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ABSTRACT. In this paper, we prove a result on the value distribution of difference polynomials
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1. I NTRODUCTION AND PRELIMINARIES

In this Literature Survey, letf be non-constant meromorphic in the complex plane, we as-
sumed that the reader is familiar with the notations of Nevanlinna theory [6]. Letf(z) andg(z)
be two non-constant meromorphic functions anda(z) be a small function with respect tof(z)
andg(z). Let us say thatf(z) andg(z) sharea(z) CM (counting multiplicities) iff(z)− a(z)
andg(z)− a(z) have the same zeros with the same multiplicities andf(z), g(z) sharea(z) IM
(ignoring multiplicities) if we do not consider the multiplicities. Here we adopt the standard
notations of value distribution theory (see [6]). For a non-constant meromorphic functionf ,
we denote byT (r, f) the Nevanlinna characteristic off and byS(r, f) any quantity satisfying
S(r, f) = O(T (r, f)) asr → ∞, possibly outside a set of finite linear measure, denote by
T (r) the maximum ofT (r, f) andT (r, g). The notationS(r) denotes any quantity satisfying
S(r) = O(T (r)) asr →∞, outside of a possible exceptional set of finite logarithmic measure

σ(f) = lim sup
r−→∞

log T (r, f)

log r

In this we say that a finite valuez0 is called a fixed point off if f (z0) = z0 or z0 is a zero of
f(z)− z. For the sake of simplicity we also use the notation

m∗ :=

{
0, if m = 0

m, if m ∈ N

Let f(z) be a transcendental meromorphic function,n be a positive integer. During the last
few decades many authors investigated the value distribution offnf ′. Specially in 1959, W.K.
Hayman (see [5]) proved the following Theorem.
We now explain following definitions and notations which are used in the paper.

Definition 1.1. [9] Let k be a positive integer or infinity. We denote byNk(r, a; f) the counting
function ofa-points off , where ana-point of multiplicity m is countedm times ifm ≤ k and
k times ifm > k. Then

Nk(r, a; f) = N̄(r, a; f) + N̄(r, a; f |≥ 2) + . . . + N̄(r, a; f |≥ k).

ClearlyN1(r, a; f) = N̄(r, a; f).

Definition 1.2. [8][9] Let k be a non-negative integer or infinity. Fora ∈ C ∪ {∞}, we denote
by Ek(a; f) the set of alla-points off where ana-point of multiplicity m is countedm times
if m ≤ k andk + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say thatf, g share the valuea
with weightk.
The definition implies that iff, g share a valuea with weightk, thenz0 is ana point of f with
multiplicity m(≤ k) if and only if it is ana-point of g with multiplicity m(≤ k) andz0 is an a-
point off with multiplicity m(> k) if and only if it is an a-point ofg with multiplicity n(> k),
wherem is not necessarily equal ton.
We writef, g share(a, k) to mean thatf, g share the valuea with weightk. Clearly iff, g share
(a, k) thenf, g share(a, p) for any integerp, 0 ≤ p < k. Also we note thatf, g share a valuea
IM or CM if and only if f, g share(a, 0) or (a,∞) respectively.

Theorem 1.1. [5] Letf(z) be a transcendental meromorphic function andn(≥ 3) is an integer.
Thenfnf ′ = 1 has infinitely many solutions.
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The casen = 2 was settled by Mues[14] in 1979. Bergweiler and Eremenko[1] showed that
ff ′ − 1 has infinitely many zeros.
For an analog of the above results Laine and Yang investigated the value distribution of differ-
ence products of entire functions in the following manner.

Theorem 1.2. [10] Letf(z) be a transcendental entire function of finite order, andc be a non-
zero complex constant. Then, forn ≥ 2, fn(z)f(z + c) assumes every non-zero valuea ∈ C
infinitely often.
Afterwards, Liu and Yang[13] improved Theorem 1.2 and obtained the next result.

Theorem 1.3. [13] Letf(z) be a transcendental entire function of finite order, andc be a non-
zero complex constant. Then, forn ≥ 2, fn(z)f(z + c)− p(z) has infinitely many zeros, where
p(z) is a non-zero polynomial.

Next we recall the uniqueness result corresponding to Theorem 1.1, obtained by Yang and
Hua [17] which may be considered a gateway to a new research in the direction of sharing
values of differential polynomials.

