2.2. Let x(t) be a positive solution of (1.1) on[t0,∞) and T = τ−1(t0). Then the
functiony(t) defined byy(t) = x∆(t) is a positive solution of the delay dynamic inequality

(2.2) y∆(t) + τ(t)p(t)y(τ(t)) ≤ 0.

From Lemma 2.2 we see that that the oscillation of (1.1) is equivalent to the oscillation of the
first order dynamic inequality (2.2) and this is formulated in the following theorem.

Theorem 2.3. Assume that the differential inequality (2.2) has no eventually positive solution.
Then the equation (1.1) is oscillatory.

Theorem 2.3 reduces the question of oscillation of (1.1) to that of the absence of eventually
positive solutions of the dynamic inequality (2.2) and follows the argument in Agarwal, Bohner
and Saker [1] by using Corollary 2 in [28], we obtain the following oscillation criteria which
essentially improve the oscillation conditions (1.6) and (1.7), since the conditions (2.3) and (2.4)
does not include any additional constants.

Theorem 2.4.Each one of the conditions

(2.3) lim
t→∞

sup

∫ t

τ(t)

p(s)τ(s)∆s > 1,

and

(2.4) lim
t→∞

sup sup
λ>0, −λpτ∈<+

λe−λpτ (t, τ(t)) < 1,

guarantees the oscillation of (1.1).

From Lemma 2.2, it is clear that the oscillation conditions of the second-order delay dynamic
equation (1.1) depending on the estimation

(2.5) x(τ(t)) ≥ τ(t)x∆(τ(t)), for t ≥ T.

This inequality, however, can be improved and lead to new oscillation criteria which further
also improve the conditions (2.3) and (2.4).

Lemma 2.5. Letx be a positive solution of (1.1) on[t0,∞) andT = τ−1(t0). Then

(2.6) x(τ(t)) ≥ δ(t)x∆(τ(t)) for t ≥ τ−1(T ),

where

(2.7) δ(t) = τ(t) +

∫ τ(t)

T

σ(s)τ(s)p(s)∆s.

Proof. Integrate the identity(x(t) − tx∆(t))∆ = −σ(t)x∆∆(t) = σ(t)p(t)x(τ(t)), from T to
τ(t), we have

x(τ(t))− τ(t)x∆(τ(t))− x(T ) + x∆(τ(T )) =

∫ τ(t)

T

σ(s)p(s)x(τ(s))∆s.

This implies that

x(τ(t)) = τ(t)x∆(τ(t)) + x(T )− x∆(τ(T )) +

∫ τ(t)

T

σ(s)p(s)x(τ(s))∆s

≥ τ(t)x∆(τ(t)) +

∫ τ(t)

T

σ(s)p(s)x(τ(s))∆s.
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Now, by using the estimationx(τ(t)) ≥ τ(t)x∆(τ(t)), we obtain

x(τ(t)) ≥ τ(t)x∆(τ(t)) +

∫ τ(t)

T

σ(s)p(s)τ(s)x∆(τ(s))∆s.

Using the fact thatx∆∆(t) < 0, we get

x(τ(t)) ≥ τ(t)x∆(τ(t)) + x∆(τ(t))

∫ τ(t)

T

σ(s)p(s)τ(s)∆s, for t ≥ τ−1(T ).

The last inequality implies (2.6). The proof is complete.

Lemma 2.5 immediately implies the following.

Lemma 2.6. Letx be a positive solution of (1.1) on[t0,∞) andT = τ−1(t0). Then the function
y(t) defined byy(t) = x∆(t) is a positive solution of the delay dynamic inequality

(2.8) y∆(t) + δ(t)p(t)y(τ(t)) ≤ 0,

whereδ(t) is defined by (2.7).

Lemma 2.6 immediately implies the following oscillation result.

Theorem 2.7. Assume that the differential inequality (2.8) has no eventually positive solution.
Then the equation (1.1) is oscillatory.

Again, Theorem 2.7 reduces the question of oscillation of (1.1) to that of the absence of
eventually positive solutions of the dynamic inequality (2.8) and, as in Theorem 2.8, we obtain
the following results.

Theorem 2.8. . Each one of the conditions

(2.9) lim
t→∞

sup

∫ t

τ(t)

p(s)

(
τ(s) +

∫ τ(s)

T

σ(u)τ(u)p(u)∆u

)
∆s > 1,

and

(2.10) lim sup
t→∞

sup
λ>0, −λpδ∈<+

f(λ) = lim sup sup
λ>0, −λpδ∈<+

λe−λpδ(t, τ(t)) < 1,

guarantees the oscillation of (1.1).

