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ABSTRACT. We formulate a general theory of decision making based on a lattice of observable
events, and we exhibit a large class of representations called the general model. Some of the
representations are equivalent to the so called standard model in which observable events are
modelled by an algebra of measurable subsets of a state space, while others are not compatible
with such a description. We show that the general model collapses to the standard model, if and
only if an additional axiom is satisfied. We argue that this axiom is not very natural and thus
assert that the standard model may not be general enough to model all relevant phenomena in
economics. Using the general model we are (as opposed to Schmeidler [16]) able to rationalize
Ellsberg’s paradox without the introduction of non-additive measures.
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2 FRANK HANSEN

1. I NTRODUCTION

The model developed by Arrow, Debreu and others (the standard model) is accepted by
most economists as the foundation of the modelling of the behavior of agents exposed to risk.
Knight [11] introduced the distinction between the notions of "measurable uncertainty", which
can be expressed by a well-defined probability distribution known to the agents, and "unmea-
surable uncertainty" describing the circumstance arising, when agents only have vague or non-
existing ideas about the rules of the world. The former concept is by convention denoted risk
and the latter uncertainty. Savage [15] formulated axioms that capture the situations where
probability distributions can be defined, and the subjects therefore are exposed only to risk and
not to uncertainty. Ellsberg [6] constructed some hypothetical experiments designed to check
compliance with the Savage axioms and interviewed people about their personal choices and
preferences in the experiments. The result was that some people, including Savage himself, gave
answers not compatible with adherence to the Savage axioms. Schmeidler and others [16, 13, 9]
introduced the notion of non-additive measures, and in the process they extended the reach of
mathematical modelling into the realm of uncertainty. Ellsberg’s paradox can in particular be
explained within this new setting.

In the standard model an event is represented by a measurable subset of a state space, and the
event occurs if the true state of nature represented by an element of the state space is contained
in the subset representing the event. We note that the one-point set representing the true state of
nature may not be a measurable set and therefore not observable to the agents. It is nevertheless
assumed that "knowledge" of the true state of nature makes it possible to determine which events
have occurred.

This way of modelling events is ubiquitous in much economic thought, although it places
severe and unrealistic constraints on the behaviour of agents. For example, it requires agents to
agree on which events have occurred, once the state is known. This constraint alone is very far
from the situation encountered in every day life. Agents of the real world may very well disagree
on the occurrence of historical events even after hundreds of years of study. Confronted with
such critique of the standard model, many economists answer that the model in question is not
sufficiently specified and with sufficient information given every agent will realize the true state
of nature, and they will then all agree on which events have occurred and which have not. Any
disagreement is thus due only to lack of knowledge and disappears with the enlightenment of
the agents.

1.1. The structure of the paper. We reformulate Arrow and Debreu’s model (the standard
model) in terms of a lattice of observable events without reference to the state space, and then
demonstrate that this formulation is completely equivalent to the traditional description, includ-
ing the reappearance of the state space as a purely mathematical construction. The theory is
based on the notion of an event which we consider more fundamental than the notion of a state.

We give an axiomatic description of the minimal requirements to any sensible theory of
decision making, before introducing the so called general model of decision making which is
then shown to satisfy eight listed axioms.

We discuss an additional axiom (9) and demonstrate that the general model of decision mak-
ing is equivalent to the standard model if and only if this additional axiom is satisfied.

We introduce securities, portfolios and expectations in the general model. There is a sharp
distinction between the notions of security and portfolio in the general model. Securities or bets
are valued solely in terms of a monetary numeraire. The theory does not in its present version
support a more advanced notion of utility.

We notice that the additional axiom (9) implies that the expected probability of the majorant
event (union) of two mutually exclusive events is the sum of the expected probabilities of each
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A GENERAL THEORY OF DECISION MAKING 3

of the events, and we argue that this axiom may be too strong in many situations of interest to
economists. It is in particular incompatible with a rational explanation of Elsberg’s paradox.

We demonstrate that the behaviour of the agents in Elsberg’s paradox can be rationally ex-
plained in a very simple representation of the general model. This is done without any additional
assumptions or the introduction of non-additive measures as in [16].

We finally demonstrate that the notion of arbitrage free asset evaluation may be introduced
in the general model, and that the absence of arbitrage can be characterized in terms which are
quite close to the familiar statements in the standard model. If there is riskless borrowing in an
arbitrage free economy, then there is an asset equally valued by all agents.