Theorem 1.4. [13] Let f(z) and g(z) be two non-constant entire functions,n ∈ N such that
n ≥ 6. If fnf ′ andgng′ share1CM, then eitherf(z) = c1e

cz, g(z) = c2e
−cz, wherec1, c2, c ∈ C

satisfying4 (c1c2)
n+1 c2 = −1, or f ≡ tg for a constantt such thattn+1 = 1.

In 2001, Fang and Hong[4] studied the uniqueness of differential polynomials of the form
fn(f − 1)f ′ and proved the following uniqueness result.

Theorem 1.5. [4] Let f(z) andg(z) be two transcendental entire functions, and letn ≥ 11 be
a positive integer. Iffn(f − 1)f ′ andgn(g − 1)g′ share the value1CM, thenf = g.

In 2004, Lin and Yi[12] extended the above result in view of the fixed point and they proved
the following.

Theorem 1.6. [12] Let f(z) andg(z) be two transcendental entire functions, and letn ≥ 7 be
a positive integer. Iffn(f − 1)f ′ andgn(g − 1)g′ sharezCM, thenf = g.

In 2010, Zhang[19] got a analogue result in difference.

Theorem 1.7. [19] Letf(z) andg(z) be two transcendental entire functions of finite order and
α(z) be a small function with respect to bothf(z) andg(z). Suppose thatc is a nonzero complex
constant andn ≥ 7 is an integer.Iff(z)n(f(z)− 1)f(z + c) andg(z)n(g(z)− 1)g(z + c) share
α(z) CM, thenf(z) ≡ g(z).

In 2010, Qi, Yang and Liu[15] obtained the difference counterpart of Theorem 1.4 by proving
the following theorem.

Theorem 1.8. [15] Letf(z) andg(z) be two transcendental entire functions of finite order, and
c be a nonzero complex constant; letn ≥ 6 be an integer. Iffnf(z + c) andgng(z + c) sharez
CM, thenf ≡ t1g for a constantt1 that satisfiestn+1

1 = 1.

Theorem 1.9. [15] Letf(z) andg(z) be two transcendental entire functions of finite order, and
c be a nonzero complex constant; letn ≥ 6 be an integer. Iffnf(z + c) andgng(z + c) share
1CM, thenfg ≡ t2 or f ≡ t3g for some constantst2 andt3 that satisfytn+1

3 = 1.

X.M. Li et. al. [11] [Theorem 1.9] replaced the fixed point sharing in the above two theorems
to sharing a polynomial withdeg < n+1

2
.

So we see that there are many generalization in terms of difference operator. The purpose of
this paper is to study the uniqueness problem for more general difference polynomials namely
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fnP (f)f(z + c) andgnP (g)g(z + c) sharing a non-zero polynomial so that improved version
of all the above results can be unified under a single result. We also relax the nature of sharing
with the notion of weighted sharing introduced in [8]-[9].
Keeping the above question in mind, in 2020, A.Banerjee and S.Majumder [20] proved the
following results.

Theorem 1.10. [20] Let f(z) and g(z) be two transcendental entire functions of finite order,
c be a non-zero complex constant and letp(z) be a nonzero polynomial withdeg(p) ≤ n − 1,
n(≥ 1), m∗(≥ 0) be two integers such thatn > m∗ + 5. Let P (ω) = amωm+ am−1ω

m−1 +
. . . + a1ω + a0 be a nonzero polynomial. IffnP (f)f(z + c)− p andgnP (g)g(z + c)− p share
(0, 2), then
(I) whenP (ω) = amωm + am−1ω

m−1 + . . . + a1ω + a0 is a nonzero polynomial, one of the
following three cases holds:
(I1) f(z) ≡ tg(z) for a constantt such thattd = 1, whered = GCD(n + m, . . . , n+
m− i, . . . , n), am−i 6= 0 for somei = 1, 2, . . . ,m,
(I2) f and g satisfy the algebraic equationR(f, g) ≡ 0, whereR (ω1, ω2) = ωn

1 (amωm
1 +

am−1ω
m−1
1 + . . . + a0

)
− ωn

2

(
amωm

2 + am−1ω
m−1
2 + . . . + a0

)
,

(I3) P (ω) reduces to a nonzero monomial, namelyP (ω) = aiω
i 6≡ 0, for i ∈ {0, 1, . . . ,m},

if p(z) is a nonzero constantb, thenf(z) = eα(z), g = eβ(z), whereα(z), β(z) are two non-
constant polynomials such thatα + β ≡ d ∈ C anda2

i e
(n+i+1)d = b2;

