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ABSTRACT. In this research paper, we introduce a novel theory for the construction of a Riesz

wavelet basis in the space L2(K), where K is a local field with positive characteristics. Our

approach is two fold: firstly, we derive some essential characterizations of the scaling function

associated with the structure of a Riesz MRA on a local field, and secondly, we review existing

methods for constructing wavelet frames in L2(K). We also present a well elaborated example

for a better comprehension of our theory. Due to mathematical convenience, we limit ourselves

to the case of dyadic dilations only.
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1. INTRODUCTION

The emergence of wavelets and multiresolution analysis stemmed from the demand for im-

proved signal processing methods that are both more efficient and precise. Conventional Fourier

analysis, which breaks down signals into sinusoidal elements, encounters difficulties when it

comes to capturing localized characteristics and managing non-stationary signals. In contrast,

wavelets present a more adaptable and localized means of representing signals. In the tradi-

tional multiresolution analysis framework, a collection of scaling functions and wavelet func-

tions establishes an orthonormal foundation for the signal space. Over the past decade, there

has been substantial research into wavelet bases in both one and multiple dimensions. Y. Meyer

[20], Mallat [18], C. Chui [8], I. Daubechies [10], and several other researchers made signif-

icant contributions to both the theoretical and practical aspects of orthonormal wavelet bases.

The prevalent approach for constructing orthonormal wavelet bases stems from the concept of

multiresolution analysis (MRA), which involves a nested sequence of approximation subspaces

given as

{0} → · · ·V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 · · · → L2(R)

generated by a scaling function ϕ ∈ V0, the concept can be understood as a family of transfor-

mations involving both dilations and translations,

ϕj,k(x) = 2
j
2ϕ(2jx− k), j, k ∈ Z

which forms an orthonormal basis for Vj .

Extending the principles of multiresolution analysis (MRA) and wavelets to a local field K

with positive characteristics entails tailoring the framework to align with the unique character-

istics of this field. Incorporating a prime element of the field becomes crucial in shaping the

foundations of MRA for such contexts, facilitating the analysis of signals within the framework

of locally compact Abelian groups. In the following years, Dahlke [9] generalized the concept

of MRA for arbitrary locally compact Abelian (LCA) groups. Then on, many authors have con-

tributed to the field of construction of wavelet bases on a variety of groups [29, 15, 16]. Local

fields of positive characteristic exhibit unique algebraic properties that differentiate them from

the classical real and complex number fields. Benedetto [4, 5] established a Wavelet theory

for local field. H. Jiang, D Li [13] defined MRA on a local field of positive characteristic and

constructed the corresponding orthonormal wavelets. A recent advancement by [1, 2, 3, 26, 27]

extended the concept of multiresolution analysis (MRA) to local fields with positive characteris-

tics, diverging from the traditional Euclidean space framework. In this extension, the translation

set operating on the scaling function to generate the subspace V0 expands beyond a group struc-

ture, encompassing both L and translations of L, where L =
{
u(n) : n ∈ N

}
represents distinct

coset representations of the unit disc D within K+.
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DYADIC RIESZ WAVELETS ON LOCAL FIELDS 3

Riesz wavelets are an essential class of wavelets that extend the concept of wavelet bases

in functional analysis, particularly in the context of Riesz bases. Here, we wish to generalize

this notion and thus construct a wavelet Riesz basis through MRA on a local field. The pri-

mary motivation for studying Reisz bases is that these bases are found to be very handy for

studying the sampling of bandlimited signals (functions). It is well-known that, up to some

transformation, Riesz bases are equivalent to the interpolation property. This makes them a

robust tool in compress sensing and application to signal processing. Several works in the liter-

ature [12, 14, 22, 30] have addressed MRA and related structures for Riesz bases. These studies

have extensively investigated the methods for constructing Riesz wavelet bases through MRA.

Recently motivated by advancements in the theory of MRA, we have [17, 24, 23] undertaken

the construction of Riesz MRA on locally compact Abelian groups.

The structure of this article is organized as follows: Section 2 presents the preliminary in-

formation and notation related to local fields and Riesz bases on local fields. In Section 3, we

develop a Riesz MRA for local fields of positive characteristic. Section 4 introduces a com-

prehensive approach for constructing Riesz wavelets from the Riesz MRA. Finally, Section 5

provides a conclusion of our work.

2. PRELIMINARIES AND NOTATIONS

2.1. A Background about Local Fields. [3, 4, 5, 13, 28, 25, 27, 26] In this section, we es-

tablish the notations for local fields that will be utilized throughout the paper. A local field,

denoted by K, is characterized as both an algebraic field and a topological space possessing

the following properties: locally compact, complete, totally disconnected and non discrete. The

additive and multiplicative groups associated with K are denoted by K+ and K∗, respectively.

A Haar measure, denoted by dx, can be chosen for K+. Notably, if α ̸= 0 (α ∈ K), then d(αx)

also serves as a Haar measure, with d(αx) = |α|dx, where |α| is termed the absolute value or

valuation of α, and |0| = 0.

The absolute value possesses the following properties:

(1) |x| ≥ 0 and |x| = 0 if and only if x = 0;

(2) |xy| = |x| · |y|;
(3) |x+ y| ≤ max(|x|, |y|).

The last property, known as the ultrametric inequality, is significant.

The set D = {x ∈ K : |x| ≤ 1} is known as the ring of integers in K, representing the unique

maximal compact subring within K. Additionally, we define P = {x ∈ K : |x| < 1} as the

prime ideal in K. This prime ideal stands as the unique maximal ideal in D and possesses both

principal and prime properties.