2. THE STANDARD MODEL

The observable (or knowable) events in (a representation of) the standard model are given
by the measurable subsets of a state space, or equivalently by their indicator functions. These
functions are by themselves projections when acting as multiplication operators. Let the state
spaceΩ be equipped with aσ-algebra (or tribe)F of subsets. An event is thus a setA ∈ F ,
or equivalently the indicator function1A, or equivalently the projection operatorPA defined by
setting

(2.1) (PAξ)(ω) = 1A(ω)ξ(ω) ω ∈ Ω,

for eachF-measurable functionξ onΩ.
If an objective probability measureµ is given, rendering(Ω,F , µ) into a measure space, then

PA becomes a self-adjoint projection on the Hilbert spaceL2(Ω,F , µ). We also assume that
setsA, B ∈ F represent the same event if they only differ on a null set, or equivalently if
PA = PB. Inherent in this formulation is the assumption that the measure space is complete. To
avoid excessive generalizations we shall assume thatΩ is a locally compact, second countable
Hausdorff space and thatµ is the completion of the Riesz representation of a Radon measure
(the integral of continuous functions with respect toµ). We refer to Bourbaki [3] for a general
introduction to integration theory.

Two eventsA, B ∈ F are represented by commuting projectionsPA andPB. Indeed

(PAPBξ)(ω) = 1A(ω)(PBξ)(ω) = 1A(ω)1B(ω)ξ(ω)

= (PBPAξ)(ω) ∀ω ∈ Ω

for eachξ ∈ L2(Ω,F , µ). We collect together a number of well-known probabilistic concepts
related to events in the standard model of decision making and write down equivalent properties
in terms of the representing projections.

Proposition 2.1. Let A, B ∈ F be events in (a representation of) the standard model, and let
PA andPB be the representing self-adjoint projections on the Hilbert spaceL2(Ω,F , µ).

(1) The eventB is majorizing the eventA, if B occurs with probability one providedA
occurs. The property is equivalent to the inequalityPA ≤ PB.

(2) The eventsA, B have a minorant event,A ∧B, which is the maximal event in the set of
events majorized by bothA andB. It is represented by the orthogonal projection on the
intersection of the ranges ofPA andPB in the Hilbert spaceL2(Ω,F , µ).

(3) The eventsA, B have a majorant event,A ∨ B, which is the minimal event in the set of
events majorizing bothA andB. It is represented by the orthogonal projection on the
closure of the sum of the ranges ofPA andPB in the Hilbert spaceL2(Ω,F , µ).

(4) The eventsA, B are said to be mutually exclusive, if their minorantA ∧ B = 0. The
property is equivalent to the inequalityPA ≤ 1 − PB, where1 denotes the identity
operator on the Hilbert spaceL2(Ω,F , µ).
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4 FRANK HANSEN

(5) The eventsA, B are said to be complementary, if the probability of exactly one of them
occurring is one. The property is equivalent to the equationPA = 1− PB.

The events in the standard model are thus represented by self-adjoint projections on a Hilbert
spaceL2(Ω,F , µ) given by multiplication operators of the form (2.1). The so called simple
functions onΩ are linear combinations of indicator functions for measurable subsets, and they
(more precisely, their equivalence classes) are by construction weakly dense inL∞(Ω,F , µ).
We are now able to reformulate the standard model without reference to the state space.

2.1. The standard model reformulated.

Definition 2.1 (the standard model). The observable events are specified by a familyF of
commuting (self-adjoint) projections on a separable Hilbert spaceH satisfying:

(i) The zero projection onH (denoted 0) and the identity projection onH (denoted 1) are
both inF .

(ii) 1− P ∈ F for arbitraryP ∈ F .
(iii) P ∧Q ∈ F for arbitraryP, Q ∈ F .
(iv)

∑
i∈I Pi ∈ F for any family(Pi)i∈I of mutually orthogonal projections inF .

It is a consequence of Theorem 4.2 to be proved later that a family of projectionsF satisfying
the assumptions of Definition 2.1 is a Booleanσ-algebra [17, page 10].

Proposition 2.2. The complex vector spaceL0(F) generated by a family of commuting pro-
jectionsF satisfying the conditions in Definition 2.1 is a commutative∗-algebra, where each
element can be written as a linear combination of mutually orthogonal projection inF .

Proof. We first notice thatPQ = P ∧ Q for projectionsP, Q ∈ F . Indeed, sinceP andQ
commute we havePQ = PQP ≤ P andPQ = QPQ ≤ Q, thusPQ ≤ P ∧ Q. On the other
handP ∧Q = P (P ∧Q)P ≤ PQP = PQ. We thus obtainPQ ∈ F from Definition 2.1 (iii),
and since

P + Q = P (1−Q) + (1− P )Q + 2PQ,

we derive that a linear combination of projections inF can be written as a linear combination
of orthogonal projections inF , and that the product of linear combinations of projections in
F again is a linear combination of projections inF . The algebraL0(F) is invariant under the
adjoint operation and becomes an involutive algebra.