(II) whenP (ω) = ωm − 1, thenf ≡ tg for some constantt such thattm = 1;
(III) whenP (ω) = (ω − 1)m(m ≥ 2), one of the following two cases holds:
(III1) f(z) ≡ g(z),
(III2) f and g satisfy the algebraic equationR(f, g) ≡ 0, whereR (ω1, ω2) = ωn

1 (ω1−
1)mω1(z + c)− ωn

2 (ω2 − 1)m ω2(z + c);
(IV) whenP (ω) ≡ c0, one of the following two cases holds:
(IV1) f ≡ tg for some constantt such thattn+1 = 1,
(IV2) f(z) = eα(z), g = eβ(z), whereα(z), β(z) are two non-constant polynomials such that
α + β ≡ d ∈ C andc2

0e
(n+1)d = b2.

Question: Could we further reduce Theorem 1.10 under relax sharing hypothesis?
In this direction, We prove the following main result

2. M AIN RESULTS

Theorem 2.1. Let f(z) and g(z) be two transcendental entire functions of finite order,c be
a non-zero complex constant and letp(z) be a nonzero polynomial withdeg(p) ≤ n − 1,
n(≥ 1), m∗(≥ 0) be two integers such thatn > m∗ + 5. Let P (ω) = amωm+ am−1ω

m−1 +
. . . + a1ω + a0 be a nonzero polynomial. IffnP (f)f(z + c)− p andgnP (g)g(z + c)− p share
(0, l), then
(i) l ≥ 2, m = 0, andn ≥ 2m + 6
(ii) l ≥ 2, m = ∞, andn ≥ m + 5
(iii) l = 1, m = 0, andn ≥ 5m + 17
(iv) l = 0, m = 0, andn ≥ 7m + 23
(v)f(z) ≡ tg(z) for a constantt such thattn+1 = 1,

3. SOME L EMMAS

In this section, we present some lemmas which will be needed in the result. LetF andG
be two non-constant meromorphic functions defined inC. We also denote byH, the following
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function

(3.1) H =

(
F ′′

F ′ −
2F ′

F − 1

)
−

(
G′′

G′ −
2G′

G− 1

)
Lemma 3.1. [16] Letf(z) be a non-constant meromorphic function andan(z)(6≡ 0),an−1(z),
· · · , a0(z) be meromorphic functions such thatT (r, ai(z)) = S(r, f) for i = 0, 1, 2, . . . , n.
Then

T
(
r, anf

n + an−1f
n−1 + . . . + a1f + a0

)
= nT (r, f) + S(r, f).

Lemma 3.2. [2] Let f(z) be a meromorphic function of finite orderσ, and letc be a fixed
nonzero complex constant. Then for eachε > 0, we have

m

(
r,

f(z + c)

f(z)

)
+ m

(
r,

f(z)

f(z + c)

)
= O

(
rσ−1+ε

)
.

Lemma 3.3. [2] Letf(z) be a meromorphic function of finite orderσ, c 6= 0 be fixed. Then for
eachε > 0, we have

T (r, f(z + c)) = T (r, f) + O
(
rσ−1+ε

)
+ O(log r).

Lemma 3.4. [4] Let f(z) be an entire function of finite orderσ, c be a fixed nonzero complex
constant and letn ∈ N andP (ω) be defined as in Theorem 1.1 Then for eachε > 0, we have

T (r, fnP (f)f(z + c)) = T
(
r, fn+1P (f)

)
+ O

(
rσ−1+ε

)
Proof. By Lemma 3.2 we have

T (r, fnP (f)f(z + c)) = m (r, fnP (f)f(z + c))

≤ m (r, fnP (f)f(z + c)) + m

(
r,

f(z + c)

f(z)

)
≤ m

(
r, fn+1P (f)

)
+ O

(
rσ−1+ε

)
= T

(
r, fn+1P (f)

)
+ O

(
rσ−1+ε

)
.

Also we have

T
(
r, fn+1P (f)

)
= m (r, fnP (f)f(z + c))

≤ m (r, fnP (f)f(z + c)) + m

(
r,

f(z)

f(z + c)

)
≤ m (r, fnP (f)f(z + c)) + O

(
rσ−1+ε

)
≤ T (r, fnP (f)f(z + c)) + O

(
rσ−1+ε

)
.

