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ABSTRACT. The adjacent configurations of two-dimensional magnetic null point centers are an-
alyzed by an immediate examination about the null. The configurations are classified as either
potential or non-potential. By then the non-potential cases are subdivided into three cases de-
pending upon whether the component of current is less than, equal to or greater than a threshold
current. In addition the essential structure of reconnection in 2D is examined. It unfolds that the
manner by which the magnetic flux is rebuilt. In this paper, we center on the ramifications of
kinematic arrangements; that is, we fathom just Maxwell’s conditions and a resistive Ohm’s law.
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1. I NTRODUCTION

Magnetic reconnection assumes a focal job in numerous wonders that happen in plasmas. For
instance, in space, in the arrangement ofx-ray bright points and solar flares on the Sun and in
the interaction between the earth’s magnetosphere and the solar wind and, in the laboratory, in
spheromaks. In the course of the most recent twenty years numerous parts of two-dimensional
reconnection have been widely contemplated. In two measurements the magnetic field evapo-
rates at a nonpartisan point which might be eitherX type orO type. To find the nearby magnetic
structure about a null point we should consider the magnetic field in the area of a point where
the field evaporatesB = 0. In the event that, without loss of consensus, we take the null point
to be arranged at the cause and, what’s more, expect that the magnetic field approaches zero
straightly. In this paper we methodically examine the frameworkM. Besides, an unfaltering
arrangement is accepted, so Faraday’s equation∇× E = −∂B

∂t
infers thatE = Eẑ in 2D. One

further prerequisite which is forced is that the non-ideal region, for example the area where the
term on the right-hand side of (Ohm’s law) is non-zero, must be limited. We consider a lim-
ited non-ideal area (D) as the nonexclusive circumstance for astrophysical plasmas, since these
plasma shave amazingly high attractive Reynolds numbers, and dissemination is upgraded just
in very much restricted locales, for instance when the nearness of solid electric flows may drive
miniaturized scale dangers. In the accompanying area, the impact of various kinds of recon-
nection on magnetic flux tube will be depicted. Because of the effortlessness of the magnetic
fields utilized in the models, these flux tubes are for the most part at first untwisted, despite the
fact that when all is said in one flux tubes with a limited measure of contort would be conven-
tional in two measurements. The reconnection of segregated curved and untwisted motion tubes
has been explored in a progression of numerical examinations [1], [2], [3]. The outrageous in-
stance of a very contorted transition cylinder would be a flux tube in which the magnetic flux is
absolutely toroidal.

2. TWO-DIMENSIONAL NULL POINTS STRUCTURE

A magnetic null point is a point in an magnetic field where every one of the components of
the field are zero. In two measurements:

Bx = By = 0

This tells us little in itself about the local magnetic structure; the topology of the field in the
immediate vicinity of one null point may be quite different near another. However, if we as-
sume that the magnetic field near a null point approaches zero linearly, we can approximate the
components of the magnetic field in this region by means of a two variable, first order Taylor
expansion about the neutral pointX0,Y0. Consider thex component:

BX ≈ BX(X0, Y0) +
∂BX

∂Y X0,Y0

(X −X0) +
∂BX

∂X X0,Y0

(Y − Y0)

Retain only the first order, linear terms

BX ≈
∂BX

∂X X0,Y0

(X −X0) +
∂BX

∂Y X0,Y0

(Y − Y0)

Choose an origin such thatX0 = Y0 = 0

BX ≈
∂BX

∂X 0,0
+

∂BX

∂Y 0,0

Similarly for y:

BY ≈
∂BY

∂X 0,0
+

∂BY

∂Y 0,0
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We may then express the magnetic field near a null point (to lowest order) as

B = M · r

whereM =

[
∂BX

∂X
∂BX

∂Y
∂BY

∂X
∂BY

∂Y

]
, andr = (X, Y )T

For simplicity, we rewrite the above matrix as

M =

[
a11 a12

a21 a22

]
However, this matrix can be simplified and rewritten in a form that will lend itself more readily
to meaningful analysis. First, we impose the solenoidal constraint

