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1. I NTRODUCTION

In this paper we consider two-dimensional nonlinear differential systems of the form

(A) x′′ = p1(t)x
α1 + q1(t)y

β1 , y′′ = p2(t)x
α2 + q2(t)y

β2 ,

under the assumption that

(a)αi andβi, i = 1, 2, are positive constants;

(b) pi(t) andqi(t), i = 1, 2, are continuous regularly varying functions on[a,∞), a > 0.

By a positive solution of system (A) we mean a vector function(x(t), y(t)) both components
of which are positive and satisfy (A) in some neighborhood of infinity, say fort ≥ T . We focus
our attention on those positive solutions of (A) both components of which are decreasing and
tend to zero ast → ∞. Such solutions are referred to asstrongly decreasing solutionsof (A).
It is clear that a strongly decreasing solution(x(t), y(t)) of (A) satisfies the system of integral
equations

x(t) =

∫ ∞

t

∫ ∞

s

{
p1(r)x(r)α1 + q1(r)y(r)β1

}
drds,

(1.1)

y(t) =

∫ ∞

t

∫ ∞

s

{
p2(r)x(r)α2 + q2(r)y(r)β2

}
drds

for t ≥ T .
The aim of this paper is to establish the existence of strongly decreasing solutions of (A)

with precise asymptotic behavior ast → ∞ by solving (1.1) in the class of regularly varying
functions of negative indices. (For the definition of regularly varying functions see Section 2.)
Fixed point techniques and basic theory of regular variation are utilized for this purpose.

We notice that there are two special cases of (A), thediagonal system(Ad) and thecyclic
system(Ac), whose strongly decreasing solutions can be thoroughly analyzed in the framework
of regular variation:

(Ad) x′′ = p1(t)x
α1 , y′′ = q2(t)y

β2 ,

(Ac) x′′ = q1(t)y
β1 , y′′ = p2(t)x

α2 .

In fact necessary and sufficient conditions have recently been found for these two systems to
have regularly varying solutions with negative indices. Then one would expect that system (A)
which can be regarded as small perturbations of (Ad) or of (Ac) in a certain sense may possess
strongly decreasing solutions belonging to the same class of regularly varying functions. The
truth of this expectation will be verified in Sections 3 and 4 which are devoted to perturbed
systems of (Ad) and (Ac), respectively. Examples illustrating the main results will be presented
in Section 5.

2. REGULARLY VARYING FUNCTIONS

For the reader’s convenience we summarize here the definition and some basic properties of
regularly varying functions (in the sense of Karamata).
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Definition 2.1. A measurable functionf : [0,∞) → (0,∞) is calledregularly varying of index
ρ ∈ R if

lim
t→∞

f(λt)

f(t)
= λρ for all λ > 0.

The totality of regularly varying functions of indexρ is denoted by RV(ρ). We often use the
symbol SV to denote RV(0) and call members of SVslowly varying functions. Any function
f ∈ RV(ρ) is expressed asf(t) = tρg(t) with g ∈ SV, and so the class SV of slowly varying
functions is of fundamental importance in the theory of regular variation. One of the most
important properties of regularly varying functions is the followingrepresentation theorem.

Proposition 2.1. f(t) ∈ RV(ρ) if and only iff(t) is represented in the form

(2.1) f(t) = c(t) exp
{∫ t

t0

δ(s)

s
ds

}
, t ≥ t0

for somet0 > 0 and for some measurable functionsc(t) andδ(t) such that

lim
t→∞

c(t) = c0 ∈ (0,∞) and lim
t→∞

δ(t) = ρ.

If in particularc(t) ≡ c0 in (2.1), thenf(t) is referred to as anormalizedregularly varying
function of indexρ.

Typical examples of slowly varying functions are: all functions tending to some positive
constants ast →∞,

N∏
n=1

(logn t)αn , αn ∈ R, and exp

{ N∏
n=1

(logn t)βn

}
, βn ∈ (0, 1),

wherelogn t denotes then-th iteration of the logarithm. It is known that the function

L(t) = exp

{
(log t)θ cos (log t)θ

}
, θ ∈

(
0,

1

2

)
,

is a slowly varying function which is oscillating in the sense that

lim sup
t→∞

L(t) = ∞ and lim inf
t→∞

L(t) = 0.

The following result illustrates operations which preserve slow variation.

Proposition 2.2. LetL(t), L1(t), L2(t) be slowly varying. Then,L(t)α for anyα ∈ R, L1(t) +
L2(t), L1(t)L2(t) andL1(L2(t)) (if L2(t) →∞) are slowly varying.

A slowly varying function may grow to infinity or decay to0 ast → ∞. But its order of
growth or decay is severely limited as is shown in the following

Proposition 2.3. Letf(t) ∈ SV. Then, for anyε > 0,

lim
t→∞

tεf(t) = ∞, lim
t→∞

t−εf(t) = 0.

A simple criterion for determining the regularity of differentiable positive functions follows.