We note that, the above results can be applied only in the case whenτ(t) < t. In the following,
we establish some new oscillation criteria which can be applied on the nondelay case as well
as the delay case. In the following theorem, we extend Hille supremum condition for delay
dynamic equation (1.1).

Theorem 2.9.Assume that

(2.11) lim
t→∞

sup t

∞∫
t

p(s)
τ(s)

s
∆s > 1,

then every solution of (1.1) is oscillatory.

Proof. Suppose to the contrary thatx(t) is a nonoscillatory solution of (1.1). Without loss of
generality, we may assume thatx(t) is an eventually positive solution of (1.1) such thatx(t) > 0
for all t ≥ T0. Then there exists at1 such thatx(τ(t)) > 0 for everyt ≥ T0. From (1.1), we
have

(2.12) − x∆∆(t)) = p(t)x(τ(t)).
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Integrating (2.12) fromt to T, we obtain
T∫

t

p(s)x(τ(s))∆s ≤ x∆(t),

and hence

(2.13)

∞∫
t

p(s)x(τ(s))∆s ≤ x∆(t).

Now by Lemma 2.1, sincex(t)/t is a nonincearsing function, we have

(2.14) x(τ(t)) ≥ τ(t)

t
x(t), and x(t)/t ≥ x∆(t).

This and (2.13) imply that

x(t) ≥ t

∞∫
t

p(s)
τ(s)

s
x(s)∆s.

Sincex(t) is positive and increasing, it follows that

t

∞∫
t

p(s)
τ(s)

s
∆s ≤ 1,

which contradicts (2.11). The proof is complete.

From Theorem 2.9, we can derive some sufficient conditions for oscillation of equations
(1.8), (1.15)-(1.19). In the following we derive some sufficient conditions for oscillation of
(1.8) and (1.15) and for the equations (1.16)-(1.19), the details are left to the reader.

Corollary 2.10. Assume that
∞∫
t0

p(s)σ(s)ds = ∞. If

(2.15) lim
t→∞

sup t

∞∫
t

p(s)
τ(s)

s
ds > 1,

then every solution of (1.8) oscillates.

Corollary 2.11. Assume that
∑∞

s=t0
p(s)σ(s) = ∞. If

lim
t→∞

sup t
∞∑
s=t

p(s)
τ(s)

s
> 1,

then every solution of (1.15) oscillates.

Observe that (2.15) improves Corollary 2.6 of Yan [27], since our result does not require the
additional constantε, where0 < ε < 1.

In the following, we employ the Riccati transformation technique and establish some new
oscillation criteria for (1.1). For convenience, we define

(2.16) p∗ := lim
t→∞

inf σ(t)

∫ ∞

σ(t)

P (s)∆s andq∗ := lim
t→∞

inf
1

t

∫ t

t0

s2P (s)∆s,

whereP (s) = p(s) τ(s)
s

. We assume that the step functionµ(t) satisfiesµ(t) ≤ h0.
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Theorem 2.12.Letx(t) be a nonoscillatory solution of (1.1) such thatx(τ(t)) > 0 for t ≥ t1 >

τ−1(t0). Letw(t) := x∆(t)
x(t)

and

(2.17) r := lim
t→∞

inf σ(t)wσ, and R := lim
t→∞

sup twσ,

then

(2.18) p∗ ≤ r − r2, and q∗ ≤ R−R2.

Proof. Sincex(t) be a nonoscillatory solution of (1.1) such thatx(τ(t)) > 0 for t ≥ t1 >

τ−1(t0), we have by Lemma 2.1, thatx∆(t) > 0 for t ≥ t1 and this implies thatw(t) = x∆(t)
x(t)

>

0 and satisfies

w∆(t) =
(
x∆
)σ [ 1

x(t)

]∆

+
1

x(t)
x∆∆(t) =

−x∆(t)
(
x∆
)σ

x(t)xσ)
+

1

x(t)
x∆∆(t)

= −
(
x∆
)σ

xσ

x∆(t)

x(t)
+

1

x(t)
x∆∆(t).

From Lemma 2.1, sincex(t)/t is nonincreasing we havex(τ(t))
x(t)

≥ τ(t)
t

. This and (1.1), imply
thatw(t) satisfies the Riccati dynamic inequality

(2.19) w∆(t) + P (t) + w(t)wσ ≤ 0, for t ≥ t1.

SinceP (t) > 0, andw(t) > 0 for t ≥ t1, we have

w∆(t)

w(t)wσ
< −1, for t ≥ t1,

i. e., (
−1

w(t)

)∆

< −1.

Integrating the last inequality fromt1 to t, we have

(2.20) (t− t1)w(t) < 1, t ≥ t1,

which implies that

(2.21) lim
t→∞

w(t) = 0 and lim
t→∞

1

t

∫ t

t1

w(s)∆s = 0.

