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1. INTRODUCTION

The fractional calculus takes up a very wide area in applied mathematical fields to study
several problems from many fields of sciences such as mathematical physics and biophysics
problems [1]. Often the use of the half-order to derivatives and integrals are treated to solve cer-
tain electro-chemical problems which is more accurate and useful than the classical approach
[16].
Fractional integral and fractional differential equations have been studied in the past few years
frequently [4, 5, 6, 8, 12]. Several methods are used to obtain the approximate solutions of
such equations. Many types of fractional derivative have been defined and several papers
have been devoted recently to study fractional derivatives and their applications in the Ca-
puto sense fractional derivative, see [13, 15]. The study of fractional integro-differential equa-
tions of Fredholm-Volterra type is investigated in a very wide range and several mathemati-
cians studied their approximate solutions using several types of methods and polynomials, see
[3, 7, 13, 17, 2, 20]. The Bernstein polynomials [10] is one of the methods for finding the
approximate solution of fractional equation, see [15, 17, 19].

In this paper, we analyze the numerical solutions of a class of fractional integro-differential
equations involving the Caputo fractional derivative of order n− 1 < α ≤ n and of Fredholm-
Volterra type. We begin with the definition and main properties of the Caputo fractional deriv-
ative. For more details we refer to [18, 6].

2. PRELEMINARIES

In this section, we recall some necessary definitions and properties of the Caputo fractional
derivative. Moreover, some properties of Bernstein polynomials are given.

Definition 2.1. [18] The fractional derivative of the function y(x) of order α > 0 in Caputo
sense is defined as:

c
aD

α
xy(x) =

{
1

Γ(n−α)

∫ x
a

y(n)(t)
(x−t)α+1+ndt : n− 1 < α < n, n ∈ N,

dn

dxn
y(x) : α = n ∈ N.

It is clear that the Caputo derivative, caD
α
xy(x) = 0 whenever y(x) is constant.

If y(x) = (x − a)j , then the Caputo derivative of y(x) is given by the following relation see
[18]:

c
aD

α
x (x− a)j =


0 for j ∈ N ∪ {0} and j < dαe,

Γ(j+1)
Γ(j+1−α)

(x− a)j−α for j ∈ N and j ≥ dαe
or j /∈ N and j > bαc.

We use the ceiling function dαe to denote the smallest integer greater than or equal to α and
the floor function bαc to denote the largest integer less than or equal to α. it is also known that
Caputo fractional differentiation is a linear operation, that is for any two constants a1, a2 and
any two functions y1, y2, we have [18]
c
aD

α
x (a1y1 + a2y2) = a1(caD

α
x (y1)) + a2(caD

α
x (y2)).

Definition 2.2. [10]
The n+ 1 Bernstein polynomials Bi,n(x) of degree n when x ∈ [a, b] are defined as:

(2.1) Bi,n(x) =

(
n
i

)
(x− a)i(b− x)n−i

(b− a)n
, i = 0, 1, 2, ..., n.
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As a special case when [a, b] = [0, 1], then it is written as: Bi,n(x) =
(
n
i

)
xi(1 − x)n−i, i =

0, 1, 2, ..., n.
From the fact that (b− x)n−i = [(b− a)− (x− a)](n− i) and using the binomial expansion,

the expression in Equation 2.1 can be transformed to

(2.2) Bi,n(x) =
n∑
j=i

(−1)j−i

(b− a)j

(
n

i

)(
n− i
j − i

)
(x− a)j

We can write it in the form

(2.3) Bi,n(x) =
n∑
j=i

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
(x− a)j

Also, we can write

(2.4) B′i,n(x) =
n∑
j=i

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
j(x− a)j−1

and

(2.5)
∫ b

a

Bi,n(x)dx =
b− a
n+ 1

From Definition 2.1 and Equation 2.3, we obtain the following lemma.