Proposition 2.4. A differentiable positive functionf(t) is a normalized regularly varying func-
tion of indexρ if and only if

lim
t→∞

t
f ′(t)

f(t)
= ρ.
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The following result called Karamata’s integration theorem is of highest importance in han-
dling slowly and regularly varying functions analytically, and will be used throughout Sections
3 and 4.

Proposition 2.5. LetL(t) ∈ SV. Then,
(i) if α > −1, ∫ t

a

sαL(s)ds ∼ 1

α + 1
tα+1L(t), t →∞;

(ii) if α < −1, ∫ ∞

t

sαL(s)ds ∼ − 1

α + 1
tα+1L(t), t →∞;

(iii) if α = −1,

l(t) =

∫ t

a

L(s)

s
ds ∈ SV and m(t) =

∫ ∞

t

L(s)

s
ds ∈ SV,

providedL(t)/t is integrable near the infinity in the latter case.

Here the symbol∼ is used to mean the asymptotic equivalence between two positive func-
tions

f(t) ∼ g(t), t →∞ ⇐⇒ lim
t→∞

g(t)

f(t)
= 1.

If f(t) ∼ g(t), t →∞, andg ∈ RV(ρ), thenf ∈ RV(ρ).
Given two positive functionsf(t) andg(t), we writef(t) � g(t), t → ∞, to denote that

there exist positive constantsk andK such thatkf(t) ≤ g(t) ≤ Kf(t) for all larget. It is clear
thatf(t) ∼ g(t), t →∞, impliesf(t) � g(t), t →∞, but not conversely.

Definition 2.2. If f(t) � g(t), t →∞, andg ∈ RV(ρ), thenf(t) is said to be anearly regularly
varying function of indexρ.

It is known that2 + sin(log log t) is slowly varying, but2 + sin(log t) is not. The latter is
nearly slowly varying since it holds that2 + sin(log t) � 2 + sin(log log t), t → ∞. It follows
that, for anyρ ∈ R, tρ(2 + sin(log t)) is nearly regularly varying, but not regularly varying, of
indexρ.

A vector function(x(t), y(t)) is said to beregularly varying of index(ρ, σ) if x(t) andy(t)
are regularly varying of indicesρ andσ, respectively. Nearly regularly varying vector functions
can be defined analogously.

For the most complete exposition of theory of regular variation and its applications we re-
fer to the book of Bingham, Goldie and Teugels [1]. See also Seneta [16]. A comprehensive
survey of results up to 2000th on the asymptotic analysis of second order ordinary differential
equations by means of regular variation can be found in the monograph of Marić [15]. Since
the publication of [15] there has been an increasing interest in the analysis of ordinary differ-
ential equations by means of regularly varying functions, and thus theory of regular variation
has proved to be a powerful tool of determining the accurate asymptotic behavior of positive
solutions for a variety of nonlinear differential equations of Emden-Fowler and Thomas-Fermi
types. See, for example, the papers [4] - [14].
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3. PERTURBATIONS OF THE DIAGONAL SYSTEM (Ad)

We first show that useful information about the existence of strongly decreasing solutions can
be drawn for system (A) which is viewed as a small perturbation of the diagonal system

(Ad) x′′ = p1(t)x
α1 , y′′ = q2(t)y

β2 ,

which is in fact a set of two independent Thomas-Fermi differential equations. It is assumed
that

(3.1) α1 < 1, β2 < 1,

and thatp1(t) andq2(t) are continuous regularly varying functions of indicesλ1 andµ2, respec-
tively, expressed as

(3.2) p1(t) = tλ1l1(t), q2(t) = tµ2m2(t), l1, m2 ∈ SV.

Our discussions essentially depend on the fact that complete analysis can be made of the exis-
tence and asymptotic behavior of strongly decreasing reglarly varying solutions of the diagonal
system (Ad).

Proposition 3.1. Let conditions(3.1) and (3.2) be satisfied. Then, system(Ad) has regularly
varying solutions(x(t), y(t)) with negative index(ρ, σ) if and only if

(3.3) λ1 < −2, µ2 < −2,

in which caseρ andσ are defined by

(3.4) ρ =
λ1 + 2

1− α1

, σ =
µ2 + 2

1− β2

,

and any such solution enjoys one and the same asymptotic behavior

(3.5) x(t) ∼ X(t), y(t) ∼ Y (t), t →∞,

whereX(t) ∈ RV(ρ) andY (t) ∈ RV(σ) are given by

X(t) =

[
t2p1(t)

(−ρ)(1− ρ)

] 1
1−α1

= tρ
[

l1(t)

(−ρ)(1− ρ)

] 1
1−α1

,

(3.6)

Y (t) =

[
t2q2(t)

(−σ)(1− σ)

] 1
1−β2

= tσ
[

m2(t)

(−σ)(1− σ)

] 1
1−β2

.

The proof of this proposition can be found in the paper [14].

Of particular importance in proving the main result is the fact thatX(t) andY (t) satisfy the
asymptotic relations
(3.7)∫ ∞

t

∫ ∞

s

p1(r)X(r)α1drds ∼ X(t),

∫ ∞

t

∫ ∞

s

q2(r)Y (r)β2drds ∼ Y (t), t →∞.