∇ ·B = 0 =⇒ ∂BX

∂X
=

∂BY

∂Y
=⇒ a11 = a22 = 0 =⇒ a11 = −a22

The diagonal entries are associated with the potential part of the field (they do not show up in
the expression for the current below), so we leta11 = p, a22 = −p
Consider now the current

J =
1

µ0

∇×B =
1

µ0

∇×
[

p a11

a22 −p

]
=

1

µ0

(0,0, a21 − a12)

We can conveniently rewrite

a12 =
1

2
(q − Jz)

Thus for a current free null point, whereJz = 0, a12 = a21 = q
2
. Therefore the parameterq is

associated with the potential field. The matrixMmay now be stated in its final form

(2.1) M =

[
p 1

2
(q − Jz)

1
2
(q + Jz) −p

]
,

parameterq is associated with the potential field. The matrixM may now be stated in its final
form.

2.1. The Threshold Current.
From the square root of the discriminant of the characteristic equation of the symmetric part of
M, we define a threshold current,

MS =
1

2
(M+MT )

(2.2) Jthresh =
√

4p2 + q2

which we note is only dependent on parameters associated with the potential part of the field
The proof proceeds as follows

MS =
1

2
(M+MT ) =

[
p 1

2
(q − Jz)

1
2
(q + Jz) −p

]
+

[
p 1

2
(q + Jz)

1
2
(q − Jz) −p

]
=

1

2

[
p 1

2
q

1
2
q −p

]
det(Ms − λ) = −p2 + λ2 − q2

4
= 0

λ2 − (p2 +
q2

2
) = 0

This yields a discriminant
d = 4p2 + q2
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Then
Jthresh =

√
d = 4p2 + q2

as given above.

2.2. The Flux Function.
We now determine the flux functionA an expression that characterizes the geometry of the
magnetic field, defined to obey the solenoid constraint). It satisfies

BX =
∂A

∂Y
, BY =

∂A

∂X
Since

B = M · r
BX = pX + 1

2
(q − Jz), andBY = pX + 1

2
(q + Jz)

Hence

A =

∫
BXdY = pXY +

1

4
(q − Jz)Y

2 + f(X)

A = −
∫

BY dY = −
(

1

4
(q − Jz)X

2 − pXY

)
+ f(X)

Therefore,

A =
1

4

(
(q − Jz)Y

2 − (q + Jz)
2X2

)
This expression can be further simplified by a rotation of theXY axes, allowing us eventually
to rewrite it as

(2.3) A =
1

4

[
(Jthresh − Jz)y

2 + (Jthresh + Jz)x
2
]

ie. a function of the two parametersJthresh andJz. The proof proceeds as follows:
RotateXY -axes through an angleθ,[

X
Y

]
=

[
cos θ − sin θ
sin θ cos θ

]
to give

A =
1

4

(
(q − Jz)(x sin θ + y cos θ)2 − (q + Jz)

2(x cos θ − y sin θ)2
)

+ p(x cos θ − y sin θ)

(x sin θ + y cos θ)

Expanding, and factorizing inx2, y2 andxy, yields

A = x2

[
1

4
(q − Jz) sin2 θ − 1

4
(q + Jz) cos2 θ + p sin θ cos θ

]
+y2

[
[
1

4
(q − Jz) cos2 θ − 1

4
(q + Jz)cos

2θ

]
+xy

[
q sin θ cos θ + p(cos2 θ − sin2 θ)

]
Now let tan 2θ = −2p

q
. Firstly, consider thexy term:

q sin θ cos θ + p(cos2 θ − sin2 θ) =
q

2
sin 2θ + p cos 2θ = −p cos 2θ + p cos 2θ

ie. thexy term vanishes. Next, consider thex2 term:

x2[
1

4
(q − Jz)

1

2
(1− cos 2θ)− 1

4
(q + Jz)

1

2
(1 + cos 2θ) +

1

2
p sin 2θ]