Lemma 2.1. If 0 < α ∈ R \ N, then the α-fractional derivative of the nth degree Bernstein
polynomials in the Caputo sense is given by

(2.6) c
aD

α
xBi,n(x) =

n∑
j=i

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
c
aD

α
x (x− a)j

Since c
aD

α
x (x− a)j = 0 for each j < α, so we get

(2.7) c
aD

α
xBi,n(x) =

n∑
j=dαe

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
Γ(j + 1)

Γ(j + 1− α)
(x− a)j−α

Lemma 2.2. If Bi,n(x) is the nth degree Bernstein polynomial on the closed bounded interval
[a, b], a ≤ b, then

(2.8)
∫ x

a

(t− a)kBi,n(t)dt =
n∑
j=i

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
(x− a)j+k+1

j + k + 1

Proof. From the fact that ∫ x

a

(t− a)k+jdt =
(x− a)k+j+1

k + j + 1
.

The result follows from Equation 2.3.

Lemma 2.3. If Bi,n(x) is the nth degree Bernstein polynomial on the closed bounded interval
[a, b], a ≤ b, then

(2.9)
∫ x

a

(t)kBi,n(t)dt =
k∑
r=0

(
k

r

)
ak−r

n∑
j=i

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
(x− a)j+r+1

j + r + 1

AJMAA, Vol. 18 (2021), No. 2, Art. 11, 16 pp. AJMAA

https://ajmaa.org


4 A. B. KHALAF AND A. H. SALLO AND S. S. AHMED

Proof. We can write

(t)k = [(t− a) + a]k =
k∑
r=0

(
k

r

)
ak−r(t− a)r

Applying Lemma 2.2, we get the result.

The following result is a direct consequence of Lemma 2.3.

Lemma 2.4. If Bi,n(x) is the nth degree Bernstein polynomial on the closed bounded interval
[a, b], a ≤ b, then

(2.10)
∫ b

a

(t)kBi,n(t)dt =
k∑
r=0

(
k

r

)
ak−r(b− a)r+1

n∑
j=i

(−1)j−i

j + r + 1

(
n

j

)(
j

i

)
Moreover, if k = 0, then

(2.11)
∫ b

a

Bi,n(t)dt = (b− a)
n∑
j=i

(−1)j−i

j + 1

(
n

j

)(
j

i

)
From Equation 2.5 and Equation 2.11, we obtain that

n∑
j=i

(−1)j−i
(
n+ 1

j + 1

)(
j

i

)
= 1

From Lemma 2.1 and Lemma 2.3, we have the following result:

Lemma 2.5. If Bi,n(x) is the nth degree Bernstein polynomial on the closed bounded interval
[a, b], a ≤ b and n− 1 ≤ α ≤ n, then

(2.12)
∫ x

a

(t− a)k caD
α
t Bi,n(t)dt =

n∑
j=dαe

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
Γ(j + 1)

Γ(j + 1− α)
× (x− a)j+k−α+1

j + k − α + 1

As a special case,
(2.13)∫ x

a

tk caD
α
t Bi,n(t)dt =

k∑
r=0

(
k

r

)
ak−r

n∑
j=dαe

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
Γ(j + 1)

Γ(j + 1− α)
× (x− a)j+r−α+1

j + r − α + 1

If k = 0, then

(2.14)
∫ x

a

c
aD

α
t Bi,n(t)dt =

n∑
j=dαe

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
Γ(j + 1)

Γ(j + 2− α)
(x− a)j−α+1

Also, we have

(2.15)
∫ b

a

c
aD

α
t Bi,n(t)dt =

n∑
j=dαe

(−1)j−i

(b− a)α−1

(
n

j

)(
j

i

)
Γ(j + 1)

Γ(j + 2− α)

Lemma 2.6. If m ≤ n, then
(1) The mth-derivative of y(x) at x = a is

(2.16) y(m)(a) =
m∑
i=0

ci
(−1)m−im!

(b− a)m

(
n

m

)(
m

i

)
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(2) The mth-derivative of y(x) at x = b is

(2.17) y(m)(b) =
n∑

i=n−m

ci
(−1)2m+i−nm!

(b− a)m

(
n

m

)(
m

n− i

)
Proof. From Equation 3.3 and Equation 2.3, we have

y(m)(x) =
n∑
i=0

ciB
(m)
i,n (x) =

n∑
i=0

ci

n∑
j=i

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
m!