The elementary proof of (3.7) is left to the reader. Here and throughout we assume that

(3.8) pi ∈ RV(λi), qi ∈ RV(µi), i = 1, 2,

and

(3.9) pi(t) = tλili(t), qi(t) = tµimi(t), li, mi ∈ SV, i = 1, 2.

One of our main results now follows.
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Theorem 3.2. Assume that(3.8), (3.1)and (3.3) hold. Let the negative constantsρ andσ be
given by(3.4)and consider the functionsX(t) andY (t) defined by(3.7). Suppose that

(3.10) lim
t→∞

q1(t)Y (t)β1

p1(t)X(t)α1
= 0, lim

t→∞

p2(t)X(t)α2

q2(t)Y (t)β2
= 0.

Then, system(A) possesses strongly decreasing regularly varying solutions(x(t), y(t)) of index
(ρ, σ) whose asymptotic behavior is governed by the unique formula(3.5).

Proof. In view of (3.7) there existsT > a such that

1

2
X(t) ≤

∫ ∞

t

∫ ∞

s

p1(r)X(r)α1drds ≤ 2X(t),

(3.11)
1

2
Y (t) ≤

∫ ∞

t

∫ ∞

s

q2(r)Y (r)β2drds ≤ 2Y (t),

for t ≥ T . Let h,H, k andK be positive constants such that

(3.12) h ≤ 2
− 1

1−α1 , H ≥ 4
1

1−α1 , k ≤ 2
− 1

1−β2 , K ≥ 4
1

1−β2 ,

and chooseT > a large enough so that in addition to (3.11) the following inequlaities hold

(3.13)
q1(t)Y (t)β1

p1(t)X(t)α1
≤ hα1

Kβ1
,

p2(t)X(t)α2

q2(t)Y (t)β2
≤ kβ2

Hα2
, t ≥ T.

which is possible because of (3.10).
Let us now define the integral operators

F(x, y)(t) =

∫ ∞

t

∫ ∞

s

{
p1(r)x(r)α1 + q1(r)y(r)β1

}
drds,

(3.14)

G(x, y)(t) =

∫ ∞

t

∫ ∞

s

{
p2(r)x(r)α2 + q2(r)y(r)β2

}
drds,

for t ≥ T , and let it act on the set
(3.15)

W =
{

(x, y) ∈ C[T,∞)2 : hX(t) ≤ x(t) ≤ HX(t), kY (t) ≤ y(t) ≤ KY (t), t ≥ T
}

.

Finally we consider the mappingΦ : W → C[T,∞)2 defined by

(3.16) Φ(x, y)(t) =
(
F(x, y)(t),G(x, y)(t)

)
, t ≥ T.

It can be shown thatΦ is a self-map onW and sendsW into a relatively compact subset of
C[T,∞)2.

(i) Φ(W) ⊂ W. Let (x, y) ∈ W. Using (3.13), we see that fort ≥ T

p1(t)x(t)α1 + q1(t)y(t)β1 = p1(t)x(t)α1

(
1 +

q1(t)y(t)β1

p1(t)x(t)α1

)

≤ p1(t)x(t)α1

(
1 +

Kβ1q1(t)Y (t)β1

hα1p1(t)X(t)α1

)
≤ 2p1(t)x(t)α1
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and

p2(t)x(t)α2 + q2(t)y(t)β2 = q2(t)y(t)β2

(
1 +

p2(t)x(t)α2

q2(t)y(t)β2

)

≤ q2(t)y(t)β2

(
1 +

Hα2p2(t)X(t)α2

kβ2q2(t)Y (t)β2

)
≤ 2q2(t)y(t)β2 .

and hence that

F(x, y)(t) ≤ 2

∫ ∞

t

∫ ∞

s

p1(r)x(r)α1drds

≤ 2Hα1

∫ ∞

t

∫ ∞

s

p1(r)X(r)α1drds ≤ 4Hα1X(t) ≤ HX(t),

and

G(x, y)(t) ≤ 2

∫ ∞

t

∫ ∞

s

q2(r)y(r)β2drds

≤ 2Kβ2

∫ ∞

t

∫ ∞

s

q2(r)Y (r)β2drds ≤ 4Kβ2Y (t) ≤ KY (t)

for t ≥ T , where (3.11) and (3.12) have been used. On the other hand, we easily find that

F(x, y)(t) ≥
∫ ∞

t

∫ ∞

s

p1(r)x(r)α1drds

≥ hα1

∫ ∞

t

∫ ∞

s

p1(r)X(r)α1drds ≥ 1

2
hα1X(t) ≥ hX(t),

and

G(x, y)(t) ≥
∫ ∞

t

∫ ∞

s

q2(r)y(r)β2drds

≥ kβ2

∫ ∞

t

∫ ∞

s

q2(r)Y (r)β2drds ≥ 1

2
kβ2Y (t) ≥ kY (t)

for t ≥ T . It follows thathX(t) ≤ F(x, y)(t) ≤ HX(t) andkY (t) ≤ G(x, y)(t) ≤ KY (t) for
t ≥ T , which implies thatΦ(x, y) ∈ W, that is,Φ mapsW into itself.