= −x2

4
(q cos 2θ − 2p sin 2θ + Jz) = −x2

4
(q cos 2θ +

4p2

q
cos 2θ + Jz)
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= −x2

2
(

1

(4p2 + q2)
1
2

(4p2 + q2) + Jz) = −x2

2
(Jthresh + Jz)

Finally, consider they2 term:

y2

8
[(q − Jz)(1 + cos 2θ)− (q + Jz)(1− cos 2θ)− 4p sin 2θ]

=
y2

8
(q cos 2θ − 2p sin 2θ − Jz) =

y2

8

(
q cos 2θ +

4p2

q
cos 2θ − Jz

)
=

y2

4

(
1

(4p2 + q2)
1
2

(4p2 + q2)− Jz

)
=

y2

4
(Jthresh − Jz)

And hence,

A =
1

4

[
(Jthresh − Jz)y

2 − (Jthresh + Jz)x
2
]

2.3. The Eigenvalues.
Now, we determine a general expression for the eigenvalues ofM.

det(M− λ) = (p− λ)(−p− λ)− 1

4
(q − Jz)(q + Jz)

λ2 − 1

4
(4p2 + q2 − J2

z ) = λ2 − 1

4
(J2

thresh + q2 − J2
z )

(2.4) λ = ±1

2

√
J2

thresh − J2
z

It is apparent that, ifJz < Jthresh, thenλ ∈ R, and if Jz > Jthresh thenλ ∈ Q. In the
following subsections a general two-dimensional null is studied firstly depending on whether it
is potential (Section 2.1) or not (2.2) and then whether the current is greater or less thanJthresh

(Figure 1).

2.4. Classifying 2D Null points.

2.4.1. Potential Null Points.
A potential field is current free, i.e.J = 0 =⇒ Jz = 0. It follows thatM is symmetric in the
potential case, and from (2.4) the eigenvalues are given by

λ = ±Jthresh

Thus we have two real non-zero eigenvalues. From (2.3) it is apparent that the flux function is
simply

A =
Jthresh

4
(y2 − x2)

From the flux function we can quickly discover the geometry of the field lines.

Bx =
∂A

∂y
=

Jthresh

4
y, By = −∂A

∂x
=

Jthresh

4
x

dy

dx
=

By

Bx

=
y

x
=⇒ ydx = xdy =⇒ y2 − x2 = c

Finally, for c = 0 =⇒ y = ±x, and forc 6= 0 =⇒ y = ±
√

c− x2 The field lines are thus
rectangular hyperbola with separatrices that intersect at an angle ofπ/2. We call this an -type
neutral point, and it is the only possible configuration in 2D for a neutral point in a potential
field, as shown in figure 2a.
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Figure 1: A categorization of the different types of 2D null and the respective limits ofJz (thez-component of
current) andJthresh (the threshold current) at which they occur.

2.4.2. Non-Potential Null Points.
Although we are concerned with a potential field extrapolation in this investigation, we briefly
consider here the case of 2D neutral points in a non-potential field. Two dimention neutral
points with current are classified by the magnitude ofJz andJthresh.

1. Jz < Jthresh: Here, 2.4=⇒ the eigenvalues are real, equal in magnitude, and opposite
in sign, and 2.3=⇒ A = ay2 − bx2 wherea, b > 0, ie. the field lines are hyperbolae with
separatrices that intersect at an angle of

tan−1

(
J2

thresh − J2
z

Jz

)
Again, we have anX-type neutral point, as shown in figure 2b ,which reduces to the potential

case (rectangular hyperbolae) asJz =⇒ 0.

2. Jz = Jthresh: Here, 2.4=⇒ the eigenvalues are both zero, 2.3=⇒

A =

{
−1

2
Jthreshx

2 Jthresh = 1
1
2
Jthreshy

2 Jthresh = −1

Hence

Bx =
∂A

∂x
=

{
0 Jthresh = 1

Jthreshy, Jthresh = −1

Therefore,

J = −Jz =⇒ dx

dy
= 0 =⇒ y = const.
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Figure 2: A categorization of the different types of two-dimensional null and the respective limits ofz (the z-
component of current) andJthresh (the threshold current) at which they occur.