(
j

m

)
(x− a)j−m

If we calculate the derivative at x = a, then all the terms are zero except j = m. Hence, we get

(2.18) y(m)(a) =
m∑
i=0

ci
(−1)m−im!

(b− a)m

(
n

m

)(
m

i

)
To prove (2), From the fact that x−a = (b−a)−(b−x) and from the definition ofBi,n(x) the

nth-degree polynomial which is defined in the closed interval [a, b] and for each i = 0, 1, 2, ..., n,
we have

(2.19) Bi,n(x) =

(
n
i

)
(x− a)i(b− x)n−i

(b− a)n
=

(
n
i

)
[(b− a)− (b− x)]i(b− x)n−i

(b− a)n

Hence,

(2.20) Bi,n(x) =

(
n
i

)
(b− a)n

i∑
k=0

(−1)k
(
i

k

)
(b− a)i−k(b− x)n+k−i

Therefore, the mth-derivative of y(x) is given by

(2.21)

y(m)(x) =
n∑
i=0

ciB
(m)
i,n (x)

=
n∑
i=0

ci

(
n
i

)
(b− a)n

i∑
k=0

(−1)k
(
i

k

)
(b− a)i−k(−1)mm!

(
n+ k − i

m

)
(b− x)n+k−i−m

If we calculate the mth-derivative at x = b, then all the terms will be zero except n+ k− i = m
that is k = m+ i− n. Hence, after simplifying we get the result.

3. SOLUTION APPROXIMATION

In this section, we are concerned with the numerical solution of the following linear Fredholm-
Volterra integro-fractional differential equation:

q1∑
k=1

gk(x) c
aD

(α
k

)
x y(x) + g0(x)y(x) = f(x) + µ0

∫ x

a

K0(x, t) y(t)dt

+

q2∑
m=1

µm

∫ b

a

Km(x, t) c
aD

β
m
t y(t)dt(3.1)

Where c
aD

σ
xy(x), σ = α

k
and β

m
, indicates the σth Caputo fractional derivative of y(x), gk(x),

k = 1, 2, ...q1, f(x) and Km(x, t) for all m = 0, 1, ..., q2 are given continuous functions, x, t
are real variables lies in the closed interval [a, b. q1, q2 ≥ 1, p − 1 < α ≤ p, p, q1, q2 ∈ N,
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β ≤ α and y(x) is the unknown function to be determind.
Subject to the conditions:

(3.2)
p∑
j=1

(aijy
(j−1)(a) + bijy

(j−1)(b)) = di, i = 1, 2, ..., p.

The solution of Equation 3.1 and 3.2 is the function y(x)
∑∞

i=0 ciBi,n(x) which can be approx-
imated in terms of nth-degree truncated series of Bernstein polynomial

(3.3) yn(x) =
n∑
i=0

ciBi,n(x)

From the boundary conditions 3.2 and Lemma 2.6, we get m equations and we shall ob-
tain the other (n − m) equations by substituting the approximate solution y(x) u yn(x) =∑n

i=0 ciBi,n(x) in Equation 3.1 to get

n∑
i=0

ci

{ q∑
k=1

gk(x) c
aD

(α
k

)
x Bi,n(x) + g0(x)Bi,n(x)− µ0

∫ x

a

K0(x, t) Bi,n(t)dt

−
q∑

m=1

µm

∫ b

a

Km(x, t) c
aD

β
m
t Bi,n(t)dt

}
= f(x).(3.4)

By choosing n−m points xr such that xr = a+ (b−a)r
n

for 0 ≤ r ≤ n and together with the
equations obtained from the boundary condition, we shall get an (n + 1) × (n + 1) matrix A
such that A × CT = B where C = [c0 c1 . . . cn] and the known matrix BT = [b0 b1 . . . bn].
Hence CT = A−1 × B. Substituting the c′is in Equation 3.3 we get the approximate solution of
Equation 3.1.