By (2.17), (2.20) and the fact thatw(t) ≥ wσ, we see that

(2.22) 0 < r < 1, and 0 < R < 1.

Hence

(2.23) r − r2 > 0, and R−R2 > 0.

Now, we prove that (2.18) holds. Integrating (2.19) fromσ(t) to ∞ (σ(t) ≥ t1) and using
(2.21), we have

(2.24) wσ ≥
∫ ∞

σ(t)

P (s)∆s +

∫ ∞

σ(t)

w(s)wσ∆s for t ≥ t1.

From (2.19), we see thatw∆(t) ≤ 0, and this implies thatw(t) ≥ wσ. Using this in (2.19), we
find that

(2.25) w∆(t) + P (t) + (wσ)2 ≤ 0, for t ≥ t1.
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Multiplying (2.25) byt2, and integrating fromt1 to t (t ≥ t1) and using the integration by parts,
we obtain∫ t

t1

s2P (s)∆s ≤ −
∫ t

t1

s2w∆(s)∆s−
∫ t

t1

s2 (wσ)2 ∆s

=
[
−t2w(t)

]t
t1

+

∫ t

t1

(s2)∆wσ∆s−
∫ t

t1

s2 (wσ)2 ∆s

= −t2w(t) + t21w(t1) +

∫ t

t1

(s + σ(s))wσ∆s−
∫ t

t1

s2 (wσ)2 ∆s

= −t2w(t) + t21w(t1) +

∫ t

t1

2swσ∆s−
∫ t

t1

s2 (wσ)2 ∆s

+

∫ t

t1

µ(s)wσ∆s.

It follows that

tw(t) ≤ t21w(t1)

t
+

h0

t

∫ t

t1

wσ∆s− 1

t

∫ t

t1

s2P (s)∆s +
1

t

∫ t

t1

[
2swσ − s2 (wσ)2]∆s.

Then, sincew(t) ≥ wσ, we have

twσ ≤ t21w(t1)

t
+

h0

t

∫ t

t1

wσ∆s− 1

t

∫ t

t1

s2p(s)∆s

+
1

t

∫ t

t1

[
2swσ − s2 (wσ)2]∆s.(2.26)

From (2.21), sincelimt→∞
1
t

∫ t

t1
w(s)∆s = 0, andw(t) ≥ wσ, we get

(2.27) lim
t→∞

[
t21w(t1)

t
+

h0

∫ t

t1
wσ∆s

t

]
= 0.

Using the inequalitya2 + b2 ≥ 2ab, we have[
2swσ − s2 (wσ)2] ≤ 1,

and this implies that

(2.28) lim
t→∞

sup
1

t

∫ t

t1

[
2swσ − s2 (wσ)2]∆s ≤ 1.

From (2.24) and (2.26)-(2.28), we find that

lim
t→∞

inf σ(t)wσ = r ≥ p∗, and lim
t→∞

sup twσ = R ≤ 1− q∗.

Then it follows that for any0 < ε < min{r, 1−R} there existst2 ≥ t1 such that

r − ε < σ(t)wσ < r + ε, andR− ε < twσ < R + ε,

σ(t)

∫ ∞

σ(t)

P (s)∆s ≥ p∗ − ε, and
1

t

∫ t

t0

s2P (s)∆s > q∗ − ε, t ≥ t2.
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From (2.24), we get

wσ ≥
∫ ∞

σ(t)

P (s)∆s +

∫ ∞

σ(t)

w(s)wσ∆s ≥
∫ ∞

σ(t)

P (s)∆s +

∫ ∞

σ(t)

swσswσ

s2
∆s

≥
∫ ∞

σ(t)

P (s)∆s +

∫ ∞

σ(t)

(r − ε)2 1

sσ(s)
∆s

≥
∫ ∞

σ(t)

P (s)∆s + (r − ε)2

∫ ∞

σ(t)

(
−1

s

)∆

∆s

=

∫ ∞

σ(t)

P (s)∆s +
1

σ(t)
(r − ε)2 .

This implies that,

σ(t)wσ ≥ σ(t)

∫ ∞

σ(t)

P (s)∆s + (r − ε)2 .

Then

(2.29) r = lim
t→∞

inf σ(t)wσ ≥ p∗ − ε + (r − ε)2 for t ≥ t2.

Also, from (2.26), we have

(2.30) lim
t→∞

sup twσ ≤ −q∗ + ε + (R + ε)(2−R− ε), for t ≥ t2 .

Then, from (2.29) and (2.30) sinceε is arbitrarily small, we have,

p∗ ≤ r − r2, and q∗ ≤ R−R2.

Thus, (2.18) holds and this completes the proof.

