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ABSTRACT. Based on a regularized Volterra equation, two different approaches for numeri-
cal differentiation are considered. The first approach consists of solving a regularized Volterra
equation while the second approach is based on solving a disretized version of the regularized
Volterra equation. Numerical experiments show that these methods are efficient and compete fa-
vorably with the variational regularization method for stable calculating the derivatives of noisy
functions.
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1. I NTRODUCTION

Calculating the derivatives of noisy functions is of prime importance in many applications.
The problem consists of calculating stably the derivative of a smooth functionf given its noisy
datafδ, ‖fδ − f‖ ≤ δ. This is an ill-posed problem: a small error inf may lead to a large error
in f ′. Many methods have been introduced in the literature. A review is given in [7]. Divided
differences method withh = h(δ) has been first proposed in [4], see also [5, 6, 7]. Necessary
and sufficient conditions for the existence of a method for stable differentiation of noisy data
are given in [8, chapter 15], see also [9]. In our paper a method for stable differentiation based
on solving the regularized Volterra equation

(1.1) Au(x) + fδ(0) :=

∫ x

0

u(s)ds + fδ(0) = fδ(x),

is proposed (see also [10, 1, 9]). One often applies the Variational Regularization (VR) method

(1.2) ‖Au− fδ‖2 + α‖u‖2 → min

for stable differentiation.
In this paper (and in [1]) an approach, based on the fact that the quadratic form of the operator

A is nonnegative in real Hilbert spaceL2(0, a), a = const > 0, is used.

2. M ETHODS

Consider two different approaches to solving equation (1.1). The first approach consists of
solving directly regularized equation (1.1). The second approach is based on the Dynamical
Systems method (DSM) and an iterative scheme from [3].

2.1. First method. In [1], the derivatives of a noisy functionfδ are obtained by solving the
equation

(2.1) αuα,δ + Auα,δ = fδ.

If α = α(δ) > 0 is continuous on[0, δ0), δ0 > 0 and

(2.2) lim
δ→0

α(δ) = 0, lim
δ→0

δ

α(δ)
= 0,

then the following result holds (see [1]):

Theorem 2.1.Assume(2.2). Then

lim
δ→0
‖uδ − u‖ = 0,

whereuδ solves(2.1)with α = α(δ).

The solution of (2.1) is:

(2.3) uδ(x) = − 1

α2
exp(−x

α
)

∫ x

0

exp(
s

α
)fδ(s)ds +

fδ(x)

α
.

This formula and ana priori choiceα(δ) = δk/c, wherek ∈ (0, 1), c is a constant, yield a
scheme for stable differentiation. Whenα(δ) is known, the problem is reduced to calculating
integral (2.3). There are many methods for calculating accurately and fast integral (2.3) (see e.g.
[2]). However, there is no known algorithm for choosingk, c which are optimal in some sense.
The advantage of our approach is that the CPU time for the method is very small compared with
the VR and DSM, see Section 3.1. Moreover, one can calculate the solution analytically when
the functionfδ is simple by using tables of integrals or MAPLE.
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2.2. An iterative scheme of DSM for solving discretizations of the regularized Volterra
equation. Another approach to stable differentiation is to use the DSM (see [8]). The DSM
yields a stable solution of the equation:

(2.4) F (u) = Au− f = 0, u ∈ H,

whereH is a Hilbert space andA is a linear operator inH which is not necessarily bounded but
closed and densely defined. The DSM to solve (2.4) is of the form:

(2.5) u′ = −u + (T + a(s))−1A∗f, u(0) = u0,

whereT := A∗A anda(t) > 0 is a nonincreasing function such thata(t) → 0 ast → ∞. The
unique solution to (2.5) is given by

(2.6) u(t) = u0e
−t + e−t

∫ t

0

es(T + a(s))−1A∗fds.

An iterative scheme for computingu(t) in (2.6) is proposed in [3]:

un+1 = e−hnun + (1− e−hn)
(
T + an

)−1
A∗fδ, hn = tn+1 − tn.

With a0 satisfying

(2.7) δ < ‖Aua0 − fδ‖ < 2δ,

one choosesan andhn as follows:

an =
a0

1 + tn
, hn = qn,

where1 ≤ q ≤ 2, t0 = 0. To increase the speed of computing we recommend choosingq = 2.
At each iteration one checks if

(2.8) 0.9δ ≤ ‖Aun − fδ‖ ≤ 1.001δ.