(ii) Φ(W) is relatively compact. The inclusionΦ(W) ⊂ W implies thatΦ(W) is uniformly
bounded on[T,∞). The inequalities

0 ≥ (F(x, y))′(t) ≥ −
∫ ∞

t

{
Hα1p1(s)X(s)α1 + Kβ1q1(s)Y (s)β1

}
ds,

0 ≥ (G(x, y))′(t) ≥ −
∫ ∞

t

{
Hα2p2(s)X(s)α2 + Kβ2q2(s)Y (s)β2

}
ds,

holding fort ≥ T and for all(x, y) ∈ W ensure thatΦ(W) is equicontinuous on[T,∞). The
relative compactness ofΦ(W) follows from the Arzela-Ascoli lemma.

(iii) Φ is a continuous map. Let{(xn, yn)} be a sequence inW converging to(x, y) ∈ W
in the topology ofC[T,∞)2, which means that{(xn(t), yn(t))} converges to(x(t), y(t)) as
n →∞ uniformly on any compact subinterval of[T,∞). We need to prove that

F(xn, yn)(t) → F(x, y)(t) and G(xn, yn)(t) → G(x, y)(t)
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uniformly on compact subintervals of[T,∞). But this follows readily from the Lebesgue dom-
inated convergence theorem applied to the right-hand side of the following inequalities

|F(xn, yn)(t)−F(x, y)(t)| ≤
∫ ∞

t

s
(
p1(s)|xn(s)α1 − x(s)α1|+ q1(s)|yn(s)β1 − y(s)β1|

)
ds,

|G(xn, yn)(t)− G(x, y)(t)| ≤
∫ ∞

t

s
(
p2(s)|xn(s)α2 − x(s)α2 |+ q2(s)|yn(s)β2 − y(s)β2|

)
ds.

The details may be omitted.

Therefore, by the Schauder-Tychonoff fixed point theorem (see, e.g., Chapter I of Coppel [2])
there exists(x, y) ∈ W such that(x, y) = Φ(x, y) = (F(x, y),G(x, y)), i.e.,

x(t) =

∫ ∞

t

∫ ∞

s

{
p1(r)x(r)α1 + q1(r)y(r)β1

}
drds,

(3.17)

y(t) =

∫ ∞

t

∫ ∞

s

{
p2(r)x(r)α2 + q2(r)y(r)β2

}
drds,

for t ≥ T , This means that(x(t), y(t)) gives a solution of the system (A) on[T,∞), and the
membership(x, y) ∈ W shows that it is nearly regularly varying of index(ρ, σ).

It remains to verify that(x(t), y(t)) is actually a regularly varying solution of index(ρ, σ)
having the asymptotic behavior (3.5). This can be done with the help of the generalized
L’Hospital’s rule stated below. For the proof see e.g. Haupt and Aumann [3].

Lemma 3.3. Letf(t), g(t) ∈ C1[T,∞) and suppose that

lim
t→∞

f(t) = lim
t→∞

g(t) = ∞ and g′(t) > 0 for all large t,

or
lim
t→∞

f(t) = lim
t→∞

g(t) = 0 and g′(t) < 0 for all large t.

Then,

lim inf
t→∞

f ′(t)

g′(t)
≤ lim inf

t→∞

f(t)

g(t)
, lim sup

t→∞

f(t)

g(t)
≤ lim sup

t→∞

f ′(t)

g′(t)
.

Let (x(t), y(t)) be the nearly regularly varying solution of (A) constructed as a solution of
the system of integral equations (3.17). Defineu(t) andv(t) on [a,∞) by

u(t) =

∫ ∞

t

∫ ∞

s

{
p1(r)X(r)α1 + q1(r)Y (r)β1

}
drds,

(3.18)

v(t) =

∫ ∞

t

∫ ∞

s

{
p2(r)X(r)α2 + q2(r)Y (r)β2

}
drds.

Since (3.10) implies

(3.19) p1(t)X(t)α1+q1(t)Y (t)β1 ∼ p1(t)X(t)α1 , p2(t)X(t)α2+q2(t)Y (t)β2 ∼ q2(t)Y (t)β2 ,

ast →∞, from (3.7) it follows that

(3.20) u(t) ∼ X(t), v(t) ∼ Y (t), t →∞.

It is clear that

(3.21) p1(t)x(t)α1 + q1(t)y(t)β1 ∼ p1(t)x(t)α1 , p2(t)x(t)α2 + q2(t)y(t)β2 ∼ q2(t)y(t)β2 ,
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ast →∞. Let us consider the following superior and inferior limits:

(3.22) l = lim inf
t→∞

x(t)

u(t)
, L = lim sup

t→∞

x(t)

u(t)
, m = lim inf

t→∞

y(t)

v(t)
, M = lim sup

t→∞

y(t)

v(t)
.