Given the total disconnectedness of K, the absolute values |x| as x traverses K constitute a

discrete set, often represented as {sk : k ∈ Z} ∪ {0} for some s > 0. Hence, there exists an

AJMAA, Vol. 21 (2024), No. 2, Art. 17, 20 pp. AJMAA

https://ajmaa.org


4 KARTIK AND R. KUMAR AND SATYAPRIYA

element in P with maximal absolute value. Let p denote a fixed element with the maximum

absolute value in P, referred to as a prime element of K. Notably, as an ideal in D, P = ⟨p⟩ =
pD.

It is demonstrable that D is both compact and open, thus implying P also possesses these

properties. Consequently, the residue space D/P is isomorphic to a finite field GF (q), where

q = pc for some prime p and c ∈ N. For a detailed proof of this assertion, we refer to [21].

Remark 2.1. Since, in this paper, we focus on dyadic wavelet frames for mathematical conve-

nience, therefore we take p = q = 2 in all the subsequent sections.

Now, for each k ∈ Z, we define the fractional ideals Pk = pkD = {x ∈ K : |x| ≤ q−k}. Each

Pk is both compact and open and serves as a subgroup of K+ [21]. Thus, if x ∈ Pk, where

k ∈ Z, x can be uniquely expressed as x =
∑∞

ℓ=k cℓp
ℓ, where cℓ are coset representatives of the

quotient group D/P.

2.1.1. Fourier analysis on local Fields. Consider a measurable subset E of K, and denote the

measure |E| as the integral of the characteristic function χE(x) with respect to the normalized

Haar measure dx on K, where |D| = 1.

It is evident that |P| = q−1 and |p| = q−1, with q defined as pc, following straightforward

observations. For a more in-depth exploration of these concepts, refer to [21].

In the realm of local fields, a significant feature emerges in the form of a nontrivial, unitary,

continuous character denoted by Υ on K+. It’s established that K+ exhibits self-duality (refer

to [21]).

Now, let’s focus on a specific character Υ onK+ that is trivial on D but nontrivial on P−1. Such

a character can be constructed by initially selecting any nontrivial character and subsequently

adjusting its scale. This construction is particularly relevant for a local field characterized by

positive characteristics.

For y ∈ K, we define Υy(x) = Υ(yx) for x ∈ K.

In the context of local fields, the Fourier transform of a function f ∈ L1(K) is denoted as f̂(ω)

and defined by the integral:

f̂(ω) =

∫
K

f(x)Υω(x) dx

It’s worth noting that this expression can be alternatively written as:

f̂(ω) =

∫
K

f(x)Υ(−ωx) dx

This definition is reminiscent of the standard Fourier analysis on the real line, emphasizing the

adaptation to the locally compact, non-Archimedean nature of the local field K.

To define the Fourier transform of a function in L2(K), we introduce the characteristic functions

Φk for k ∈ Z. These functions are defined as the characteristic functions of the sets Pk.
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Definition 2.1. For f ∈ L2(K), let fk = fΦ−k, and define

f̂(ω) = lim
k→∞

∫
|x|≤qk

f(x)Υω(x) dx,

where the limit is taken in L2(K).

We can express the following theorem, as presented in Theorem 2.3 in [21]:

Theorem 2.1. The Fourier transform is unitary on L2(K).

2.1.2. Operators on L2(K). We know that for the operators of translation, modulation and di-

lation are an important part of wavelet theory. Thus, we wish to explicitly define these operators

on the space L2(K).

(i). The translation operator: As a translating set for L2(K), we take the coset represen-

tatives of the quotient group K+/D. More precisely, if we let N0 = N ∪ {0} and{
u(n) : n ∈ N0

}
to be the set of distinct coset representatives of K+/D, then the

translation operator T : L2(K) → L2(K) is given by

(Tnf)(x) = f(x− u(n)), n ∈ N0.

(ii). The modulation operator: Let y ∈ K be give. Corresponding to this y, we define the

modulation operator on L2(K) as

(Eyf)(x) = (Υyf)(x) = Υ(xy) f(x), x ∈ K.

(iii). The dilation operator: The dilation operator on the space L2(K) is defined as

(Df)(x) = q
1/2 f(p−1(x)).

If we take {u(n)}∞n=0 to be a comprehensive collection of unique coset representatives of D

within K+, then {Υu(n)}∞n=0 emerges as a set of distinct characters on D. In [21], it is shown

that this set is exhaustive, leading to the following proposition.

Lemma 2.2. [28] Let {u(n)}∞n=0 represent a complete set of distinct coset representatives of D

within K+. Then, the set {Υn}∞n=0 denotes a comprehensive collection of distinct characters on

D. It’s worth noting that for ease of notation, we shall denote Υn as Υu(n) for every n in N0.

Furthermore, this set {Υn}∞n=0 not only constitutes a complete list of characters on D but also

establishes a complete orthonormal system over D.

Given such a list of characters {Υu(n)}∞n=0, we define the Fourier coefficients of a function

f ∈ L1(D) as follows:

f̂(u(n)) =

∫
D

f(x)Υu(n)(x) dx

The series
∞∑
n=0

f̂(u(n))Υu(n)(x)
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6 KARTIK AND R. KUMAR AND SATYAPRIYA

is termed the Fourier series of f . Drawing from the standard L2 theory for compact Abelian

groups, we infer that the Fourier series of f converges to f in L2(D), and moreover,∫
D

|f(x)|2 dx =
∞∑
n=0

|f̂(u(n))|2

holds. Additionally, if f ∈ L1(D) and f̂(u(n)) = 0 for all n ∈ N, then f = 0 almost

everywhere. Note that, here Lp(D) =
{
f ∈ Lp(K) : f = 0 a.e. on K\D

}
.