We denote byL(F) the norm closure ofL0(F). Since the sum, the product and the adjoint
operations are continuous in the norm topology, we obtain thatL(F) is a norm closed commu-
tative∗-algebra1 of bounded linear operators on the Hilbert spaceH.

Proposition 2.3. The spectral projections of the self-adjoint operators inL(F) are inF .

Proof. LetX be a self-adjoint element inL(F). There exists a sequence of self-adjoint elements
(Xn) in L0(F) such that‖X −Xn‖ → 0 for n →∞. Since(Xn) is a Cauchy-sequence we can
find an increasing sequencen1, n2, . . . such that

‖Xnk+1
−Xnk

‖ ≤ 1

k(k + 1)
=

1

k
− 1

k + 1
k = 1, 2, . . . .

It follows that

Xnk
− 1

k
≤ Xnk+1

− 1

k + 1
k = 1, 2, . . . .

The sequence(Yk), whereYk = Xnk
− k−1 ∈ L0(F), is thus monotone increasing toX.

1A norm closed∗-algebra of linear operators on a Hilbert space is called a (concrete)C∗-algebra. ThusL(F)
is an abelian (commutative)C∗-algebra.
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SinceL(F) is commutative any increasing function is monotone onL(F), hence the spec-
tral projectionsEk(t,∞) of Yk are monotone increasing necessarily to the spectral projection
E(t,∞) of X. It thus follows2 from Theorem 4.2 that the spectral projectionE(t,∞) is in F
for eacht ∈ R. Any other spectral projectionE(B) of X associated with a Borel setB in R is
contained in the Boolianσ-algebra generated by the family{E(t,∞) | t ∈ R} of commuting
spectral projections, and sinceF is closed under these operations, cf. Theorem 4.2, we obtain
E(B) ∈ F .

Theorem 2.4. Let the observable events be given by a familyF of commuting self-adjoint
projections on a separable Hilbert space as specified in Definition 2.1. There exists a probability
space(Ω,S, µ), whereΩ is a locally compact, second countable Hausdorff space andµ is the
completion of the Riesz representation of a Radon measure, and an isomorphismΦ : L(F) →
L∞(Ω,S, µ) such thatP ∈ F if and only if Φ(P ) is (the equivalence class of) the indicator
function for a set inS.

Proof. We have shown that the subspaceL(F) is a commutativeC∗-algebra with the special
property that it contains all spectral projections of each of its self-adjoint elements. In fact, we
proved that each such projection is already included inF . In particular, each projection inL(F)
is in F , and sinceF is stable under arbitrary sums of orthogonal projections, cf. Definition
2.1 (iv), we derive thatL(F) has the same property. But aC∗-algebra of linear operators
on a Hilbert space which contains all the spectral projections of its self-adjoint elements and
is stable under arbitrary sums of mutually orthogonal projections is necessarily strongly (and
weakly) closed, cf. [12, 2.8.4(iv) Theorem] and is therefore a von Neumann algebra3. Since
it is also abelian (commutative) andH is separable there exists, cf. [12, 3.4.4 Theorem], a
probability space(Ω,S, µ) whereΩ is a locally compact, second countable Hausdorff space
andµ is the completion of the Riesz representation of a Radon measure, and an isomorphism
Φ : L(F) → L∞(Ω,S, µ). Since the set of projections inL(F) is F , cf. Proposition 2.3, the
last part of the statement follows.

In this formulation of the standard model we no longer rely on the notion of a state space,
which may be inaccessible to observation. The probability space(Ω,S, µ) is a purely mathe-
matical construction generated by the lattice of observable events.

3. THE LATTICE OF EVENTS

In this section we list the most basic and intuitive criteria associated with the notion of an
event. They constitute the minimal requirements to any sensible theory of decision making. The
(observable) events are represented by a lattice(F ,≤), which is a partially ordered set such that

(1) There are elements0 and1 in F such that0 ≤ a ≤ 1 for all a ∈ F .
(2) To arbitrary eventsa, b ∈ F there is a minorant eventa∧ b ∈ F . It has the property that

c ≤ a ∧ b for any eventc ∈ F with c ≤ a andc ≤ b.
(3) To arbitrary eventsa, b ∈ F there is a majorant eventa∨ b ∈ F . It has the property that

a ∨ b ≤ c for any eventc ∈ F with a ≤ c andb ≤ c.