ThereforeT (r, fnP (f)f(z + c)) = T (r, fn+1P (f)) + O (rσ−1+ε).

Note. Under the condition of Lemma 3.4, by Lemma 3.1 we haveS (r, fnP (f)f(z+ c)) =
S(r, f).

Lemma 3.5. [3] Let f(z) be a non-constant meromorphic function of finite order andc ∈ C.
Then
N(r, 0; f(z + c)) ≤ N(r, 0; f(z)) + S(r, f), N(r,∞; f(z + c)) ≤ N(r,∞; f) + S(r, f),
N̄(r, 0; f(z + c)) ≤ N̄(r, 0; f(z)) + S(r, f), N̄(r,∞; f(z + c)) ≤ N̄(r,∞; f) + S(r, f)

Lemma 3.6. Letf(z) be a transcendental entire function of finite orderσ, c be a fixed nonzero
complex constant,n(≥ 1), m∗(≥ 0) be two integers and leta(z)(6≡ 0,∞) be a small function
of f . If n > 1, thenfnP (f)f(z + c)− a(z) has infinitely many zeros.
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Proof. Let Φ = fnP (f)f(z + c). Now in view of Lemma 3.5 and the second theorem for small
functions (see [18]) we get

T (r, Φ) ≤ N̄(r, 0; Φ) + N̄(r,∞; Φ) + N̄(r, a(z); Φ) + (ε + o(1))T (r, f)

≤ N̄ (r, 0; fnP (f)) + N̄(r, 0; f(z + c)) + N̄(r, a(z); Φ) + (ε + o(1))T (r, f)

≤ 2N̄(r, 0; f) + N̄(r, 0; P (f)) + N̄(r, a(z); Φ) + (ε + o(1))T (r, f)

≤ (2 + m∗) T (r, f) + N̄(r, a(z); Φ) + (ε + o(1))T (r, f),

for all ε > 0.
From Lemmas 3.1 and 3.4 we get

(n + m∗ + 1) T (r, f) ≤ (2 + m∗) T (r, f) + N̄(r, a(z); Φ) + (ε + o(1))T (r, f).

Takeε < 1. Sincen > 1 from above one can easily say thatΦ − a(z) has infinitely many
zeros.

This completes the lemma.

Lemma 3.7. [9] Letf(z) andg(z) be two non-constant meromorphic functions sharing(1, 2).
Then one of the following holds: (i)T (r, f) ≤ N2(r, 0; f) + N2(r, 0; g) + N2(r,∞; f) +
N2(r,∞; g) + S(r, f) + S(r, g), (ii) fg ≡ 1, (iii) f ≡ g.

Lemma 3.8. [Hadamard Factorization Theorem ] Letf(z) be an entire function of finite order
ρ with zerosa1, a2, . . ., each zeros is counted as often as its multiplicity. Thenf can be expressed
in the form

f(z) = Q(z)eα(z),

whereα(z) is a polynomial of degree not exceeding[ρ] and Q(z) is the canonical product
formed with the zeros off .

Lemma 3.9.Letf(z) andg(z) be two transcendental entire functions of finite order,c ∈C\{0}
and p(z) be a nonzero polynomial such thatdeg(p) ≤ n − 1, wheren ∈ N. Let P (ω) be a
nonzero polynomial defined as in Theorem 1.1 Suppose

fnP (f)f(z + c)gnP (g)g(z + c) ≡ p2.

ThenP (ω) reduces to a nonzero monomial, namelyP (ω) = aiω
i 6≡ 0, for i ∈ {0, 1, . . . ,m}.

If p(z) = b ∈ C\{0}, thenf(z) = eα(z), g = eβ(z), whereα(z), β(z) are two non-constant
polynomials such thatα + β ≡ d ∈ C anda2

i e
(n+i+1)d = b2.

Proof. Suppose

(3.2) fnP (f)f(z + c)gnP (g)g(z + c) ≡ p2.

We consider the following cases:
Case 1:Let deg(p(z)) = l(≥ 1).
From the assumption thatf andg are two transcendental entire functions, we deduce by 3.2

thatN (r, 0; fnP (f)) = O(log r) andN (r, 0; gnP (g)) = O(log r). First we suppose thatP (ω)
is not a nonzero monomial. For the sake of simplicity letP (ω) = ω − a wherea ∈ C\{0}.
ClearlyΘ(0; f)+Θ(a; f) = 2, which is impossible for an entire function. ThusP (ω) reduces to
a nonzero monomial, namelyP (ω) = aiω

i 6≡ 0 for somei ∈ {0, 1, . . . ,m} and so 3.2 reduces
to

(3.3) a2
i f

n+if(z + c)gn+ig(z + c) ≡ p2.