In the subsequent sections, we will frequently encounter functions which are defined on whole

of the field K and their restriction to D lies in the space L2(D). Such functions also repeat

their values, and we observe that this repetition is dependent of set pf integers D. For our

convenience, we define such functions here.

Definition 2.2. A function f : K → C is said to be K-integral periodic if it satisfies

f(x+ u(n)) = f(x), ∀ x ∈ K,n ∈ N0.

We conclude this section by analysing some quotient groups. The proof of all the statements

given below in this section may be found in [3, 4, 5, 13, 28]. Recall that, we have the following

relation:

P−1/P ∼= D/P ∼= GF (q).

Without loss of generality, we designate {u(n) : 0 ≤ n ≤ q−1} as a set of coset representatives

of D in P−1. This choice allows us to assert that {u(n)p : 0 ≤ n ≤ q − 1} forms a set of

coset representatives of P in D. Furthermore, it has been demonstrated in [13, 25, 26, 27] that

u(0) = 0. Combining these observations with the fact that p = q = 2 (Remark 2.1), we obtain:

P−1/D = {D, u(1) +D} and D/P = {P, u(1)p+P}.

2.2. Riesz Bases and Related Properties. Let’s delve into the concept of Riesz bases within

an arbitrary, separable Hilbert space H, and briefly touch upon some of their fundamental prop-

erties. For a comprehensive exploration, readers are directed to [7].

Definition 2.3. Consider a separable Hilbert space H and a countable index set I. A sequence of

elements {fβ}β∈I is termed a Riesz basis for H if there exist an orthonormal basis {eβ : β ∈ I}
and a bounded bijective operator U : H → H such that fβ = Ueβ for all β ∈ I.

An important property satisfied by a Riesz basis {fβ : β ∈ I} is the existence of constants A

and B (both greater than zero) satisfying:

A||f ||2 ≤
∑
β∈I

|⟨f, fβ⟩|2 ≤ B||f ||2, ∀ f ∈ H.

In this context, A and B are known as the Riesz bounds, with A representing the lower bound

and B the upper bound. From here, we can also conclude that a Riesz basis is, in fact, a special

case of frames.
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In wavelet theory, we often focus on families composed of translations of a single function.

Therefore, it’s essential to explore the conditions under which a family such as {Tkϕ : k ∈ N0},

where ϕ ∈ L2(K), forms a Riesz sequence. Before delving into this analysis, let’s introduce

another notation denoted by Φ, representing a complex-valued function on K, defined as:

Φ(ξ) =
∑
n∈N0

|ϕ̂(ξ + u(n))|2.(2.1)

It’s evident that the function Φ is K-integral periodic and its restriction to D belongs to the

space L1(D). For further insights, we refer [25] and related references. With this setup, we’re

prepared to state a lemma providing bounds for the function Φ. This lemma, serving as a

generalized version of a result by Ron and Shen in [22], elucidates that the Riesz basis properties

of {Tkϕ : k ∈ N0} can be comprehensively characterized in terms of the function Φ.

Lemma 2.3. Let ϕ ∈ L2(K) be given. Then
{
Tnϕ : n ∈ N0

}
is a Riesz sequence with bounds

A and B if and only if A ≤ Φ(ξ) ≤ B for all ξ ∈ K.

3. RIESZ MULTIRESOLUTION ANALYSIS ON L2(K)

This section begins with a formal definition of Riesz multiresolution analysis (Riesz MRA) on

a local field K of positive characteristic. The initial definition of Riesz MRA, specifically for

the case where G = R, was provided by R. A. Zalik in his paper [30]. Recently, Raj Kumar,

Satyapriya and F.A. Shah introduced this concept to an arbitrary locally compact group G [23].

The following definition can be regarded as an analogous version of these definitions.

Definition 3.1. A Riesz multiresolution analysis (Riesz MRA) for L2(K) comprises a sequence

of closed subspaces {Vj : j ∈ Z} of L2(K) along with a function ϕ ∈ V0, satisfying the

following criteria:

(i) The subspaces are nested, meaning

· · · ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ · · · .

(ii) The subspaces have a dense union and a trivial intersection, i.e.

∪
j∈Z
Vj = L2(K) and ∩

j∈Z
Vj = {0}.

(iii) The subspaces are related through

Vj = DjV0.

(iv) The subspaces are translation invariant, implying

f ∈ Vj =⇒ Tnf ∈ V0,∀ n ∈ N0 = N ∪ {0}.

(v) The sequence {Tkϕ : k ∈ N0} forms a Riesz basis for V0.
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In the context of a Riesz MRA, a function ϕ that generates the MRA is referred to as the

scaling function associated with the Riesz MRA. Additionally, the subspaces Vj are termed

approximation spaces or multiresolution subspaces.

If we replace the term “Riesz basis" in (v) of Definition 3.1 by “orthonormal basis", then we

get the definition of the classical MRA ([13]) and if a similar replacement is made by “frame",

then we get the definition of a frame MRA ([25]). Furthermore, condition (v) implies that

span
{
Tkϕ : k ∈ N0

}
= V0. Additionally, in the case where ϕ generates an FMRA, we have:

Vj = Dj(span
{
Tkϕ : k ∈ N0

}
) = span

{
DjTkϕ : k ∈ N0

}
, j ∈ Z.(3.1)

The conditions delineating when the scaling function ϕ generates an Riesz MRA can be derived

by adapting certain modifications from the classical MRA scenario. The construction process

of a Frame MRA has been thoroughly studied by F.A. Shah in his paper [25]. As, we have

mentioned it earlier that a Riesz basis a special kind of frame, so all the results of [25] can be

directly applied to the case of a Riesz MRA. Subsequently, we can write

(i) With the already chosen function ϕ and the definition of the subspaces Vj in (3.1), we

get that the triviality of the intersection of the subspaces Vj is a redundant property.