4. ERROR ANALYSIS AND EXAMPLES

In this section, we discuss the error bound to Equation 3.1 and give an approximate solution
of some examples for distinct n− 1 < α ≤ n and β ≤ α and compare it with the exact solution
of the equation. Let y(x) and yn(x) =

∑n
i=0Bi.n(x) be the exact and approximate solutions for

Equation 3.1 respectively. Let δn(x) = y(x)− yn(x) be the error function. Suppose that
q1∑
k=1

gk(x) c
aD

(α
k

)
x yn(x) + g0(x)yn(x)− µ0

∫ x

a

K0(x, t) yn(t)dt

−
q2∑
m=1

µm

∫ b

a

Km(x, t) c
aD

β
m
t yn(t)dt = f(x) + ζ(x)

Hence, using Equation 3.1, we get
q1∑
k=1

gk(x) c
aD

(α
k

)
x δn(x) + g0(x)δn(x)− µ0

∫ x

a

K0(x, t) δn(t)dt

−
q2∑
m=1

µm

∫ b

a

Km(x, t) c
aD

β
m
t δn(t)dt = −ζ(x)

Suppose that gk(x) and Km(x, t) are all bounded continuous functions in [a, b]. Let

Gk = supa≤x≤b|gk(x)| k = 0, 1, 2, ..., q1
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and
Mm = supa≤x,t≤b|Km(x, t)| m = 1, 2, ..., q2

Then we obtain an error bound

|ζ(x)| ≤
q1∑
k=1

Gk |caD
(α
k

)
x δn(x)|+ (G0 + (b− a)|µ0|M0||δn||+

q2∑
m=1

|µm|(b− a)Mm |caD
β
m
t δn(t)|

Here ||δn|| = Supx∈[a,b]|δn(x)|. On the other hand if y ∈ Cp[a, b], it is shown that

|caDα
xδn(x)| ≤ ε

bp−α

Γ(p− α + 1)

Where ε is a small positive number (see Theorem 6, [11]). Hence we obtain that
(4.1)

|ζ(x)| ≤
q1∑
k=1

Gk ε
bp−

α
k

Γ(p− α
k

+ 1)
+(G0+(b−a)|µ0|M0||δn||+

q2∑
m=1

|µm|(b−a)Mm ε
bp−

β
m

Γ(p− β
m

+ 1)

Therefore, Equation 4.1 presents the error bound for the solution of the Equation 3.1.
Now We consider some examples to illustrate their numerical solutions by using the proposed
method.

Example 4.1. Consider the Fredholm-Volterra integro-fractional differential equation

(4.2) c
0D

α
xy(x) +

x2ex

3
y(x) = f(x) + ex

∫ x

0

t c
0D

β1
t y(t)dt+

∫ 1

0

x2 c
0D

β2
t y(t)dt

Where f(x) = x1−α

Γ(2−α)
− 1

2
x2, 0 < α, β1, β2 ≤ 1 and 0 ≤ t, x ≤ 1. Subject to the condition

2y(0) + 3y(1) = 3

By using Bernstein polynomials of degree n, we approximate the solution as follows:

(4.3) y(x) u yn(x) =
n∑
i=0

ciBi,n(x), n ∈ Z+

From Equation 4.3, and the above condition, we obtain that

(4.4) 2c0 + 3cn = 3

Substituting for y(x) of Equation 4.3 in Equation 4.2, we get

c
0D

α
x

n∑
i=0

ciBi,n(x) +
x2ex

3

n∑
i=0

ciBi,n(x) = f(x)

+ex
∫ x

0

t2 c
0D

β1
t

n∑
i=0

ciBi,n(t)dt+
π

2

∫ 1

0

x2
√
t c

0D
β2
t

n∑
i=0

ciBi,n(t)dt(4.5)

Hence,
n∑
i=0

ci

{
c
0D

α
xBi,n(x) +

x2ex

3
Bi,n(x)− ex

∫ x

0

t2 c
0D

β1
t Bi,n(t)dt

−π
2

∫ 1

0

x2
√
t c

0D
β2
t ciBi,n(t)dt

}
= f(x)(4.6)
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Applying Equation 2.7, we get
n∑
i=0

ci

{ n∑
j=dαe

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
Γ(j + 1)