From 3.3 it follows thatN(r, 0; f) = O(log r) andN(r, 0; g) = O(log r). Now by Lemma 3.8
we obtain thatf = h1e

α1 andf = h2e
β1, whereh1, h2 are two nonzero polynomials andα1 and

β1 are two non-constant polynomials.
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By virtue of the polynomialp(z), from 3.3 we arrive at a contradiction.
Case 2:Let p(z) = b ∈ C\{0}.
Then from 3.2 we have

(3.4) fnP (f)f(z + c)gnP (f)g(z + c) ≡ b2.

Now from the assumption thatf andg are two non-constant entire functions, we deduce by
3.4 thatfnP (f) 6= 0 andgnP (g) 6= 0. By Picard’s theorem, we claim thatP (ω) = aiω

i 6≡ 0
for i ∈ {0, 1, . . . ,m}, otherwise the Picard’s exception values are atleast three, which is a
contradiction. Then 3.4 reduces to

(3.5) a2
i f

n+if(z + c)gn+ig(z + c) ≡ b2.

Hence by Lemma 3.8 we obtain that

(3.6) f = eα, g = eβ,

whereα(z), β(z) are two non-constant polynomials.
Now from 3.5 and 3.6 we obtain

(n + i)(α(z) + β(z)) + α(z + c) + β(z + c) ≡ d1,

whered1 ∈ C, i.e.,

(3.7) (n + i) (α′(z) + β′(z)) + α′(z + c) + β′(z + c) ≡ 0.

Let γ(z) = α′(z) + β′(z). Then from 3.7 we have

(3.8) (n + i)γ(z) + γ(z + c) ≡ 0.

We assert thatγ(z) ≡ 0. It not supposeγ(z) 6≡ 0. Note that ifγ(z) ≡ d2 ∈ C, from 3.8 we must
haved2 = 0. Suppose thatdeg(γ) ≥ 1. Let γ(z) =

∑m
i=1 biz

i, wherebm 6= 0. Therefore the
co-efficient ofzm in (n+i)γ(z)+γ(z+c) is (n+1+i)bm 6= 0. Thus we arrive at a contradiction
from 3.8. Henceγ(z) ≡ 0, i.e.,α + β ≡ d ∈ C. Also from 3.5 we havea2

i e
(n+i+1)d = b2.

This completes the proof.

Lemma 3.10.Letf andg be two transcendental entire functions of finite order,c ∈ C\{0} and
p(z) be a nonzero polynomial such thatdeg(p) ≤ n− 1, wheren ∈ N. LetP (ω) be defined as
in Theorem 1.1 with at least two ofai, i = 0, 1, · · ·m are nonzero. Then

fnP (f)f(z + c)gnP (g)g(z + c) 6≡ p2.

Proof. Proof of the lemma follows from Lemma 3.9

Lemma 3.11.[6] Letf, g be two non-constant meromorphic functions such that they share (1,1)
andH 6≡ 0. Then

N(r, 1; F | = 1) = N(r, 1; G| = 1) ≤ N(r, H) + S(r, F ) + S(r, G)

Lemma 3.12. Let f be a transcendental meromorphic function of finite order and letF =
fnP (f)f(z + c), wheren is positive integer. Then

(n− 2)T (r, f) ≤ T (r, F ) + S(r, f)
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Proof. from Lemmas 3.1 and 3.2 and first fundamental theorem, we obtain

(n + 1)T (r, f) ≤ T (r, fn+1) + S(r, f)

≤ T (r,
fF

P (f)f(z + c)
) + S(r, f)

≤ T (r, F ) + T (r,
f

P (f)f(z + c)
) + S(r, f)

≤ T (r, F ) + m(r,
P (f)f(z + c)

f
) + N(r,

P (f)f(z + c)

f
) + S(r, f)

≤ T (r, F ) + 3T (r, f) + S(r, f)

(n− 2)T (r, f) ≤ T (r, F ) + S(r, f)

This completes the lemma.