(ii) The subspaces Vj are nested if there exist a K-integral periodic function m0 in L∞(D)

satisfying

ϕ̂(p−1(ξ)) = m0(ξ)ϕ̂(ξ).(3.2)

The equation (3.2) is commonly referred to as the refinement equation, and any function

ϕ satisfying such an equation is termed refinable. The K-integral periodic function m0,

which appears in (3.2), is known as the two scale symbol or the refinement mask.

This function m0 and the function Φ, defined in (2.1), exhibit a notable relationship given via

(3.3) Φ(p−1(ξ)) = |m0(ξ)|2Φ(ξ) + |m0(ξ + pu(1)|2Φ(ξ + pu(1)).

However, we find it necessary to mention here that the two scale symbol m0 associated with

a Frame MRA has multiple choices, but in case of a Riesz MRA, the two scale symbol m0 is

always unique. This can be derived using (3.3) along with the fact that the function Φ is never

equal to zero whenever {Tnϕ : n ∈ N0} is a Riesz sequence.

In the previous related works, the union property of the subspaces has been proved via the

methods of [2]. In this article, we give an alternate method to prove this property. We will use

the substantiality of the prime element p to prove our claim. A similar process for the case

of locally compact Abelian groups has been adopted in [15, 23]. To proceed further, we need

to equip ourselves with some standard notations. Note that, we have written these notations

analogous to their definition in [15].

Definition 3.2. Let K be a local field of positive characteristic having prime element p.
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(i) Let f, g ∈ L1(K). Then their convolution is defined as

f ∗ g(x) =
∫
K

f(y)g(x− y)dy, ∀ x ∈ K.

(ii) A family F is called a zero divisor in L2(K) if there exists a non zero g ∈ L2(K) such

that

f ∗ g = 0, ∀ f ∈ F .

(iii) A function f ∈ L2(K) is called p-substantial if the family {Djf : j ∈ Z} is not a zero

divisor in L2(K).

Next, we give some important results which we will be requiring in proving the density property.

We skip their trivial proofs.

Lemma 3.1. Let K be a local field with positive characteristic having p as its prime element.

Then we have the following:

(i) The map f 7→ f̃ , where

f̃(x) = f(−x), ∀ x ∈ K

is a norm preserving conjugate linear bijection on L2(K).

(ii) For any f, g ∈ L2(K),

f ∗ g(x) = ⟨T−xf, g̃⟩, ∀ x ∈ K.

(iii) If W =
⋃
j∈Z
Vj , then W is a translation invariant subspace of L2(K). Thus, we can write

W = span{TxDjϕ : x ∈ K, j ∈ Z}.

Proof. Let B : L2(K) → L2(K) denote the map f 7→ f̃ , where f̃(x) = f(−x) for all x ∈ K.

The bijectivity of this map is trivial exercise to prove and hence we skip it here. To see the

conjugate linearity, observe that for any constants a ∈ C and f, g ∈ L2(K), we have

B(af + g)(x) = (af + g)(−x) = af(−x) + g(−x) = af(−x) + g(−x), x ∈ K

This implies that

B(af + g)(x) = a B(f)(x) +B(g)(x), ∀ x ∈ K.

This shows that the map B is conjugate linear. Further, also note that

||Bf ||2 =
∫
K

∣∣∣f̃(x)∣∣∣2 dx =

∫
K

∣∣∣f(−x)∣∣∣2 dx.
Using the fact that |f(x)| = |f(x)| for all x ∈ K along with the variable transformation

x 7→ −x, we obtain

||Bf ||2 =
∫
K

|f(x)|2 dx = ||f ||2.
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This proves (i). To see the proof of (ii), note that

f ∗ g(x) =
∫
K

f(y)g(x− y)dy, ∀ x ∈ K.

A variable transform x− y 7→ −t yields

f ∗ g(x) =
∫
K

f(t+ x)g(−t)dt =
∫
K

(T−xf)(t)g̃(t)dt = ⟨T−xf, g̃⟩ , ∀ x ∈ K.

This proves (ii). We will prove (iii) in three steps.

Step 1: Here, we will show that the subspace
⋃
j∈Z
Vj is translation invariant under translations

from the set L = {pju(n) : j ∈ Z}. First note that, for any j ∈ Z, we have

(DjTnϕ)(x) = (Tpj(u(n))D
jϕ)(x), ∀ x ∈ K,

and thus, we can write Vj = span
{
Tpj(u(n))D

jϕ : n ∈ N0

}
. Now, let f ∈

⋃
j∈Z
Vj and λ ∈ L.

This means that, there exists a k1 ∈ Z such that f ∈ Vk1 , and a k2 ∈ Z such that λ = pk2(u(n1))

for some n1 ∈ N0. Let k = max{k1, k2}. Since, ϕ is refinable, therefore, the subspaces Vj are

nested. This means that f ∈ Vk, and thus, for some scalar sequence {cn}n∈N0 , we have

f =
∑
n∈N0

cnTpk(u(n))D
jϕ, i.e. f(x) = q

k/2
∑
n∈N0

cnϕ(p
−kx− u(n)), ∀ x ∈ G.

Now, consider the translate Tλf of f . For any x ∈ G, we have

(Tλf)(x) = q
k/2
∑
n∈N0

cnϕ(p
−k(x− (pk(u(n) + pk2−k(u(n1)))))), ∀ x ∈ G.