Clearly, these are finite positive constants. Applying Lemma 3.3 tol repeatedly, we find that

l ≥ lim inf
t→∞

∫ ∞

t

{p1(s)x(s)α1 + q1(s)y(s)β2}ds∫ ∞

t

{p1(s)X(s)α1 + q1(s)Y (s)β2}ds

≥ lim inf
t→∞

p1(t)x(t)α1 + q1(t)y(t)β1

p1(t)X(t)α1 + q1(t)Y (t)β1

= lim inf
t→∞

p1(t)x(t)α1

p1(t)X(t)α1

=

(
lim inf

t→∞

x(t)

X(t)

)α1

=

(
lim inf

t→∞

x(t)

u(t)

)α1

= lα1 ,

where (3.19) and (3.21) have been used in the middle and (3.20) has been used in the last step.
Thus, we have

l ≥ lα1 =⇒ l ≥ 1 becauseα1 < 1.

Similarly, applying Lemma 3.3 toL, we have

L ≤ Lα1 =⇒ L ≤ 1 becauseα1 < 1.

It follows therefore thatl = L = 1, which implies that

lim
t→∞

x(t)

u(t)
= 1 =⇒ x(t) ∼ u(t) ∼ X(t) as t →∞.

On the other hand, Lemma 3.3 applied tom andM shows that

lim
t→∞

y(t)

v(t)
= 1 =⇒ y(t) ∼ v(t) ∼ Y (t) as t →∞,

and so it is concluded that(x(t), y(t)) is regularly varying of negative index(ρ, σ) enjoying the
asymptotic behavior (3.5) ast →∞. This completes the proof of Theorem 3.2.

Remark 3.1. Let us take a close look at condition (3.10) in Theorems 3.2. Using (3.9) we see
that

q1(t)Y (t)β1

p1(t)X(t)α1
= tµ1+β1σ−λ1−α1ρL(t),

p2(t)X(t)α2

q2(t)Y (t)β2
= tλ2+α2ρ−µ2−β2σM(t),

for someL, M ∈ SV, so that (3.10) is satisfied regardless ofL(t) andM(t) if

(3.23) µ1 + β1σ < λ1 + α1ρ and λ2 + α2ρ < µ2 + β2σ,

(cf. Proposition 2.3, or equivalently, if

µ1 + β1σ < ρ− 2 and λ2 + α2ρ < σ − 2.

This remark combined with Theorem 3.2 yields the following practical criteria for system
(A) to have strongly decreasing solutions.
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Corollary 3.4. Assume that(3.8), (3.1) and (3.3) hold. Letρ < 0 and σ < 0 be defined by
(3.4). If (3.23)holds, then system(A) possesses strongly decreasing regularly varying solutions
of index(ρ, σ) whose asymptotic behavior is governed by the formula(3.5).

4. PERTURBATIONS OF THE CYCLIC SYSTEM (Ac)

We will show that different information about strongly decreasing solutions of system (A)
can be acquired by regarding (A) as a small perturbation of the cyclic system

(Ac) x′′ = q1(t)y
β1 , y′′ = p2(t)x

α2 ,

whose in-depth analysis from the angle of regular variation has recently been attempted by Jaroš
and Kusano [6]. Our development is based on their result (Proposition 4.1 below) characterizing
the existence of regularly varying solutions of negative indices for (Ac).

As in the preceding section we assume thatpi(t) andqi(t), i = 1, 2, are regularly varying
functions satisfying (3.8) and (3.9). One of our essential requirements is that

(4.1) α2β1 < 1.

Proposition 4.1.Let (4.1) hold. System (Ac) has strongly decreasing regularly varying solutions
(x(t), y(t)) of negative index(ρ, σ) if and only if

(4.2) µ1 + 2 + β1(λ2 + 2) < 0, α2(µ1 + 2) + λ2 + 2 < 0,

in which caseρ andσ are given by

(4.3) ρ =
µ1 + 2 + β1(λ2 + 2)

1− α2β1

, σ =
α2(µ1 + 2) + λ2 + 2

1− α2β1

,

and any such solution enjoys one and the same asymptotic behavior

(4.4) x(t) ∼ X(t), y(t) ∼ Y (t), t →∞,

where the functionsX ∈ RV(ρ) andY ∈ RV(σ) are defined by

X(t) =

[(
t2q1(t)

(−ρ)(1− ρ)

)(
t2p2(t)

(−σ)(1− σ)

)β1
] 1

1−α2β1

,

(4.5)

Y (t) =

[(
t2q1(t)

(−ρ)(1− ρ)

)α2
(

t2p2(t)

(−σ)(1− σ)

)] 1
1−α2β1

.