If a ≤ b for eventsa, b ∈ F , then we considerb to be a larger or more comprehensive event
thana. The minorant eventa ∧ b is for arbitrary eventsa, b ∈ F interpreted as the combination
of a andb, while the majorant event (union)a ∨ b represents the event of eithera or b.

The observable events are divided into two classes: The obtaining (occurring) events and the
non-obtaining events. We assert by convention that0 represents the vacuous (empty) event,
while 1 represents the universal (sure) event. We assume that ifa ≤ b for eventsa, b ∈ F anda

2None of the theorems in Section 4 depends on the material in this section.
3A von Neumann algebra is a weakly closed∗-algebra of linear operators on a Hilbert space.
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6 FRANK HANSEN

is obtaining, thenb is also obtaining. This is in line with the interpretation ofb as being a more
comprehensive event thana.

We furthermore assume the existence of an orthocomplementation ofF , that is a bijective
mappinga → a⊥ of F onto itself such that

(4) a ≤ b ⇒ b⊥ ≤ a⊥ for all a, b ∈ F .
(5) a⊥⊥ = a for all a ∈ F .
(6) a ∧ a⊥ = 0 for all a ∈ F .
(7) a ∨ a⊥ = 1 for all a ∈ F .

Definition 3.1. We say that eventsa andb in F are mutually exclusive ifa ∧ b = 0. They are
said to be orthogonal ifa ≤ b⊥.

Proposition 3.1. We list the following immediate consequences of the preceding axioms:

(i) 1⊥ = 0 and0⊥ = 1.
(ii) The eventsa anda⊥ are complementary, meaning that exactly one of them occurs.

(iii) The orthocomplementation mappinga → a⊥ is a bijection from the set of occurring
events onto the set of non-occurring events.

(iv) Orthogonal events are mutually exclusive.

Proof. We deduce(i) from (1) and (4), and(ii) from (6) and (7). In combination with (5) we
then obtain(iii). Supposea ≤ b⊥ andc is an event such thatc ≤ a andc ≤ b. We then have
c ≤ a ≤ b⊥ and thusc ≤ b ∧ b⊥ = 0 by (6). Thereforea ∧ b = 0 which proves(iv).

We furthermore assume the following extension of axioms (2) and (3):

(8) To any family(ai)i∈I of events inF there is a minorant event∧i∈I ai inF and a majorant
event∨i∈I ai in F .

We also consider the following axiom, which we do not in general require to be valid:

(9) a ∧ b = 0 ⇒ a ≤ b⊥ for all a, b ∈ F .

Axiom (9) states that mutually exclusive events are orthogonal.

4. THE GENERAL MODEL

We will not try to determine all representations of the "lattice of events" satisfying the eight
axioms in the preceding section, but rather exhibit a large class of representations.

Definition 4.1 (the general model). A representation of the general model is specified by a
family F of projections (the observable events) on a separable Hilbert spaceH satisfying:

(i) The zero projection onH (denoted 0) and the identity projection onH (denoted 1) are
both contained inF .

(ii) 1− P ∈ F for arbitraryP ∈ F .
(iii) P ∧Q ∈ F for arbitraryP, Q ∈ F .
(iv)

∑
i∈I Pi ∈ F for any family(Pi)i∈I of mutually orthogonal projections inF .

The minorant event toP, Q ∈ F is the minorant projectionP ∧ Q on the intersection of the
ranges ofP andQ. The majorant event is the majorant projectionP ∨ Q on the closure of the
sum of the ranges. The orthocomplementation is given byP⊥ = 1− P.

We first collect some useful facts.

Lemma 4.1. If P andQ are self-adjoint projections on a Hilbert space, then

(i) P ∧Q = 1− (1− P ) ∨ (1−Q)
(ii) P ≤ Q ⇒ Q− P = Q ∧ (1− P ).
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Proof. By construction the majorant(1 − P ) ∨ (1 − Q) majorizes1 − P and1 − Q hence
1− (1− P )∨ (1−Q) is majorized byP andQ, thusP ∧Q ≥ 1− (1− P )∨ (1−Q). On the
other hand1− (1−P )∨ (1−Q) ≥ 1− (1−P ∧Q)∨ (1−P ∧Q) = P ∧Q. This proves(i).

SupposeP ≤ Q. The differenceQ − P is a projection and sinceQ ≥ Q − P and1 − P ≥
Q−P, we obtainQ∧ (1−P ) ≥ Q−P. Let R be a projection such thatR ≤ Q andR ≤ 1−P.
We obtain

R + P = QRQ + QPQ = Q(R + P )Q ≤ Q,

henceR ≤ Q− P and thusQ ∧ (1− P ) ≤ Q− P. This proves(ii).