Some standard manipulation along with the properties of the sets Pℓ give us

(Tλf)(x) = q
k/2
∑
n∈N0

cnϕ(p
−k(x− (pk(u(n))))), ∀ x ∈ G.

This implies that Tλf =
∑

n∈N0

cnTpk(u(n))D
kϕ, which means that Tλf ∈ Vk, and hence Tλf ∈

∪
j∈Z
Vj . This proves our claim corresponding to Step 1.

Step 2: In this step, we will show that the set W is translation invariant under translations from

K. To see this, first let x ∈ K be arbitrary. Observe that the set L, defined in Step 1, is dense

in K, therefore, there exists a net {λβ} ⊂ L such that λβ → x in K. So, if f ∈
⋃
j∈Z
Vj , then by

Step 1, Tλβ
f ∈

⋃
j∈Z
Vj for all values of β. The continuity of the translations, now allows us to

write Tλβ
f → Txf . This means that Txf ∈ W . Now, let g ∈ W be any element. Then there

exits a sequence {gℓ}ℓ∈Z ∈
⋃
j∈Z
Vj such that ||gn − g||2 → 0 as n → ∞. From here, it trivially

follows that ||Txgn − Txg||2 → 0 as n→ ∞. Since, W , being a closed set, contains all its limit

points, therefore Txg ∈ W . This completes the proof for this step.

AJMAA, Vol. 21 (2024), No. 2, Art. 17, 20 pp. AJMAA

https://ajmaa.org


DYADIC RIESZ WAVELETS ON LOCAL FIELDS 11

Step 3: In this step, we club together the observations made in previous two steps to ob-

tain the claim made in (iii) of this theorem. Observe that, for any k ∈ Z, by the defi-

nition of Vk, we have Vk ⊂ span{TxDjϕ : x ∈ K, j ∈ Z}. Now, this inclusion triv-

ially implies that W ⊆ span{TxDjϕ : x ∈ K, j ∈ Z}. To see the converse, note that

span{TxDjϕ : x ∈ K, j ∈ Z} is the smallest closed translation invariant subspace of L2(K)

containing the set {Djϕ : j ∈ Z}. Also, W is a subspace of L2(K) containing {Djϕ : j ∈ Z},

therefore, we must have span{TxDjϕ : x ∈ K, j ∈ Z} ⊆ W . This allows us to conclude that

W = span{TxDjϕ : x ∈ K, j ∈ Z}.

Finally, we are now in a position to prove the density property of the approximation subspaces

Vj . We give this property in terms of an equivalent condition of the scaling function ϕ being

p-substantial.

Theorem 3.2. Let ϕ be a refinable function in L2(K) and {Vj : j ∈ Z} be defined via (3.1).

Then the following are equivalent:

(i)
⋃
j∈Z
Vj = L2(K).

(ii) The scaling function ϕ is p-substantial.

Proof. First assume that ∪
j∈Z
Vj = L2(K). Now, suppose that, for some g ∈ L2(K), we have

Djϕ ∗ g = 0; ∀ j ∈ Z.

Recall that, we denoted g̃(x) = g(−x) for all x ∈ K. Then using Lemma 3.1, we get that

⟨T−xD
jϕ, g̃⟩ = 0, ∀ x ∈ K and ∀ j ∈ Z.

This means that g̃ is orthogonal to the set span {TxDjϕ : x ∈ K, j ∈ Z}, i.e.

g̃ ⊥ span
{
TxD

jϕ : x ∈ K, j ∈ Z
}

Now, by our assumption, and Lemma 3.1-(iii), we get that g̃ must be zero, and hence g = 0.

This implies that ϕ is p-substantial. The converse also follows once we trace back the steps. To

avoid the repetition, we skip the proof corresponding to the converse part.

We conclude the observations of this section in the following theorem, wherein, we just list all

the conditions which need to be imposed on scaling function ϕ to get a Riesz MRA for L2(K).

Theorem 3.3. A function ϕ ∈ L2(K) generates a Riesz Multiresolution Analysis (Riesz MRA)

if the following conditions are met:

(i) The subspaces {Vj : j ∈ Z} are defined as in Equation (3.1).

(ii) There exists a K-integral periodic function m0 ∈ L∞(D) such that

ϕ̂(p−1ξ) = m0(ξ)ϕ̂(ξ).(3.2)

(iii) The sequence {Tkϕ : k ∈ N0} forms a Riesz sequence.
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12 KARTIK AND R. KUMAR AND SATYAPRIYA

(iv) The function ϕ is p-substantial.

However, more often than not, scaling function is given to us in terms of its Fourier transform,

so in place of (iv) of the above theorem, we write

(iv) (alternate) |ϕ̂| > 0 on a neighbourhood U of 0 ∈ K.

3.1. Example. Consider a function ϕ ∈ L2(K) given by

ϕ(x) = χP(x), x ∈ K,

and define the subspaces Vj by (3.1). With these choice, it is quite evident that the subspaces are

Vj are translation invariant under translations from {u(n) : n ∈ N}. Moreover, these subspaces

also follow the dilation relation Vj = DjV0 amongst them. To verify that the subspaces Vj form

a Riesz MRA for L2(K), we need to verify the remaining properties. Note that

ϕ̂(ξ) =

∫
K

ϕ(x)Υξ(x)dx.

Recall that Υ is a character on K+ which is trivial on D but non trivial on P−1. Now, the above

equation changes to

ϕ̂(ξ) =

∫
P

Υξ(x)dx.

After some appropriate calculations and using definitions of ideals Pk, we obtain that

ϕ̂(ξ) = q χP−1(ξ) = 2 χP−1(ξ).