Γ(j + 1− α)
(x)j−α +

x2ex

3

n∑
j=i

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
(x)j

−ex
∫ x

0

t2
n∑

j=dβ1e

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
Γ(j + 1)

Γ(j + 1− β1)
(t)j−β1dt

−π
2

∫ 1

0

x2
√
t

n∑
j=dβ2e

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
Γ(j + 1)

Γ(j + 1− β2)
(t)j−β2dt

}
= f(x)(4.7)

Simplifying Equation 4.7, we get

n∑
i=0

ci

{ n∑
j=dαe

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
Γ(j + 1)

Γ(j + 1− α)
(x)j−α +

x2ex

3

n∑
j=i

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
(x)j

−ex
n∑

j=dβ1e

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
Γ(j + 1)

Γ(j + 1− β1)
× xj+3−β1

j + 3− β1

−π
2
x2

n∑
j=dβ2e

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
Γ(j + 1)

Γ(j + 1− β2)
× 1

j + 1.5− β2

}
= f(x)(4.8)

As a particular case, if we take n = 4, α = 1
2

and β1 = 1, β2 = 0.5 and select some 0 < xr < 1
for r = 1, 2, 3, 4, and considering the coefficients of c0, cn in Equation 4.4 as one of the rows of
the matrix we get a (5× 5) matrix A such that

AC = B
and hence,

C = A−1B
where C = [c0 c1 c2 c3 c4] and after solving we get

C = [1.55(10)−15 0.25 0.5 0.75 1].

The approximate solution of Equation 4.2 is

y(x) ≈ 1.55(10)−15(1− x)4 + x(1− x)3 + 3x2(1− x)2 + 3x3(1− x) + x4

The following table describes the relation between the exact (yExact) and approximate (yApprox)
solutions for some selected values of x when n = 4, α = 0.5, β1 = 1 and β2 = 0.5. Further-
more we compare the absolute error (AE) with the results found in [9] and [14].

Table 4.1: Exact, approximate solution and absolute error when α = 0.5, β1 = 1 and β2 = 0.5

x yExact yApprox AE n = 4 AE in [9] n = 4 AE in [14]n = 20
0 0 0 0 8E-11 9.6658E-7

0.2 0.2 0.2 0 7.2352E-11 9.2302E-7
0.4 0.4 0.4 0 4.5952E-11 7.3108E-7
0.6 0.6 0.6 0 1.2128E-11 3.5394E-7
0.8 0.8 0.8 0 7.8080E-12 1.9065E-7
1 1 0.999999999999999 1E-15 1.0E-10 8.8091E-7
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Table 4.2, describes the approximate solution of Equation 4.2 for n = 5 and some selected
values of α, β1 and β2.
y1, y2, y3, y4 and y5 represent the approximate solution when n = 5, (α = 0.5, β1 = 0, β2 = 0),
(α = 1, β1 = 0, β2 = 0), (α = 0.5, β1 = 0.1, β2 = 0.2), (α = 0.7, β1 = 0.1, β2 = 0.2) and
(α = 0.9, β1 = 0.1, β2 = 0.2) respectively.

Table 4.2: Approximate solution for (n = 5)

x y1 y2 y3 y4 y5

0 0.109268718 0.065627276 0.142674366 0.103663692 0.075878607
0.1 0.208933787 0.165746353 0.242249881 0.203531742 0.175910887
0.2 0.306926515 0.265223878 0.339792232 0.302258349 0.275235533
0.3 0.401989571 0.36369204 0.433805753 0.398890971 0.373314158
0.4 0.492753169 0.460378295 0.522679347 0.49217462 0.469236735
0.5 0.578016758 0.554293587 0.6049312 0.580780949 0.561910913
0.6 0.657030709 0.644420564 0.679453485 0.663537345 0.650251329
0.7 0.729777998 0.729901805 0.745757074 0.739656013 0.733368921
0.8 0.797255897 0.81022804 0.804216246 0.808963067 0.810760244
0.9 0.861757655 0.885426368 0.856313399 0.872127621 0.882496782
1 0.927154188 0.956248482 0.904883756 0.930890872 0.949414262

The following graphs represent the graph of yi for i = 1, 2, 3, 4, 5.