This is a stopping criterion of discrepancy principle type (see [3]). Iftn is the first time such that
(2.8) is satisfied, then one stops and takesun as the solution to (2.4). The choice ofa0 satisfying
(2.7) is done by iterations as follows:

(1) As an initial guess fora0 one takesa0 = 1
3
‖A‖2δrel, whereδrel = δ

‖f‖ .

(2) If ‖Aua0−fδ‖
δ

= c > 3, then one takesa1 := a0

2(c−1)
as the next guess and checks if

condition (2.8) is satisfied. If2 < c ≤ 3 then one takesa1 := a0/3.
(3) If ‖Aua0−fδ‖

δ
= c < 1, thena1 := 3a0 is used as the next guess.

(4) After a0 is updated, one checks if (2.8) is satisfied. If (2.8) is not satisfied, one repeats
steps 2 and 3 until one findsa0 satisfying condition (2.8).

Algorithms for choosinga0 and computingun are detailed in algorithms 1 and 2 in [3].

3. NUMERICAL EXPERIMENTS

Numerical experiments are carried out in MATLAB in double-precision arithmetic. In all
experiments, byu(t), u[1](t), uDSM(t) anduVR(t) we denote the exact derivative, the derivatives
computed by the first, the DSM and the VR methods, respectively. In this section byn we
denote the number of points used to discretize the interval[0, 1].
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3.1. Computing the first derivatives of a noisy function. Let us compute the derivatives
of the functionf(t) = sin(πt) contaminated by the noise functione(t) = δ cos(10πt). The
derivative off(t) is f ′(t) = π cos(πt). To solve this problem we use three methods: the first
method, based on computing integral (2.3), the VR method, and the DSM method, based on a
discretized version of (1.1). Numerical results for this problem are presented in Figure 1. In our
experiments, since the results obtained by the DSM and the VR are nearly the same, we present
only the results for the DSM in Figure 1 and 2 in order to make these figures simple.

In this experiment the trapezoidal quadrature rule is applied to integral equation (1.1) and is
used for computing integral (2.3). One may use higher order intepolation methods to compute
integral (2.3). However, it does not necessarily bring improvements in accuracy. This is so
because using a high order intepolation method for inaccurate data may even lead to worse
results. This is the case when the noise level is large.

The approximate derivative formula (2.3) fort close to 0 does not use much information
aboutfδ. Thus, we only use (2.3) for computingf ′(t) for t ∈ [1

2
, 1]. For t ∈ [0, 1

2
), we take

gδ(t) := fδ(1−t) and use formula (2.3) forgδ(t) with t ∈ (1
2
, 1]. That is, we have a discontinuity

at t = 1
2

of the solution, obtained by the first method in Figure 1 and 2. The same idea is applied
in discretizing equation (1.2) in the implementation of the DSM and VR.

In the DSM and VR we also use the trapezoidal quadrature rule to discretize equation (1.1).
Since the right-hand sidefδ contains noise, using high order collocation methods does not nec-
essarily improve the accuracy. Experiments have shown that the use of higher order collocation
methods leads to linear algebraic systems with larger condition numbers and yields numerical
solutions with lower accuracy.

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4
δ = 0.02

t
0 0.2 0.4 0.6 0.8 1

−4

−2

0

2

4
δ = 0.002

t

u
u

[1]
u

DSM

u
u

[1]
u

DSM

Figure 1: Numerical results forfδ(x) = sin(πt) + δ cos(10πt). Discretization pointsn = 100.

The CPU times for the VR and DSM are about 0.0125 sec. The CPU time for the first
method is much smaller: 0.0015 sec. Here, we should bear in mind that the DSM and the
VR use iterations to look for "good" regularization parameterα while the code based on the
first method does nothing to look forα but usesα as an input value. If one also uses the
regularization parameter as an input in the VR and DSM, although these methods still take
more time than the first method the difference in computation time is not so large.

The error of the first method forδ = 0.02 is larger than those of the VR and the DSM, but
whenδ = 0.002 then the first method gives smaller errors. From Figure 1 and 2, one can see
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Figure 2: Numerical results forfδ(x) = sin(2πt− 1
2π) + δ cos(10πt). Discretization pointsn = 100.

that the solutions obtained by the DSM are better than those obtained by the first method for
all t ∈ [0, 1] except for thet which are close to the boundary of the interval. Indeed, it can be
showed analytically that the solutionu to equation (1.2) satisfiesu(0) = u(1) = 0. However,
the derivative off in Figure 1 satifiesf ′(0) = π andf ′(1) = −π. If the computed derivatives
at the points close to the boundary are discarded, then in both cases the DSM and the VR are
more accurate than the first method.