In the subsequent discussions a crucial role is played by the cyclic system of asymptotic
relations

(4.6)
∫ ∞

t

∫ ∞

s

q1(r)Y (r)β1drds ∼ X(t),

∫ ∞

t

∫ ∞

s

p2(r)X(r)α2drds ∼ Y (t)

ast →∞. In fact, rewritingX(t) andY (t) as

X(t) = tρ
[(

m1(t)

(−ρ)(1− ρ)

)(
l2(t)

(−σ)(1− σ)

)β1
] 1

1−α2β1

,

Y (t) = tσ
[(

m1(t)

(−ρ)(1− ρ)

)α2
(

l2(t)

(−σ)(1− σ)

)] 1
1−α2β1

,
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and using the relations

ρ = µ1 + β1σ + 2, σ = λ2 + α2ρ + 2,

we compute∫ ∞

t

q1(s)Y (s)β1ds =

∫ ∞

t

sµ1+β1σm1(s)

[(
m1(s)

(−ρ)(1− ρ)

)α2
(

l2(s)

(−σ)(1− σ)

)] β1
1−α2β1

ds

=

∫ ∞

t

sρ−2m1(s)

[(
m1(s)

(−ρ)(1− ρ)

)α2
(

l2(s)

(−σ)(1− σ)

)] β1
1−α2β1

ds

=
tρ−1m1(t)

(1− ρ)

[(
m1(t)

(−ρ)(1− ρ)

)α2
(

l2(t)

(−σ)(1− σ)

)] β1
1−α2β1

,

and∫ ∞

t

∫ ∞

s

q1(r)Y (r)β1drds ∼ tρ
m1(t)

(−ρ)(1− ρ)

[(
m1(t)

(−ρ)(1− ρ)

)α2
(

l2(t)

(−σ)(1− σ)

)] β1
1−α2β1

= tρ
[(

m1(t)

(−ρ)(1− ρ)

)(
l2(t)

(−σ)(1− σ)

)β1
] 1

1−α2β1

= X(t), t →∞.

This establishes the first relation in (4.6), and the second relation can be verified analogously.

We state and prove the main result of this section.

Theorem 4.2.Assume that(4.1)and (4.2)hold. Define the negative constantsρ andσ by (4.3)
and consider the functionsX(t) andY (t) defined by (4.5). Suppose that

(4.7) lim
t→∞

p1(t)X(t)α1

q1(t)Y (t)β1
= 0, lim

t→∞

q2(t)Y (t)β2

p2(t)X(t)α2
= 0.

Then, system(A) possesses strongly decreasing regularly varying solutions(x(t), y(t)) of neg-
ative index(ρ, σ) whose asymptotic behavior is governed by the unique formula(4.4).

Proof. By (4.6) there existsT > a such that

1

2
X(t) ≤

∫ ∞

t

∫ ∞

s

q1(r)Y (r)β1drds ≤ 2X(t),

(4.8)
1

2
Y (t) ≤

∫ ∞

t

∫ ∞

s

p2(r)X(r)α2drds ≤ 2Y (t).

for t ≥ T . Let h,H, k andK denote the constants

(4.9) h = 2
− 1+β1

1−α2β1 , H = 4
1+β1

1−α2β1 , k = 2
− 1+α2

1−α2β1 , K = 4
1+α2

1−α2β1 .

Because of (4.7) one can chooseT > a large enough so that in addition to (4.8) the following
inequalities hold fort ≥ T :

(4.10)
p1(t)X(t)α1

q1(t)Y (t)β1
≤ kβ1

Hα1
,

q2(t)Y (t)β2

p2(t)X(t)α2
≤ hα2

Kβ2
.

Let us define the setW by
(4.11)

W =
{

(x, y) ∈ C[T,∞)2 : hX(t) ≤ x(t) ≤ HX(t), kY (t) ≤ y(t) ≤ KY (t), t ≥ T
}
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and consider the mappingΦ : W → C[T,∞)2 defined by

(4.12) Φ(x, y)(t) =
(
F(x, y)(t),G(x, y)(t)

)
, t ≥ T,

whereF(x, y) andG(x, y) are the integral operators given in (3.14).
Let (x, y) ∈ W. Then, using (4.10) we have

p1(t)x(t)α1

q1(t)y(t)β1
≤ Hα1

kβ1

p1(t)X(t)α1

q1(t)Y (t)β1
≤ 1,

q2(t)y(t)β2

p2(t)x(t)α2
≤ Kβ2

hα2

q2(t)Y (t)β2

p2(t)X(t)α2
≤ 1,

whence we see that

p1(t)x(t)α1 + q1(t)y(t)β1 = q1(t)y(t)β1

(
1 + p1(t)x(t)α1

q1(t)y(t)β1

)
≤ 2q1(t)y(t)β1 ,

(4.13)

p2(t)x(t)α2 + q2(t)y(t)β2 = p2(t)x(t)α2

(
1 + q2(t)y(t)β2

p1(t)x(t)α2

)
≤ 2p2(t)x(t)α2 .

Combining (4.8), (4.9), (4.11) and (4.13), we obtain fort ≥ T

F(x, y)(t) ≤ 2

∫ ∞

t

∫ ∞

s

q1(r)y(r)β1drds

≤ 2Kβ1

∫ ∞

t

∫ ∞

s

q1(r)Y (r)β1drds ≤ 4Kβ1X(t) = HX(t),

G(x, y)(t) ≤ 2

∫ ∞

t

∫ ∞

s

p2(r)x(r)α2drds

≤ 2Hα2

∫ ∞

t

∫ ∞

s

p2(r)X(r)α2drds ≤ 4Hα2Y (t) = KY (t).