Clearly, the function ϕ̂ ̸= 0 on a neighbourhood U ⊂ P−1 of 0 ∈ K. Hence by using a result

of [25], we conclude that the subspaces Vj defined above indeed have a dense union in L2(K).

Next, we observe that

Φ(ξ) =
∑
n∈N0

∣∣∣ϕ̂(ξ + u(n))
∣∣∣2 = 4

∑
n∈N0

∣∣χP−1(ξ + u(n))
∣∣2.

We now use the representation of the quotient group P−1/D to obtain

Φ(ξ) = 4
∑
n∈N0

∣∣χD(ξ + u(n))
∣∣2 + 4

∑
n∈N0

∣∣χu(1)+D(ξ + u(n))
∣∣2.

Now, if for some n ∈ N0, ξ ∈ u(n) +D, then ξ + u(1) ∈ u(n) + u(1) +D. This observation

allows us to conclude that

4 ≤ Φ(ξ) ≤ 8, ∀ ξ ∈ K.

This means that the family {Tnϕ : n ∈ N0} is a Riesz sequence and hence a Riesz basis for

V0 (Owing to (3.1)). Moreover, this also gives us that the triviality of the intersection of the

subspaces Vj . Finally, it only remains to check for refinability of the function ϕ. To see this,

note that

ϕ̂(p−1ξ) = 2 χP−1(p−1ξ) = 2 χD(ξ), ξ ∈ K.
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If we define m0 to be the K-integral periodic extension of the function χD, then we get that the

refinement for all ξ ∈ K. This means that the function ϕ is refinable with the two scale symbol

m0.

As we have seen, the function ϕ satisfies all the conditions to generate a Riesz MRA, therefore

{Vj} defined above is a Riesz MRA for L2(K).

4. DYADIC RIESZ WAVELET BASIS FOR L2(K)

Our primary objective in this section is to construct a Riesz wavelet basis utilizing the provided

Riesz MRA. Henceforth, we will consistently assume that ϕ generates a Riesz MRA, meaning

that all the conditions outlined in Theorem 3.3 are satisfied. Additionally, we will assume that

this Riesz MRA, generated by the function ϕ, follows dyadic dilations, i.e. q = 2.

To initiate this construction process, we begin by decomposing the space L2(K) into a more

manageable structure, akin to what is done in classical MRA. Let Wj denote the orthogonal

complement of the subspace Vj in Vj+1. This yields an orthogonal decomposition of the space

L2(K), rendering it more amenable to analysis:

L2(K) =
⊕
j∈Z

Wj.

Moreover, it’s important to recognize that the construction of a Riesz wavelet basis for L2(K)

hinges on the existence of functions in L2(K) whose translated families constitute a Riesz basis

for W0. This observation arises from the fact that the spaces Wj exhibit the same dilation prop-

erty as Vj . The subsequent lemma succinctly encapsulates this insight, with its proof derivable

from results outlined in [25].

Lemma 4.1. [25] Assuming that ϕ ∈ L2(K) generates a Riesz MRA, the following statements

hold true:

(i) Wj = DjW0, for all j ∈ Z.

(ii) If the functions ψ1, ψ2, . . . , ψn ∈ W0 form a Riesz for W0, denoted by the family {Tkψi :

k ∈ N0, 1 ≤ i ≤ n}, then for every j ∈ Z, the family {DjTkψi : k ∈ N0, 1 ≤ i ≤ n}
constitutes a Riesz basis for Wj . Furthermore, the family {DjTkψi : k ∈ N0, 1 ≤ i ≤
n, j ∈ Z} forms a Riesz basis for L2(K). It’s notable that all these Riesz bases share the

same Riesz bounds.

These assertions shed light on the relationship between the multiresolution subspaces Wj and

provide a systematic approach to constructing Riesz bases forL2(K) using similar bases forW0.

Notably, Lemma 4.1 indicates that our objective is simplified to the construction of functions

ψ1, ψ2, . . . , ψn in L2(K) such that the family of translates {Tλψi : λ ∈ Λ, 1 ≤ i ≤ n} forms a

Riesz basis for W0. Consequently, it becomes crucial for us to provide a characterization of the

space W0.
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14 KARTIK AND R. KUMAR AND SATYAPRIYA

Lemma 4.2. [25] Assume that ϕ ∈ L2(K) generates a Riesz MRA of dydic dilation with two-

scale symbol m0 ∈ L∞(D). If, for any K-integral periodic function F ∈ L2(D), we define

f ∈ V1 by

(4.1) f̂
(
p−1(ξ)

)
= F (ξ)ϕ̂(ξ),

then f ∈ W0 if and only if(
Fm0Φ

)
(ξ) +

(
Fm0Φ

)
(ξ + pu(1)) = 0(4.2)

hold true for a.e. ξ ∈ K.

In previous studies on Multiresolution Analysis and Riesz Multiresolution Analysis, it has been

demonstrated that whenever the underlying MRA structure generated by dyadic dilations, pre-

cisely one function is required to construct a Riesz basis for the space W0. For an in-depth

exploration of Riesz MRA with dyadic dilations in the case of locally compact Abelian groups,

one may refer to [24, 17].

Remark 4.1. Drawing inspiration from previous research and assuming that the function ϕ

generates an Riesz MRA with dyadic dilations, our goal here is to construct a function ψ such

that the family {
Tkψ : k ∈ N0

}
(4.3)

forms a Riesz basis for W0. We break down this process into two distinct steps:

◦ Firstly, we prove the existence of a functions ψ ∈ W0 such that its translates generate

W0, i.e.,

W0 = span{Tkψ : k ∈ N0}.

Additionally, we will provide an explicit expression for this function.