J = Jz =⇒ dy

dx
= 0 =⇒ x = const.

Thus this configuration produces anti-parallel field lines with a null either along thex-axis or
they-axis respectively (3 c).

3. Jz > Jthresh:Here, 2.4=⇒ the eigenvalues are complex conjugates.
For the caseJthresh = 0, 2.3=⇒

A = −1

4
(y2 + x2)

ie. the field lines are circular and centred around the origin.
For the caseJthresh 6= 0 2.3=⇒

A = −1

4
(ay2 + bx2)

(wherea, b are constants, both greater than zero), ie. the field lines are concentric ellipses
(figure2)
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3. BASIC EQUATIONS

The usual MHD equations for an ideal, are used. Hence,

E + v ×B = ηJ,(3.1)

∇× E = 0,(3.2)

∇×B = µ0J,(3.3)

∇ ·B = 0.(3.4)

Wherev, is the plasma velocity,B, the magnetic field and J is the current. In this part, the
fundamental structure of reconnection in 2D is talked about. It comes to pass that the manner by
which the magnetic flux is rebuilt amid the procedures. We settle just Maxwell’s equations (3.1,
3.2, 3.3, 3.4) Moreover, an enduring arrangement is accepted, with the goal that the Faraday’s
equation (6) suggests that in 2D, where is some scalar capacity. One further necessity which
is forced that the non-ideal region, for example the region where the term on the right hand
side of (3.1) is non-zero, must be restricted. We consider a limited non-ideal region (D) as
the nonexclusive circumstance for astrophysical plasmas, since these plasma shave very high
magnetic Reynolds numbers, and scattering is upgraded just in all around localized region, for
instance when the nearness of solid electric flows may drive miniaturized scale insecurities.

4. TWO DIMENSION K INEMATIC SOLUTION

In this section two-dimensional solution is solved. In order to obtain a physically acceptable
solution, with all physical quantities continuous and smooth, the magnetic field and resistivity
are first prescribed. The magnetic fields chosen to be a simple linear 2DX-point,

(4.1) B =
B0

L0

(y, kx, 0)

where isk a constant, so thatj = (k − 1)/µẑ. The resistivity is defined as

(4.2) η = η0

{
((k2x2 + y2)− 1)

2
(k2x2 + y2) < 1

0 otherwise

Whereη0 is constant. The profile ofη is shown in figure 3(a).
In order to calculate the corresponding plasma velocity, or at least the componentv⊥ perpen-

dicular to, take the vector product of Equation 3.1withB to give

(4.3) v⊥ =
(E− ηJ)×B

B2

(4.4) =
1

R2
1

{ (
E − η0(k−1)

µ
(R2

1 − 1)2
)

(−kx, 1) R2
1 < 1

E(−kx, 1) otherwise

whereR2
1 = k2x2 + y2 Notice that it is vital that the estimation of E be picked to keep the

plasma velocity non-singular at the origin. To|v| = 0 have at the starting point requires.

(4.5)
η0(k − 1)

µ

With this decision of E, the velocity have the form of a smooth stagnation flow, appeared in
Figure 3 (b-d). So as to explore the advancement of magnetic flux it is valuable to characterize
a flux transporting velocityw ([4]; [5]) which fulfills

(4.6) E + w ×B = 0
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Figure 3: . (a) Plot ofη for parametersη0 = 1, k = 1.5, .(b), (c) and (d) show the plasma velocity for the same
parameters.

which is conceivable in two dimension since the electric field(E) is constantly opposite to(B).
By examination with a perfect Ohm’s law, can be viewed as a stream inside which the magnetic
flux is frozen. The component of(w) perpendicular to(B) can be found from 4.6 to be

(4.7) w⊥ =
E×B

B2

The part of(w) parallel to(B) is typically thought to be zero, with the goal that the above
gives an articulation for w itself. Note that for reconnection to take place, the flux transporting
velocity (w) must be come particular at the null point, which is a mark of the breaking of the
field lines ([6]). Here,(w) takes the structure