On the other hand, it is easy to see that

F(x, y)(t) ≥
∫ ∞

t

∫ ∞

s

q1(r)y(r)β1drds

≥ kβ1

∫ ∞

t

∫ ∞

s

q1(r)Y (r)β1drds ≥ 1

2
kβ1X(t) = hX(t),

G(x, y)(t) ≥
∫ ∞

t

∫ ∞

s

p2(r)x(r)α2drds

≥ hα2

∫ ∞

t

∫ ∞

s

p2(r)X(r)α2drds ≥ 1

2
hα2Y (t) = kY (t)

for t ≥ T . This shows thatΦ(x, y) ∈ W, ensuring thatΦ is a self-map onW.
Furthermore, one can verify in a routine manner thatΦ is continuous and sendsW into

a relatively compact subset ofC[T,∞)2. Consequently, the Schauder-Tychonoff fixed point
theorem guarantees the existence of a fixed point(x, y) ∈ W of Φ, which gives birth to a
strongly decreasing solution(x(t), y(t)) of system (A) which is nearly regularly varying of
index(ρ, σ).

To prove that(x(t), y(t)) is really regularly varying of index(ρ, σ) we proceed as follows.
Note that(x(t), y(t)) solves the system of integral equations (3.17) on[T,∞). Defineu(t)
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andv(t) by (3.18), where we have to use the functionsX(t), Y (t) given by (4.5). Since (4.7)
implies that

(4.14) p1(t)X(t)α1 +q1(t)Y (t)β1 ∼ q1(t)Y (t)β1 , p2(t)X(t)α2 +q2(t)Y (t)β2 ∼ p2(t)X(t)α2

ast →∞, from (4.6) we obtain

(4.15) u(t) ∼ X(t), v(t) ∼ Y (t), t →∞.

Use is made of the relations

(4.16) p1(t)x(t)α1 + q1(t)y(t)β1 ∼ q1(t)y(t)β1 , p2(t)x(t)α2 + q2(t)y(t)β2 ∼ p2(t)x(t)α2 ,

which follow immeditately from (4.14). Consider the superior and inferior limits defined by

(4.17) l = lim inf
t→∞

x(t)

u(t)
, L = lim sup

t→∞

x(t)

u(t)
, m = lim inf

t→∞

y(t)

v(t)
, M = lim sup

t→∞

y(t)

v(t)
.

It is clear that all of them are finite positive constants. We now apply Lemma 3.3 tol andm.
Taking (4.15) and (4.16) into accout, we obtain

l ≥ lim inf
t→∞

∫ ∞

t

{p1(s)x(s)α1 + q1(s)y(s)β1}ds∫ ∞

t

{p1(s)X(s)α1 + q1(s)Y (s)β1}ds

≥ lim inf
t→∞

p1(t)x(t)α1 + q1(t)y(t)β1

p1(t)X(t)α1 + q1(t)Y (t)β1
= lim inf

t→∞

q1(t)y(t)β1

q1(t)Y (t)β1

=

(
lim inf

t→∞

y(t)

Y (t)

)β1

=

(
lim inf

t→∞

y(t)

v(t)

)β1

= mβ1 ,

and

m ≥ lim inf
t→∞

∫∞
t
{p2(s)x(s)α2 + q2(s)y(s)β2}ds∫∞

t
{p2(s)X(s)α2 + q2(s)Y (s)β2}ds

≥ lim inf
t→∞

p2(t)x(t)α2 + q2(t)y(t)β2

p2(t)X(t)α2 + q2(t)Y (t)β2
= lim inf

t→∞

p2(t)x(t)α2

p2(t)X(t)α2

=

(
lim inf

t→∞

x(t)

X(t)

)α2

=

(
lim inf

t→∞

x(t)

u(t)

)α2

= lα2 .

Thus, we have
l ≥ mβ1 and m ≥ lα2 ,

which implies that

(4.18) l ≥ lα2β1 and m ≥ mα2β1 =⇒ l ≥ 1 and m ≥ 1 becauseα2β1 < 1.

Likewise, application of Lemma 3.3 toL andM yields

L ≤ Mβ1 and M ≤ Lα2 ,

which leads to
(4.19)

L ≤ Lα2β1 and M ≤ Mα2β1 =⇒ L ≤ 1 and M ≤ 1 becauseα2β1 < 1.

From (4.18) and (4.19) it follows thatl = L = 1 andm = M = 1, that is,

lim
t→∞

x(t)

u(t)
= 1, lim

t→∞

y(t)

v(t)
= 1.
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Therefore we conclude from (4.15) that

x(t) ∼ u(t) ∼ X(t), y(t) ∼ v(t) ∼ Y (t), t →∞,

confirming thatx ∈ RV(ρ) andy ∈ RV(σ). This completes the proof of Theorem 4.2.

Remark 4.1. In view of (3.9) the functions in (4.7) are expressed in the form

p1(t)X(t)α1

q1(t)Y (t)β1
= tλ1+α1ρ−µ1−β1σL(t),

q2(t)Y (t)β2

p2(t)X(t)α2
= tµ2+β2σ−λ2−α2ρM(t),

for someL, M ∈ SV, and so condition (4.7) is satisfied if

(4.20) λ1 + α1ρ < µ1 + β1σ, µ2 + β2σ < λ2 + α2ρ.