4. PROOF OF M AIN RESULTS

Proof. Let F = fnP (f)f(z + c) andG = gnP (g)g(z + c).
Case 1:SupposeH 6≡ 0
Keeping in view of Lemma 3.1, we get by applying Second Fundamental theorem of Nevan-
linna ofF andG that

(n + m + 1)[T (r, f) + T (r, g)] ≤ N(r, 0; F ) + N(r, 1; F ) + N(r,∞; F ) + N(r, 0; G)

+ N(r, 1; G) + N(r,∞; G)−N(r, 0; F ′)−N(r, 0; G′)

+ S(r, f) + S(r, g).

(4.1)

(i) l ≥ 2 and m = 0, then using Lemmas 3.1, 3.3, 3.11 and 4.1 we obtain

(n + m + 1)[T (r, f) + T (r, g)] ≤ N2(r, 0; F ) + N(r,∞; F ) + N2(r, 0; G)

+ N(r,∞; G)−N(r, 0; F ′)−N(r, 0; G′)

+ S(r, f) + S(r, g),

now by applying Lemma 3.7

(n + m + 1)[T (r, f) + T (r, g)] ≤ N2(r, 0; F ) + N(r,∞; F ) + N2(r, 0; G) + N(r,∞; G)

−N∗(r,∞; F, G)− (l − 3

2
)N∗(r, 1; F, G) + S(r, f) + S(r, g)

(n + m + 1)[T (r, f) + T (r, g)] ≤ (3 + m + 3 + 2m)T (r, f) + T (r, g) + S(r, f) + S(r, g)

This implies that
(n− 2m− 5)[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g),
which contradict to the fact thatn ≥ 2m + 6.
(ii) l ≥ 2 and m = ∞, then using Lemmas 3.1,3.3,3.11 and 4.1 we obtain

(n + m + 1)[T (r, f) + T (r, g)] ≤ N2(r, 0; F ) + N(r,∞; F ) + N2(r, 0; G)

+ N(r,∞; G)−N(r, 0; F ′)−N(r, 0; G′)

+ S(r, f) + S(r, g),
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now by applying Lemma 3.7

(n + m + 1)[T (r, f) + T (r, g)] ≤ N2(r, 0; F ) + N(r,∞; F ) + N2(r, 0; G) + N(r,∞; G)

−N∗(r,∞; F, G)− (l − 3

2
)N∗(r, 1; F, G) + S(r, f) + S(r, g)

(n + m + 1)[T (r, f) + T (r, g)] ≤ (3 + m + 2 + m)T (r, f) + T (r, g) + S(r, f) + S(r, g).

This implies that
(n−m− 4)[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g),
which contradict to the fact thatn ≥ m + 5.
(iii) l = 1 and m = 0, then using Lemmas 3.1,3.3,3.11 and 4.1 we obtain

(n + m + 1)[T (r, f) + T (r, g)] ≤ N2(r, 0; F ) + N(r,∞; F ) + N2(r, 0; G)

+ N(r,∞; G)−N(r, 0; F ′)−N(r, 0; G′)

+ S(r, f) + S(r, g),

now by applying Lemma 3.7

(n + m + 1)[T (r, f) + T (r, g)] ≤ N2(r, 0; F ) + N(r,∞; F ) + N2(r, 0; G) + N(r,∞; G)

−N∗(r,∞; F, G)− (l − 3

2
)N∗(r, 1; F, G) + S(r, f) + S(r, g)

(n + m + 1)[T (r, f) + T (r, g)] ≤ (6m + 17)T (r, f) + T (r, g) + S(r, f) + S(r, g).

This implies that
(n− 5m− 16)[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g),
which contradict to the fact thatn ≥ 5m + 17.
(iv) l = 0 and m = 0, then using Lemmas 3.1, 3.3, 3.11 and 4.1 we obtain

(n + m + 1)[T (r, f) + T (r, g)] ≤ N2(r, 0; F ) + N(r,∞; F ) + N2(r, 0; G)

+ N(r,∞; G)−N(r, 0; F ′)−N(r, 0; G′)

+ S(r, f) + S(r, g),

now by applying Lemma 3.7

(n + m + 1)[T (r, f) + T (r, g)] ≤ N2(r, 0; F ) + N(r,∞; F ) + N2(r, 0; G) + N(r,∞; G)

−N∗(r,∞; F, G)− (l − 3

2
)N∗(r, 1; F, G) + S(r, f) + S(r, g)

(n + m + 1)[T (r, f) + T (r, g)] ≤ (8m + 23)T (r, f) + T (r, g) + S(r, f) + S(r, g).