Theorem 4.2. A familyF of projections on a separable Hilbert spaceH satisfying the condi-
tions in Definition 4.1, with lattice operations and orthocomplementation as specified, satisfy
the axioms (1) to (8).

Proof. Axioms (1) and (2) follow from conditions(i) and(iii) respectively, and axiom (3) then
follows by invoking Lemma 4.1(i). The orthocomplementation map defined byP⊥ = 1−P is
by condition(ii) a bijection ofF , and the axioms (4), (5), (6) and (7) are well-known properties
of projections.

We shall finally consider axiom (8). Let(Pi)i∈I be a family of projections inF . We consider
the subsetsJ ⊆ I such that the majorantPJ = ∨j∈JPj is in F . The setD of such subsets of
I is inductively ordered. Indeed, ifJ(α) is a monotone increasing net inD with unionJ, then
the majorant projectionPJ is the limit of the monotone increasing net(PJ(α)) of projections in
F . But since a monotone increasing net inF by transfinite induction can be replaced with a
net inF of orthogonal projections with the same majorant, cf. Lemma 4.1(ii), we obtain from
condition(iv) that the majorantPJ is inF and thusJ ∈ D. Therefore, by Zorn’s lemma,D has
a maximal elementJ0. If the majorant

P =
∨
j∈J0

Pj <
∨
i∈I

Pi

then there is ani ∈ I such thatP < P ∨ Pi. But sinceP ∈ F and thusP ∨ Pi ∈ F
this contradicts the maximality ofJ0. We conclude that∨i∈IPi = P ∈ F . The statement for
minorants then follows by Lemma 4.1(i).

Theorem 4.3.A representationF of the general model is commutative, if and only if axiom (9)
holds.

Proof. If F is commutative, thenP ∧Q = PQ for any projectionsP andQ in L(F). Therefore,
if P ∧Q = 0 the projections are orthogonal, and thusP ≤ Q⊥.

Let P andQ be arbitrary events inF . Since bothP ≤ P ∨Q andQ ≤ P ∨Q we obtain

(4.1) (P ∨Q)− P = (P ∨Q) ∧ (1− P ) and (P ∨Q)−Q = (P ∨Q) ∧ (1−Q)

by Lemma 4.1(ii). The projections(P ∨ Q) − P and(P ∨ Q) − Q are therefore events inF
by (iii) and (ii) in Definition 4.1. LetR be a projection majorized by both(P ∨ Q) − P and
(P ∨Q)−Q. We have in particular

R ≤ P ∨Q = 1− (1− P ) ∧ (1−Q),

cf. Lemma 4.1(i). But we also haveR ≤ 1−P andR ≤ 1−Q, henceR ≤ (1−P )∧ (1−Q).
Adding the two inequalities we obtain2R ≤ 1, thusR = 0 sinceR is a projection. Therefore

((P ∨Q)− P ) ∧ ((P ∨Q)−Q) = 0.

The events(P ∨Q)−P and(P ∨Q)−Q are thus mutually exclusive. If we assume axiom (9)
they are therefore also orthogonal, hence

((P ∨Q)− P )((P ∨Q)−Q) = (P ∨Q)−Q− P + PQ = 0

AJMAA, Vol. 2, No. 2, Art. 5, pp. 1-13, 2005 AJMAA

http://ajmaa.org


8 FRANK HANSEN

or PQ = P + Q − (P ∨ Q). Since the right hand side is symmetric inP andQ we obtain
PQ = QP. ThereforeF is commutative.

Corollary 4.4. A representation of the general model is a representation of the standard model,
if and only if axiom (9) is satisfied.

4.1. Securities and portfolios. Let (F , H) be a representation of the general model. An event
P is also called a pure security. It pays one unit if it obtains and zero if it does not. In the
standard model a pure security is called an Arrow security. The pure securitiesP and1−P are
complementary events. An elementA ∈ B(H) of the form

(4.2) A =
k∑

i=1

λiPi,

whereP1, . . . , Pk are mutually orthogonal projections inF with sumP1 + · · · + Pk = 1 and
λ1, . . . , λk are real numbers, is called a simple security. The projectionsP1, . . . , Pk are the
events associated with the security and the numbersλ1, . . . , λk are the corresponding dividends.
Since exactly one of the eventsP1, . . . , Pk obtains, we know thatA pays one of the numbers
λ1, . . . , λk as dividend.

Theorem 4.5.Let (F , H) be a representation of the general model, and letP be a self-adjoint
projection onH. If there exists an upwards filtering net(Ai)i∈I of positive semi-definite simple
securities such thatAi ↗i P, thenP ∈ F .