Figure 2 presents the numerical experiment forf(t) = sin(2πt − 1
2
π) contaminated by the

same noise functione(t) = δ cos(10πt). For this problem, since the function to be differentiated
f satisfiesf ′(0) = f ′(1) = 0 both the DSM and the VR give more accurate results than the first
method.

From Figure 1 and 2 one can see that forδ = 0.02 the computed derivatives are very close to
the exact derivative at all points except for those close to the boundary in Figure 1.

3.2. Computing the second derivatives of a noisy function.Let us give numerical results
for computing the second derivatives of noisy functions. The problem is reduced to an integral
equation of the first kind. A linear algebraic system is obtained by a discretization of the integral
equation whose kernelK is Green’s function

K(s, t) =

{
s(t− 1), if s < t
t(s− 1), if s ≥ t

.

Heres, t ∈ [0, 1] and as the right-hand sidef and the corresponding solutionu one chooses one
of the following (see [3]):

case 1, f(s) =
s3 − s

6
, u(s) = s, 0 ≤ s ≤ 1,

case 2, f(s) =
sin(2πs)

4π2
+ s− 1, u(s) = sin(2πs), 0 ≤ s ≤ 1.

Collocation method is used for discretization. This discretization can be improved by other
methods but we do not go into detail. We usen = 10, 20, ..., 100, andbn,δ = bn + en, whereen

is a vector containing random entries, normally distributed with mean 0, variance 1, and scaled
so that‖en‖ = δrel‖bn‖. This linear algebraic system is mildly ill-posed: the condition number
of A100 is 1.2158× 104.
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Case 1 Case 2
DSM VR DSM VR

n Nlinsol
‖uδ−y‖2
‖y‖2 Nlinsol

‖uδ−y‖2
‖y‖2 n Nlinsol

‖uδ−y‖2
‖y‖2 Nlinsol

‖uδ−y‖2
‖y‖2

20 3 0.3319 5 0.3440 20 4 0.0773 4 0.0780
40 4 0.3206 6 0.3253 40 3 0.0484 6 0.0520
60 4 0.3264 6 0.3312 60 4 0.0355 6 0.0438
80 4 0.3019 7 0.3014 80 3 0.0407 5 0.0479
100 5 0.2956 7 0.2948 100 4 0.0254 6 0.0379

Table 3.1: Results for case 1 and 2 withδrel = 0.01, n = 20, 40, ..., 100.

Table 3.1 shows that numerical results obtained by the DSM are more accurate than those
by the VR. Figure 3 plots the numerical solutions for these cases. The computation time of the
DSM in these cases is about the same as or less than that of the VR. From Table 3.1 one can see
that both the DSM and the VR perform better in case 2 than in case 1. Note that the regularized
equation to solve for second derivatives in this case is of the same form as equation (1.2). As
we discussed earlier, it is because in case 2 we havef ′(0) = f ′(1) = 0.

We conclude that in this experiment the DSM competes favorably with the VR.
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Figure 3: Plots of solutions obtained by DSM, VR whenn = 100, δrel = 0.02.

Looking at Figure 3 case 1, one can see that the computed values att = 0 andt = 1 are
zeros. Again, the regularized scheme forces the computed derivativeu to satisfy the relations
u(1) = u(0) = 0. If one wants to compute the derivative of a noisy function on an interval
by the proposed method, one should collect data on a larger interval and use this method to
calculate the derivative at the points which are not close to the boundary.

4. CONCLUDING REMARKS

In this paper two approaches to stable differentiation of noisy functions are discussed. The
advantage of the first approach is that it contains neither matrix inversion nor solving of linear
algebraic systems. Its computation time is very small. The drawback of the method is that
there is no knowna posteriori choice ofα(δ). The second approach is an implementation

AJMAA, Vol. 5, No. 1, Art. 5, pp. 1-7, 2008 AJMAA

http://ajmaa.org


ON STABLE NUMERICAL DIFFERENTIATION 7

of the DSM. It competes favorably with the VR in both computation time and accuracy. The
DSM competes favorably with the VR in solving linear ill-conditioned algebraic systems.A
posteriori choice ofα, an efficient way to compute integral (2.3) for the first method, and an
efficient discretization of the Volterra equation (1.1) with the implementation of the DSM are
planned for future research.
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