This implies that
(n− 7m− 22)[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g),
which contradict to the fact thatn ≥ 7m + 23.
Case 2:SupposeH ≡ 0 by integration 3.1 we get

(4.2)
1

F − 1
=

BG + A−B

G− 1
,

where A, B are constants and A6= 0 from 4.2 it is clear thatF andG share(1,∞). We now
consider following cases.
(i) Let B 6= 0 and A 6= B. If B = −1 then from 4.2 we have,

F =
−A

G− A− 1
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Therefore
N(r, A + 1; G) = N(r, 0; p) = S(r, g),

by using Lemma 3.12 and Nevanlinna second fundamental theorem we get

(n− 2)T (r, g) ≤ T (r, gnP (g)g(z + c)) + S(r, g)

≤ T (r, G) + S(r, g)

≤ N(r,∞; G) + N(r, 0; G) + N(r, A + 1; G) + S(r, g)

≤ N(r,∞; gnP (g)g(z + c)) + N(r, 0; gnP (g)g(z + c)) + S(r, g) + S(r, g)

≤ (5 + 2m)T (r, g) + S(r, g),

which is a contradiction sincen ≥ 7 + 2m.
If B 6= −1 from 4.2

F − (1 +
1

B
) =

−A

B2(G + A−B
B

)
,

so,

N(r,
B − A

B
; G) = S(r, g),

by Lemma 3.12 and the same argument as used in the case whenB = −1, we can get a contra-
diction.
(ii) Let B 6= 0 and A = B . If B = −1 then from 4.2 we have,

F (z)G(z) ≡ 1,

i.e, fnP (f)f(z + c)gnP (g)g(z + c) ≡ p2(z),

wherefnP (f)f(z + c)− p andgnP (g)g(z + c)− p share 0 CM.
If B 6= −1 from 4.2

1

F
=

BG

(1 + B)(G− 1)
,

so,

N(r,
B − A

B
; G) = S(r, g)

therefore

N(r,
1

1 + B
; G) = N(r, 0; F ) = S(r, g),

so Lemma 3.12 and second fundamental theorem we get

(n− 2)T (r, g) ≤ T (r, gnP (g)g(z + c)) + S(r, g)

≤ T (r, G) + S(r, g)

≤ N(r,∞; G) + N(r, 0; G) + N(r,
1

1 + B
; G) + S(r, g)

≤ N(r,∞; gnP (g)g(z + c)) + N(r, 0; gnP (g)g(z + c))

+ N(r, 0; fnP (f)f(z + c)) + S(r, g) + S(r, g)

≤ (7 + 3m)T (r, f) + T (r, g) + S(r, g) + S(r, f),

which is a contradiction sincen ≥ 9 + 3m.
(iii) If B = 0 from 4.2

(4.3) F =
G− 1

A
+ 1.
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If A 6= 1 then from 4.3 we obtain

N(r, 1− A; G) = N(r, 0; F ).

We can similarly deduce a contradiction as in case 2.
thereforeA = 1 and from 4.3 we obtain

F (z) ≡ G(z),

i.e,

(4.4) fnP (f)f(z + c) ≡ gnP (g)g(z + c).

Let h = f
g

and then substitutingf = gh in 4.4

gnhnP (f)f(z + c) = gnP (g)g(z + c)hn+1 =
fP (g)g(z + c)

gP (f)f(z + c)
,

If h is not a constant, then we have

(n + 1)T (r, h) ≤ T (r,
f

P (f)f(z + c)
) + T (r,

P (g)g(z + c)

g
) + S(r, f) + S(r, g)

≤ T (r,
P (f)f(z + c)

g
) + T (r,

P (g)g(z + c)

g
) + S(r, f) + S(r, g)

≤ N(r,
P (f)f(z + c)

g
) + N(r,

P (g)g(z + c)

g
) + S(r, f) + S(r, g)

≤ (7 + 3m)[T (r, f) + T (r, g)] + S(r, f) + S(r, g).

Combining above inequality with

T (r, h) = T (r,
f

g
) = T (r, f) + T (r, g) + S(r, f) + S(r, g).

We obtain
(n− 6− 3m)[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g),

(n− 6− 3m)[T (r, f) + T (r, g)] which is impossible.
thereforeh is a constant, then substitutef = gh in 4.4 we haveh(n+1) ≡ 1.
thereforef = tg wheret is a constant,t(n+1) ≡ 1.
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