Proof. SupposeA is a positive semi-definite simple security majorized byP, that is

A =
k∑

j=1

λjQj ≤ P,

whereλ1, . . . , λk are non-negative numbers andQ1, . . . , Qk are orthogonal projections inF
with sum one. ThenλjQj ≤ A ≤ P for j = 1, . . . , k and thus, forλj > 0, we obtainλj ≤ 1
andQj ≤ P. Consequently,

A =
k∑

j=1

λjQj ≤
∑
λj>0

Qj = Q ≤ P.

But sinceQ is a projection inF , we derive thatP is the majorant projection of a family of
projections inF , henceP ∈ F by Theorem 4.2.

Definition 4.2. Let (F , H) be a representation of the general model. An operatorA ∈ B(H) is
called a security, if all its spectral projections are events inF . The set of securities is denoted
by A(F).

Definition 4.3. Let (F , H) be a representation of the general model. The space of portfolios
L(F) is the norm closed linear subspace ofB(H) generated byA(F).

The spectral projections of a portfolio are not generally included inF and may therefore not
be observable events. There is hence a sharp distinction between securities and portfolios in the
general model, while the distinction is more blurred and non-essential in the standard model.
We find this situation quite natural as we would not expect to be able to replicate a general
portfolio as a single security with a well-defined associated family of events and dividends. An
example of a portfolio is an operator of the form

(4.3) A =

∫
At dµ(t),
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wheret → At is a bounded norm continuous family of securities andµ is a bounded positive
measure.

4.2. Expectations. We consider a representation(F , H) of the general model. Subjective be-
liefs are specified by norm continuous linear mappingsϕ : L(F) → C satisfying

(1) ϕ(1) = 1
(2) ϕ(A) ≥ 0 for any positive semi-definiteA ∈ L(F)
(3) ϕ(Ai) ↗i ϕ(A) for each upwards filtering net(Ai)i∈I in L(F) converging to a portfolio

A ∈ L(F),

and we denote byS(F) the set of such mappings. In the case of the standard model these
mappings are given by probability measures on the state space.

If an agent’s expectations are given byϕ ∈ S(F) andP ∈ F thenϕ(P ) is the expected
probability ofP occurring. Moreover, for eventsP, Q ∈ F we have the implication

P ≤ Q ⇒ ϕ(P ) ≤ ϕ(Q).

It follows, sinceϕ(Q) − ϕ(P ) = ϕ(Q − P ) ≥ 0 where we used the linearity ofϕ and(2).
Agents in the economy are thus forced to consider more comprehensive events to be also more
likely. The following result is standard4 .

Lemma 4.6. If A is an element inL(F) andϕ(A) = 0 for all ϕ ∈ S(F), thenA = 0.

If P, Q ∈ F are two events such thatϕ(P ) = ϕ(Q) for everyϕ ∈ S(F), thenP = Q
according to the above lemma. That is, if all possible agents agree on the likelihood of two
events, then the events coincide.

If the condition in axiom (9), that is the implication

P ∧Q = 0 ⇒ P ≤ 1−Q

holds for some family of events inF , then

P ∧Q = 0 ⇒ ϕ(P ∨Q) = ϕ(P ) + ϕ(Q)

for such events just like in the standard model. This follows because the majorant eventP ∨Q
to two mutually orthogonal eventsP andQ is the algebraic sumP + Q. In general, as we shall
demonstrate in the next section, there exist mutually exclusive eventsP, Q ∈ F such that

ϕ(P ∨Q) 6= ϕ(P ) + ϕ(Q)

for someϕ ∈ S(F).
We calculate the expected dividend for aϕ ∈ S(F) of the simple security in (4.2) to be

k∑
i=1

λiϕ(Pi) = ϕ(A).

If A is a security with spectral measureE it follows thatB → ϕ(E(B)) is a bounded positive
Borel measure with compact support and the expected dividend

(4.4)
∫

λ dϕ(E(λ)) = ϕ(A)

for eachϕ ∈ S(F).

4Indeed, the functionalϕξ defined by settingϕξ(B) = (Bξ | ξ) for B ∈ L(F) is for each unit vectorξ ∈ H in
S(F), so we have(Aξ | ξ) = 0 by assumption. By polarization we obtain(Aξ | η) = 0 for all ξ, η ∈ H, hence
A = 0 as desired.
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The von Neumann algebraL∞(Ω,F , µ) in the standard model is finite dimensional when
the state spaceΩ is essentially finite. Corresponding to this case we may in the general model
consider representations(F , H) whereH is a Hilbert space of finite dimension.