This can be used as a useful criterion for the existence of strongly decreasing solutions for
system (A).

Corollary 4.3. Assume that(4.1) and (4.2) hold. Defineρ < 0 andσ < 0 by (4.3). If (4.20)
holds, then system(A) possesses strongly decreasing regularly varying solutions(x(t), y(t)) of
index(ρ, σ) whose asymptotic behavior is governed by the formula(4.4).

5. EXAMPLES

In the final section we give examples illustrating our main results: Theorems 3.2 and 4.2.

Example 5.1.Consider the system

x′′ = 3t−3 exp{−(log t)
1
3}x

2
3 + 2t−

5
3

log t

log log t
y

4
3 ,

(5.1)

y′′ = 2t−
12
5 exp{(log t)

1
3}x

3
5 + 5t−3

(
2 + sin(log log t)

)
y

3
4 .

This system is a special case of (A) in which

α1 =
2

3
, β1 =

4

3
, α2 =

3

5
, β2 =

3

4
,

λ1 = −3, µ1 = −5

3
, λ2 = −12

5
, µ2 = −3,

and

l1 = 3 exp{−(log t)
1
3}, m1 = 2

log t

log log t
, l2 = 2 exp{(log t)

1
3}, m2 = 5

(
2+sin(log log t)

)
.

(i) First we consider(5.1)as a perturbation of the cyclic system

(5.2) x′′ = 2t−
5
3

log t

log log t
y

4
3 , y′′ = 2t−

12
5 exp

{
(log t)

1
3

}
x

3
5 .

Since

ρc =
(µ1 + 2) + β1(λ2 + 2)

1− α2β1

= −1, σc =
α2(µ1 + 2) + (λ2 + 2)

1− α2β1

= −1,

Proposition 4.1 implies that(5.2)has strongly decreasing regularly varying solutions(x(t), y(t))
of index(−1,−1) such that

x(t) ∼ Xc(t) = t−1

(
m1(t)

2

)5(
l2(t)

2

) 20
3

, y(t) ∼ Yc(t) = t−1

(
m1(t)

2

)3(
l2(t)

2

)5
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ast →∞. It is elementary to check that

λ1 + α1ρc = −11

3
< −3 = µ1 + β1σc, µ2 + β2σc = −15

4
< −3 = λ2 + α2ρc,

which shows that(5.1) is a sufficiently “small”perturbation of(5.2) to which Theorem 4.2(or
Corollary 4.3) is applicable. It follows that system(5.1) possesses strongly decreasing regu-
larly varying solutions(x(t), y(t)) of index(−1,−1) all of which enjoy the unique asymptotic
behavior

x(t) ∼ t−1

(
log t

log log t

)5

exp
{20

3
(log t)

1
3

}
, y(t) ∼ t−1

(
log t

log log t

)3

exp
{

5(log t)
1
3

}
,

ast →∞.

(ii) One may consider(5.1)as a perturbation of the diagonal system

(5.3) x′′ = 3t−3 exp{−(log t)
1
3}x

2
3 , y′′ = 5t−3

(
2 + sin(log log t)

)
y

3
4 .

Since

(5.4) ρd =
λ1 + 2

1− α1

= −3, σd =
µ2 + 2

1− β2

= −4,

by Proposition 3.1 implies that(5.3)has strongly decreasing regularly varying solutions(x(t), y(t))
of index(−3,−4) such that

(5.5) x(t) ∼ Xd(t) = t−3

(
l1(t)

12

)3

, y(t) ∼ Yd(t) = t−4

(
m2(t)

20

)4

, t →∞.

It is easily confirmed that

µ1 + β1σd < λ1 + α1ρd but λ2 + α2ρd > µ2 + β2σd,

which violates the condition(3.10). Therefore, one cannot apply Theorem 3.2 to(5.3), which
means that nothing can be said at this stage about the existence or nonexistence of strongly
decreasing solutions satisfying the asymptotic behavior(5.5).

Example 5.2.Consider the differential system

x′′ = 3t−3 exp{−(log t)
1
3}x

2
3 + 2t−

5
3

log t

log log t
y

4
3 ,

(5.6)

y′′ = 2t−
22
5 exp{(log t)

1
3}x

3
5 + 5t−3

(
2 + sin(log log t)

)
y

3
4 .

which is the same as system(5.1)except that the regularity index−12
5

of p2(t) is replaced with
−22

5
.

Usingρd = −3 andσd = −4, we see that the condition(3.10)is satisfied:

µ1 + β1σd = −7 < −5 = λ1 + α1ρd and λ2 + α2ρd = −31

5
< −6 = µ2 + β2σd.

Therefore, from Theorem 3.2 we conclude that system(5.6)possesses strongly decreasing reg-
ularly varying solutions(x(t), y(t)) of index(−3,−4) whose asymptotic behavior is governed
by the unique formula(5.5), more precisely,

x(t) ∼ 1

64
t−3 exp

{
−3(log t)

1
3

}
, y(t) ∼ 1

256
t−4

(
2 + sin(log log t)

)4

, t →∞.
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