Now, from Theorem 2.12 we establish some new oscillation criteria for (1.1) which can be
considered as the extensions of the oscillation conditions (1.12) and (1.14) established by Erbe
[10] and Nehari [21] for differential equations.

Theorem 2.13. If

(2.31) lim
t→∞

inf σ(t)

∫ ∞

σ(t)

(
p(s)

τ(s)

s

)
∆s >

1

4
,

then every solution of (1.1) oscillates.

Proof. Let x(t) be a nonoscillatory solution of (1.1) such thatx(τ(t)) > 0 for t ≥ t1 > τ−1(t0).
Let r = limt→∞ inf σ(t)wσ. Then by Theorem 2.12, we have

p∗ ≤ r − r2 ≤ 1/4,

and this contradicts (2.31). The proof is complete.

Theorem 2.14.If

(2.32) lim
t→∞

inf
1

t

∫ t

t0

s2

(
p(s)

τ(s)

s

)
∆s >

1

4
,

then every solution of (1.1) oscillates.

Proof. Let x(t) be a nonoscillatory solution of (1.1) such thatx(τ(t)) > 0 for t ≥ t1 > τ−1(t0).
Let R = lim supt→∞ twσ. Then by Theorem 2.12, we have

q∗ ≤ R−R2 ≤ 1/4,

and this contradicts (2.32). The proof is complete.
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WhenT = R, we see that the condition (2.31) in Theorem 2.13 becomes

lim
t→∞

inf t

∫ ∞

t

(
p(s)

τ(s)

s

)
ds >

1

4
,

which is the oscillation condition (1.14) established by Erbe [10] and whenτ(t) = t, this
condition becomes the condition (1.11) of Hille [19] . Also form Theorem 2.14 whenT = R
the condition (2.32) becomes

lim
t→∞

inf
1

t

∫ t

t0

s2

(
p(s)

τ(s)

s

)
ds >

1

4
,

and when andτ(t) = t, this condition becomes

lim
t→∞

inf
1

t

∫ t

t0

s2p(s)ds >
1

4
,

which is the oscillation condition (1.12) established by Nehari [21].
WhenT = N, we have from Theorems 2.13 and 2.14 the following oscillation results for

(1.15).

Corollary 2.15. Each one of the conditions

lim
t→∞

inf(t + 1)
∞∑

s=t+1

(
p(s)

τ(s)

s

)
∆s >

1

4
,

and

lim
t→∞

inf
1

t

t−1∑
s=t0

s2

(
p(s)

τ(s)

s

)
>

1

4
,

guarantees the oscillation of (1.15).

From Corollary 2.15 whenτ(t) = t, we have the following result that has been established
by Li and Jiang [20].

Corollary 2.16. [20]. If

lim
t→∞

inf
1

t

t−1∑
s=t0

s2p(s) >
1

4
,

then every solution of second-order difference equation

∆2x(t) + p(t)x(t) = 0, t ∈ [t0,∞),

oscillates.

The following example illustrates the main results.

Example 2.1.Consider the second-order delay Euler dynamic equation

(2.33) x∆∆(t) +
γ

tτ(t)
x(τ(t)) = 0, t ∈ T,

for τ(t) ≤ t andT =[1,∞). Herep(t) = γ
tτ(t)

. Note that (2.1) holds since∫ t

1

σ(s)
γ

sτ(s)
∆s ≥

∫ t

1

γ

s
∆s = ∞.
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To apply Theorem 2.13, it remains to prove that condition (2.31) is satisfied. In our case (2.31)
reads

lim
t→∞

inf σ(t)

∫ ∞

σ(t)

p(s)
τ(s)

s
∆s = γ lim

t→∞
inf σ(t)

∫ ∞

σ(t)

1

s2
∆s

≥ γ lim
t→∞

inf σ(t)

∫ ∞

σ(t)

1

sσ(s)
∆s

= γ lim
t→∞

inf σ(t)

∫ ∞

σ(t)

(
−1

s

)∆

∆s = γ.

So by Theorems 2.13, every solutions of (2.33) oscillates ifγ > 1/4. Now, we apply Theorem
2.14. In our case (2.32) reads

lim
t→∞

inf
1

t

∫ t

t0

s2

(
p(s)

τ(s)

s

)
∆s = lim

t→∞
inf

1

t

∫ t

1

s2 γ

sτ(s)

τ(s)

s
∆s

= γ lim
t→∞

inf
1

t

t∫
1

∆s = γ.

So by Theorems 2.14, every solutions of (2.33) oscillates ifγ > 1/4.

Remark 2.1. Note that, the conditions (1.3), (1.4), (1.5), (1.6), (1.11), (1.13) cannot be applied
for (2.33). So Theorems 2.13 and 2.14 improve the results established by Agarwal, Bohner and
Saker [1] for second-order dynamic equation (2.33).
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