◦ Subsequently, we will establish that the family consisting of translates of function ψ,

obtained in the previous step, indeed constitutes a Riesz basis for W0.

The first task can be simplified considerably. We will provide an alternative characterization for

the family
{
Tkψ : k ∈ N

}
to generate the space W0. In this alternative approach, we establish

a sufficient condition that reduces our task to merely checking the solvability of a system of

linear equations. These insights are encapsulated in the following theorem.

Theorem 4.3. Assume that ϕ ∈ L2(K) generates a Riesz MRA of dydic dilation and let for

some K-integral periodic m ∈ L∞(D), the functions ψ ∈ V1 be defined by:

ψ̂(p−1(ξ)) = m(ξ)ϕ̂(ξ).(4.4)
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If there exist K-integral periodic functions G0 and G1 ∈ L∞(D) such that the equations(
m0mΦ

)
(ξ + pu(0)) +

(
m0mΦ

)
(ξ + pu(1)) = 0,(4.5)

m0(ξ) G0(ξ) +m(ξ) G1(ξ) = 1(4.6)

m0(ξ + pu(1)) G0(ξ) +m(ξ + pu(1)) G1(ξ) = 0(4.7)

are satisfied for a.e. ξ ∈ K, then we have W0 = span
{
Tnψ : n ∈ N0

}
.

Proof. Equation (4.5) along with Lemma 4.2 implies that ψ ∈ W0. Furthermore, as W0 is a

closed and translation-invariant subspace of L2(K), we have the following implication:

(4.8) span
{
Tnψ : n ∈ N0

}
⊆ W0.

For any ξ ∈ K and for any ℓ ∈ N0, an easy manipulation of the equations (4.6) and (4.7) yields
1

2
ϕ̂(p(ξ)) Υℓ(p(ξ)) =

∑
n∈N0

g0p(u(n))+ℓ Υn(ξ)ϕ̂(ξ) +
∑
n∈N0

gp(u(n))+ℓ Υn(ξ)ψ̂(ξ);

Taking the inverse Fourier transform of the above equation and then writing it in operator form,

we obtain

(4.9) DTℓϕ =
∑
n∈N0

g0p(u(n))+ℓ T−nϕ+
∑
n∈N0

gp(u(n))+ℓ T−nψ.

Since ψ ∈ W0 and since ϕ ∈ V0 generates a Riesz MRA, therefore we get∑
n∈N0

gp(u(n))+ℓ T−nψ ∈ W0 and
∑
n∈N0

g0p(u(n))+ℓ T−nϕ ∈ V0.

Now let f ∈ W0 and let ϵ > 0 be arbitrary. Since
{
DTnϕ

}
n∈N0

is a frame for V1, therefore

there exists a finite set Nϵ ⊂ N0 and a finite sequence {bℓ}ℓ∈Nϵ such that∣∣∣∣∣
∣∣∣∣∣∑
ℓ∈Nϵ

bℓDTℓϕ− f

∣∣∣∣∣
∣∣∣∣∣
2

< ϵ.

A substitution from (4.9) now gives us∣∣∣∣∣
∣∣∣∣∣∑
ℓ∈Nϵ

bℓ

(∑
n∈N0

g0p(u(n))+ℓ T−nϕ+
∑
n∈N0

gp(u(n))+ℓ T−nψ

)
− f

∣∣∣∣∣
∣∣∣∣∣
2

< ϵ.

Now we use orthogonality of the two terms appearing on the right hand side of equation (4.9),

to get ∣∣∣∣∣
∣∣∣∣∣∑
ℓ∈Nϵ

bℓ
∑
n∈N0

gp(u(n))+ℓT−nψ − f

∣∣∣∣∣
∣∣∣∣∣
2

< ϵ;

and from this, we conclude that f ∈ span
{
Tnψ : n ∈ N0

}
. We now have the reverse inclusion

in the expression (4.8) and thus we can write

W0 = span
{
Tnψ : n ∈ N0

}
.

This completes the proof.
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16 KARTIK AND R. KUMAR AND SATYAPRIYA

Using the suficient condition given in the above lemma, we now proceed to prove our first aim,

i.e. we find a function ψ generating the space W0.

Theorem 4.4. Let K be a local field and let ϕ ∈ L2(K) generates an Riesz MRA of dydic

dilation. Then there always exist a function ψ ∈ W0 such that

W0 = span{Tnψ : n ∈ N0}.

Proof. Utilizing Lemma 4.3, it suffices to demonstrate that equations (4.5), (4.6), and (4.7) are

satisfied almost everywhere on K. It’s noteworthy that each term appearing in these equations

is K-integral periodic, thereby reducing the requirement to establish their satisfaction almost

everywhere on D.

To streamline our computations further, we partition the set D into two disjoint parts as follows:

D1 = {ξ ∈ D : 0 ̸= |m0(ξ)| ≥ |m0 ((ξ + pu(1)))|}

D2 = {ξ ∈ D : 0 ̸= |m0 ((ξ + pu(1)))| ≥ |m0(ξ)|}

Observe that, if ξ ∈ Di, then ξ + pu(1) ∈ Dj , where 1 ≤ i ̸= j ≤ 2.

Equation (4.5) now gives us

m(ξ) = −
(
m0mΦ

)
(ξ + pu(1))(

m0Φ
)
(ξ)

.