Figure 1: Graphs of approximate solutions for Equation 4.2
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Example 4.2. Consider the Fredholm-Volterra integro-fractional differential equation
(4.9)
c
0D

α
xy(x)+x c

0D
α
2
x y(x)−3y(x) = f(x)+4

∫ x

0

x y(t)dt+

∫ 5

0

t c
0D

β
t y(t)dt−4

∫ 5

0

c
0D

β
2
t y(t)dt

AJMAA, Vol. 18 (2021), No. 2, Art. 11, 16 pp. AJMAA

https://ajmaa.org


10 A. B. KHALAF AND A. H. SALLO AND S. S. AHMED

Where f(x) = (x)0.2

Γ(1.2)
(5x−8)+ (x)2.1

Γ(2.1)
(20

7
x−8)−x5+ 7

3
x3+16x2+3− 735

176
× (5)2.2

Γ(1.2)
− 61040

4557
× (5)2.1

Γ(2.1)
,

1 < α, β ≤ 2 and 0 ≤ t, x ≤ 5. Subject to the conditions

25y(0) + y(5) + 10y′(0)− y′(5) = −36

4y(0) + 0.2y(5) + 8y′(0)− 0.2y′(5) = 6.2

When α = β = 1.8, then the exact solution for Equation 4.9 is y(x) = x3 − 4x2 − 1.
The approximate solution of Equation 4.9 is y(x) u yn(x) =

∑n
i=0 ciBi,n(x). To find the ci‘s

we substitute and simplify for yn(x) in Equation 4.9 and get the following equation:
n∑
i=0

ci

{ n∑
j=dαe

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
Γ(j + 1)

Γ(j + 1− α)
(x− a)j−α

+x
n∑

j=dα
2
e

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
Γ(j + 1)

Γ(j + 1− α
2
)
(x− a)j−

α
2

−3
n∑
j=i

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
(x− a)j − 4x

n∑
j=i

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
(x− a)j+1

j + 1

−
n∑

j=dβe

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
Γ(j + 1)

Γ(j + 1− β)
× (b)j+2−β

j + 2− β

+4x
n∑

j=dβ
2
e

(−1)j−i

(b− a)j

(
n

j

)(
j

i

)
Γ(j + 1)

Γ(j + 1− β
2
)
× (b)j+1−β

2

j + 1− β
2

}
= f(x)(4.10)

After solving for the cis and obtaining y for n = 6 and α = β = 1.8, we get the following table
for the selected values of xi = i

(b−a)
and 0 ≤ i ≤ 25.

Table 4.3: Approximate solution for Equation 4.9 for (n = 6, 8, 10, 12)

x yexact yapprox. Abs. error
0 -1 -1 0.0

0.6 -2.224 -2.22399999999999 0.1E-13
1 -4 -3.99999999999999 0.1E-13

1.2 -5.032 -5.03199999999998 0.2E-13
1.4 -6.096 -6.09599999999999 0.1E-13
1.6 -7.144 -7.14399999999999 0.1E-13
2.4 -10.216 -10.216 0.0
3 -10 -10 0.0

3.2 -9.192 -9.19200000000003 0.3E-13
3.4 -7.936 -7.93600000000006 0.6E-13
3.8 -3.888 -3.88800000000016 1.5E-13
4 -1 -1.00000000000023 2.3E-13

4.2 2.528 2.52799999999967 3.4E-13
4.6 11.696 11.6959999999994 5.8E-13
5 24 23.999999999999 0.1E-11
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Figures 2, 3 and 4, represent the graphs of the approximate solutions of yi for i = 1, 2, 3, 4
for several values of n, α and β.