Proposition 4.7. Let (F , H) be a representation of the general model and assume that the
Hilbert spaceH is of finite dimension. Then there exists to eachϕ ∈ S(F) a positive semi-
definite operatorB in L(F) with traceTrB = 1 such that

ϕ(A) = Tr(AB)

for eachA ∈ L(F).

Proof. Applying Hahn-Banach’s theorem we may extendϕ, defined on the closed linear sub-
spaceL(F), to a positive linear functional̃ϕ on B(H) with ϕ̃(1) = 1. Hence there exists [10,
4.6.18] a positive semi-definite operatorC ∈ B(H) with traceTrC = 1 such that

ϕ̃(A) = Tr(AC) ∀A ∈ B(H).

The linear spaceB(H) is a (finite dimensional) Hilbert space with the inner product defined by
(A | B) = Tr(A∗B). The orthogonal projection (with respect to this inner product) ontoL(F)
is thus a conditional expectationΦ : B(H) → L(F). SettingB = Φ(C) we obtain

ϕ(A) = ϕ̃(A) = Tr(AC) = Tr(A Φ(C)) = Tr(AB)

for eachA ∈ L(F). Furthermore,B ∈ L(F) andTrB = ϕ(1) = 1.

4.3. The interpretation of a portfolio. Let (F , H) be a representation of the general model,
and suppose that an agent with beliefs given byϕ ∈ S(F) consider two securitiesA1 andA2 in
A(F).

The expected dividend of the portfolio consisting of the two securities is given by the sum
ϕ(A1) + ϕ(A2), and sinceϕ is linear this figure is equal toϕ(A1 + A2). The operatorA1 +
A2 ∈ L(F) may therefore be used to calculate the agent’s expected dividend coming from the
portfolio of the two securities. In fact, it follows from Lemma 4.6 that the algebraic sumA1+A2

is the only operator inL(F) reproducing the expected dividend of the portfolio for all possible
agents.

Scholium 4.8.A portfolio of two securitiesA1 andA2 in A(F) is represented by the algebraic
sumA1 + A2 ∈ L(F).

We should notice that the representing operatorA1 + A2 may not be a security since it is
entirely possible that some of its spectral projections are not inF . In fact every pair of events,
associated withA1 andA2 respectively, may be mutually exclusive. In the standard model we
may add dividends in each state, but such a description is not generally possible in the general
model.

5. ELLSBERG ’ S PARADOX

Let (F , H) be the representation of the general model such thatH is of dimension three and
F is the set of all self-adjoint projections onH. Note that in this caseL(F) = B(H).

We consider three eventsA, B andC representing the drawing of a red, a blue, and a black
ball from a box. They are given by the projections:

A =

 1 0 0
0 0 0
0 0 0

 , B =

 0 0 0
0 1 0
0 0 0

 , C =
1

3

 1 1 1
1 1 1
1 1 1

 .
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It is an easy calculation to show that the events are mutually exclusive, that isA ∧ B = 0,
B ∧C = 0, andA∧C = 0. The event of drawing either a red ball or a black ball, or a blue ball
or a black ball are given by the projections

A ∨ C =

 1 0 0
0 1/2 1/2
0 1/2 1/2

 and B ∨ C =

 1/2 0 1/2
0 1 0

1/2 0 1/2

 .

We consider expectationsϕ ∈ S(F) by settingϕ(A) = (Aξ | ξ) for A ∈ L(F) where the unit
vectorξ = 2−1(

√
2,−1, 1) and calculate

ϕ(A) =
1

2
ϕ(A ∨ C) =

1

2

ϕ(B) =
1

4
ϕ(B ∨ C) =

5

8
+

√
2

4
' 0.9786.

If the pay-offs of the eventsA, B andC are equal, then a rational agent with monotone pref-
erences will choose the events with the highest probabilities and therefore preferA for B, but
B ∨ C for A ∨ C. It is thus rational to prefer a red ball for a blue, but a blue ball or a black ball
for a red ball or a black ball, although such preferences contradict Savage’s Postulate 2 or the
"Sure-Thing Principle". This is obtained without using non-additive measures.

Sinceϕ(C) = 1/6 we haveϕ(A∨C) < ϕ(A)+ϕ(C) while ϕ(B ∨C) > ϕ(B)+ϕ(C). We
realize that there is no simple relationship between the probabilities of two mutually exclusive
events and the probability of their majorant event. This is very natural in every day life. The
expected probability of building either of two competing bridge designs at a certain location is
not the sum of the expected probabilities of building each of them.