(4.8) w =
η0(k − 1)

(y2 + k2x2)µ
(−kx, y, 0)

The development of the magnetic flux in this procedure is pictured as pursues. Two transition
tubes are selected which at first lie in the in stream areas on inverse sides of the dispersion locale.
Each flux tube is then followed out at each time by coordinating the field lines from two cross-
sections, one at either end of each cylinder. These cross-sections are permitted to develop in the
perfect stream, and are picked to such an extent that they never go into the non-ideal region (see
Figure 4). The cross-section are picked along these lines in order to guarantee that a similar
field lines are constantly followed at each time, because in the perfect area the field is solidified

AJMAA, Vol. 16, No. 2, Art. 6, pp. 1-12, 2019 AJMAA

http://ajmaa.org
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Figure 4: The choice of cross-sections (thick black bars) from which the flux tubes are traced ensures that the paths
they follow (dashed lines), as they move in the ideal flow, never take them into the non-ideal region (shaded).

to the stream, so field lines might be distinguished by plasma elements there. The way that
each cylinder is followed from a perfect cross area at each end will become significant in later
precedents, which are depicted with the assistance of comparable liveliness. Additionally, the
transition tubes are picked at first to be symmetric aboutx = 0.

The manner by which the flux tubes develop in the reconnection procedure is appeared in
Figure 5, which indicates outlines from the film contained on the going with CD. Note that, in
spite of the fact that the non-ideal region (D) is of critical size with in the container appeared,
the transition tubes followed from either end stay associated until they achieve theX-point at
(0, 0) . At theX-point the field lines which structure the transition tubes are cut and rejoined,
lastly two interesting reconnected flux tubes move far from the X-point in inverse quadrants. By
and by, while going through the diffusion region and moving far from theX-point, the transition
tubes sneak past the plasma, yet stay associated. At long last they leave and are diverted in the
perfect stream

5. NATURE OF TWO DIMENSION RECONNECTION

A field line velocity(w) in two dimension, dependably exists, fulfilling

(5.1)
∂B

∂t
= ∇× (w ×B),

(w) is equivalent to the plasma velocity ((v)) in ideal-region, and is the velocity with which the
field lines sneak past the plasma in non-ideal region. Likewise,(w) is smooth and differentiable
wherever aside from at null point, where it has a hyperbolic peculiarity, connoting the breaking
of magnetic field lines there. For a model see section 4. While with in a non-ideal region, field
lines hold their associations until they achieve theX-point. In other words, field line protection
holds wherever aside from at the separatrices of the null point. When the field lines lie on the
separatrices of the null point, they break and are rejoined at the invalid point, changing the
availability.The mapping between field line footpoints is spasmodic. Consider the schematic
X-point appeared in Figure 6 (a). For instance, as the field line secured at footpointA1 moves
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Figure 5: The global behavior of the reconnecting flux tubes for a localized 3D region within the non-ideal region.

towards the separatrix, it is associated withB2 on the contrary limit. In any case, asA1 moves
over the separatrix (toA2) it abruptly ends up associated with a pointD on a similar limit as
itself. This discontinuous mapping is an outcome of the reality the field lines break just at a
single point.

A field line (or flux tube) which lies incompletely inside the non-ideal region moves with
the plasma velocity(v) wherever outside the non-ideal region (see Figure 6 (b)). Within the
non-ideal region it sneaks past the plasma at the velocity w. For each flux tube which is going
to reconnect (in an in stream district of(v), there exists a relating flux tube on the contrary side
of theX-point with which it will become consummately rejoined after reconnection, to such
an extent that two one of a kind however contrastingly associated flux tubes are created (see
Figure 6 (c)). This will from this time forward be alluded to as ’impeccable reconnection’ of
flux tubes.
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Figure 6: In two dimensional reconnection: (a) the mapping of field line footpoints, (b) motion of a flux tube
passing through the non-ideal region, and (c) the breaking and rejoining of flux tubes.
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