Figure 2: Graphs of approximate and exact solutions for Equation 4.9 when n = 6

.
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Figure 3: Graphs of approximate solutions for Equation 4.2 (n = 10, α = 1.8)
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Figure 4: Graphs of approximate solutions for Equation 4.2 (n = 10, β = 1.8)
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Example 4.3. Consider the integro differential equation

(4.11) c
0D

α
xy(x)− x2

99
y(x) = f(x) +

1

4

∫ x

0

(x− t) y(t)dt+
1

7

∫ 1

0

xt2 c
0D

β
t y(t)dt

Where f(x) = Γ(4.5)
Γ(2.2)

x1.2 − x
11

,

2 < α ≤ 3, 0 < β ≤ 1 and 0 ≤ t, x ≤ 1. Subject to the conditions

2y(0)− 3y(1)− y′(0)− 8y
′
(1) + y

′′
(0) + 4y

′′
(1) = 4

y(0)− 1

4
y(1) + 2y

′
(0) + 6y

′
(1)− y′′(0)− y′′(1) = 12

4y(0) + y(1) + 3y
′
(0)− 1

2
y
′
(1) + y

′′
(0) + y

′′
(1) = 8

When α = 2.3 and β = 1, then the exact solution for Equation 4.11 is y(x) = x
7
2 .

The approximate solutions of Equation 4.3 are shown in the table and figures below. From Table
4.6, we compare the absolute errors obtained by generalized hat functions method [2] and CAS
wavelets (CASW) for n = 16 [20], we can see that the error is smaller whenever x approaches
to 1 which is the end point of the interval.
After solving for the cis and obtaining y for n = 8, 12, 16, we get the following table for some
selected values xi.
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Table 4.4: Approximate solution for Equation 4.11 for (n = 8, 10, 12)

x y1[n = 8] y2[n = 12] y3[n = 16] Exact
0 -0.027204779 -0.015195009 -0.010202975 0

0.125 -0.010964336 -0.00656962 -0.004372956 0.000690534
0.25 0.007858289 0.006568877 0.006658802 0.0078125

0.375 0.040145738 0.035137011 0.03381492 0.032293078
0.5 0.100145024 0.093386822 0.091349298 0.088388348

0.625 0.204759169 0.198226727 0.196171752 0.193010111
0.75 0.373176938 0.368849727 0.367476493 0.365354467

0.875 0.626643073 0.626486015 0.626494861 0.626654533

The absolute error of the solution of Equation 4.11 is depicted in the following table:

Table 4.5: Absolute error in Equation 4.11 for (n = 8, 12, 16)

x (n = 8) (n = 12) (n = 16)
0 0.027204779 0.015195009 0.010202975

0.125 0.01165487 0.007260154 0.00506349
0.25 4.57891E-05 0.001243623 0.001153698

0.375 0.00785266 0.002843933 0.001521842
0.5 0.011756676 0.004998475 0.00296095

0.625 0.011749058 0.005216616 0.003161641
0.75 0.00782247 0.00349526 0.002122026

0.875 1.14603E-05 0.000168518 0.000159672

Figures 5, 6 and 7 represent the graph of yi for i = 1, 2, 3, 4 for some α, β and n.

Figure 5: Graphs of approximate and exact solutions for Equation 4.11 when n = 8)
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Figure 6: Graphs of approximate solutions for Equation 4.11 (n = 12, β = 1)
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Figure 7: Graphs of approximate solutions for Equation 4.11 (n = 12, α = 2.3)
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Comparing the absolute error with the absolute errors obtained in [20] by CAS wavelet
(CASW) method and in [2] obtained by generalized hat function method (GHF).
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Table 4.6: The absolute errors of the solution of Equation 4.11 for (n = 16)

x CASW GHF Our Method
0 0.0000052528 0 0.010202975
1
8

0.00021658 0.000032343 0.00506349
2
8

0.00052365 0.000058723 0.001153698
3
8

0.00082316 0.000061423 0.001521842
4
8

0.0024582 0.00022317 0.00296095
5
8

0.0070243 0.00044326 0.003161641
6
8

0.044565 0.0064325 0.002122026
7
8

0.082364 0.0072324 0.000159672

5. CONCLUSION

In this paper we have considered a numerical tool for solving certain types of Fredholm-
Volterra integro-fractional differential equations and we have found an error bound of the so-
lution. Moreover, by using numerical examples, it has been shown that this method is better
comparing with the method in [9] and [14]. However, as x tends to b in the interval [a, b] we
obtained accurate results comparing with the method in [20] and [2].
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