6. ARBITRAGE FREE ASSET VALUATION

6.1. A one-period model. Let (F , H) be a representation of the general model. We shall
assume that the Hilbert spaceH is of finite dimension which corresponds to a finite state space
in the standard model. This is far from the most general situation that can be handled, but it has
the advantage that we are able to explain the theory without using general tools from functional
analysis.

We consider an economy consisting ofn securitiesA = (A1, . . . , An) in A(F) with beginning-
of-period price vectorq = (q1, . . . , qn). A portfolio θ · A is given by a vector of weights
θ = (θ1, . . . , θn) and the beginning-of-period price of the portfolio isθ · q. The expectations of
an agent are specified by aϕ ∈ S(F), and the agent’s expected return of the portfolio is thus

ϕ(θ · A) =
n∑

i=1

θiϕ(Ai).

Let Tr denote the trace onB(H).

Definition 6.1. An arbitrage is a portfolio vectorθ ∈ Rn such thatθ ·A ≥ 0 and either the price
θ · q < 0, or the priceθ · q = 0 andθ · A is non-vanishing.

Theorem 6.1. There is no arbitrage in the economy(F , H,A, q), if and only if there exists a
positive definite elementB ∈ L(F) such that the asset pricesqi = Tr(AiB) for i = 1, . . . , n.

Proof. Suppose there is a positive definite elementB ∈ L(F) such thatqi = Tr (AiB) for
i = 1, . . . , n and letθ ∈ Rn be any portfolio vector. Then

θ · q = θ1q1 + · · ·+ θnqn = θ1Tr(A1B) + · · ·+ θnTr(AnB)

= Tr((θ · A)B) = Tr(B1/2(θ · A)B1/2).
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The trace is a positive linear functional, thusθ · q ≥ 0 for θ · A ≥ 0. If in addition θ · A is non-
vanishing, then the operatorB1/2(θ ·A)B1/2 is positive semi-definite and non-vanishing, thus it
has positive trace. Therefore the portfolio priceθ · q > 0 and there are no arbitrage possibilities.
We consider the real vector spaceR×L(F)sa with the positive coneK = [0,∞)×L(F)+ and
the subspace

M = {(−θ · q, θ · A) | θ ∈ Rn}.

Suppose there are no arbitrage possibilities. ThenM ∩ K = {(0, 0)} and sinceK is convex,
there exists a hyperplaneU in R× L(F)sa such that

M ⊆ U and U ∩K = {(0, 0)}.

Consequently, there exists a continuous linear functionalF on R × L(F)sa with kernel U,
and we may without loss of generality assumeF (λ, x) > 0 for each(λ, x) ∈ K\{(0, 0)} and
F (0, 1) = 1. In particular, the numberα = F (1, 0) > 0. SinceF is linear we obtain

F (λ, x) = F (λ, 0) + F (0, x) = λα + F (0, x) λ ∈ R, x ∈ L(F)sa.

The linear functionalx → F (0, x) may be extended to a positive linear functionalϕ in S(F)
and this implies, cf. Proposition 4.7, the existence of a positive definite elementC ∈ L(F) such
thatF (0, x) = ϕ(x) = Tr(xC) for anyx ∈ L(F). SinceM ⊆ U we thus have

F (−θ · q, θ · A) = −(θ · q)α + Tr((θ · A)C) = 0

for any portfolio vectorθ ∈ Rn. SettingB = α−1C we obtainB > 0 and

θ · q = Tr((θ · A)B) ∀θ ∈ Rn.

In particularqi = Tr(AiB) for i = 1, . . . , n.

Suppose there is riskless borrowing in the arbitrage free economy(F , H,A, q), that is a
portfolio θ ·A given by a portfolio vectorθ ∈ Rn such that the expected end-of-period dividend
ϕ(θ · A) = 1 for any ϕ ∈ S(F). Thenθ · A is the identity matrix by Lemma 4.6, and the
beginning-of-period price of the portfolio

θ · q = Tr((θ · A)B) = TrB

for a positive definiteB ∈ L(F). The trace ofB is therefore the discount on riskless borrowing.
Let us in this situation define the density matrix

Q = (TrB)−1B

and setρ = Tr(B). We define expectationsEQ ∈ S(F) by setting

EQ(X) = Tr(QX) X ∈ L(F).

Note thatEQ(1) = TrQ = 1. The mappingEQ is equivalent to the trace sinceB is positive
definite, and the security prices

qi = Tr(AiB) = ρTr(QAi) = ρEQ(Ai) i = 1, . . . , n

are the discounted expected dividends with respect to the equivalent functionalEQ ∈ S(F).
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