From the equation above, we can make as choices as we want for the function m. To keep

things simpler, we make the choice

m(ω) =

−
(
m0Φ
)
(ξ+pu(1))(

m0Φ
)
(ξ)

, ω ∈ D1

1, ω ∈ D2

(4.10)

Corresponding to the above choice, we also observe that |m(ω)| ≤ BA−1 for all ξ ∈ D. Hence,

m ∈ L∞(D). We further observe that when we substitute this value of m in the equations

(4.6) and (4.7), we get a kind of a system of linear equations in the variables G0 and G1. The

functions G0 and G1 can now be chosen as

G0(ω) =


m0(ξ)Φ(ξ)
Φ(p−1ξ)

, ω ∈ D1

m0(ξ)Φ(ξ)
Φ(p−1ξ)

, ω ∈ D2

and G1(ω) =

−m0(ξ+pu(1))m0(ξ)Φ(ξ)
Φ(p−1ξ)

, ω ∈ D1(
|H0|2Φ

)
(ξ+pu(1))|

Φ(p−1ξ)
, ω ∈ D2

Moreover, the functions G0 and G1 satisfy ||Gi|| ≤ ||m0||∞BA−1 where 1 ≤ i, j ≤ 2. This

implies that our task corresponding to finding functions satisfying (4.5)-(4.7) is complete. Thus

for the above constructed function ψ, we conclude by Lemma 4.3 that W0 = span{Tnψ : n ∈
N0}.

AJMAA, Vol. 21 (2024), No. 2, Art. 17, 20 pp. AJMAA

https://ajmaa.org


DYADIC RIESZ WAVELETS ON LOCAL FIELDS 17

In the proof of the above theorem, we mentioned that there are as many choices of m possible

as we want. To justify our claim, we give another independent choice for the function m in the

remark below:

Remark 4.2. If ∆(ξ) denotes the determinant

∆(ξ) =

∣∣∣∣∣ m0(ξ) m(ξ)

m0(ξ + pu(1)) m(ξ + pu(1))

∣∣∣∣∣ ,
then the functions m, G0 and G1 satisfying (4.5)-(4.7) can also be chosen as

m(ξ) = (m0Φ)(ξ + pu(1)) χu(1)(ξ)

G0(ξ) =
Φ(ξ)(mΦ)(ξ + pu(1))

∆(ξ)

G1(ξ) = −Φ(ξ)(m0Φ)(ξ + pu(1))

∆(ξ)

This can be verified using suitable manipulations. We skip its proof here.

This completes our quest of a function ψ which generate the space W0. We now show that the

family of the type {Tnψ : n ∈ N0}, constructed using the function obtained in above theorem,

is indeed a Riesz basis for W0.

Theorem 4.5. Assume that ϕ ∈ L2(K) generates a Riesz MRA of dyadic dilations and two

scale symbol m0 ∈ L∞(D). Further assume that the functions ψ is defined by (4.4) and the

function m is assumed to be as it appears in equation (4.10). Then the family

{DjTnψ : n ∈ N0}

generates a Riesz basis for the space L2(K).

Proof. Analogous to the function Φ as defined in (2.1), we define the function Ψ by

Ψ(ξ) =
∑
n∈N0

∣∣∣ψ̂(ξ + u(n))
∣∣∣2 .

It is easy to see that

Ψ(p−1ξ) = |m(ξ)|2Φ(ξ) + |F (ξ + pu(1))|2Φ(ξ + pu(1)).

We now make use of Lemma 2.3 to show that the family {Tnψ}n∈N0 is a Riesz basis for W0, i.e.

we wish to find constants C,D > 0 such that

C ≤ Ψ(ξ) ≤ D, ∀ ξ ∈ D.

But as it is more convenient for us to deal with the expression Ψ(p−1ξ), so we need to ensure

that the bounds C,D > 0 which exist are such that

C ≤ Ψ(p−1ξ) ≤ D, ∀ ξ ∈ pD.
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Analogous to the previous theorem, we divide the set pD into two disjoint parts:

pD1 = {ξ ∈ pD : 0 ̸= |m0(ξ)| ≥ |m0(ξ + pu(1)|}

pD2 = {ξ ∈ pD : 0 ̸= |m0(ξ + pu(1))| ≥ |m0(ξ)|} .

Clearly, pD1 ⊂ D1 and pD2 ⊂ D2.

We nove move forward to finding suitable bounds for the function Ψ. First if we let ξ ∈ pD1,

then

Ψ(p−1ξ) =
|m0(ξ + pu(1))|2Φ(ξ + pu(1))2

|m0(ξ)|2Φ(ξ)
+ Φ(ξ).

It is then easy to see that

A ≤ Ψ(p−1ξ) ≤ B

A
(A+B).

The above inequality also holds when ξ ∈ pD2. Thus, by virtue of Lemma 2.3, we can conclude

that the family {Tnψ : n ∈ N0} generates a Riesz basis for W0, and, further by Lemma 4.1, the

family {DjTnψ : n ∈ N0} generates a Riesz basis for L2(K).

5. CONCLUSION

This paper provides a comprehensive review of the theory behind constructing Riesz wavelet

bases in the space L2(K), where K represents a local field with positive characteristics. A sig-

nificant contribution of this work is the novel characterization of the scaling function within the

Riesz multiresolution analysis (Riesz MRA) for such fields. Additionally, the paper introduces

innovative approaches for constructing wavelet frames in L2(K), with particular attention to

the property of density of the union, which is addressed in a completely new manner. By con-

centrating on dyadic dilations, the research successfully extends wavelet and MRA theory to

the distinct properties of local fields, thus broadening its application beyond conventional Eu-

clidean spaces. The paper also presents a detailed exposition of a novel method for constructing

dyadic Riesz wavelet bases, further enriching the theoretical framework.

We emphasize that this paper deals majorly with the construction of Dyadic Riesz wavelet bases

on local fields of positive characteristics, and to the best of our knowledge, the work done in

this paper is a new work.
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