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events, and we exhibit a large class of representations called the general model. Some of the
representations are equivalent to the so called standard model in which observable events are
modelled by an algebra of measurable subsets of a state space, while others are not compatible
with such a description. We show that the general model collapses to the standard model, if and
only if an additional axiom is satisfied. We argue that this axiom is not very natural and thus
assert that the standard model may not be general enough to model all relevant phenomena in
economics. Using the general model we are (as opposed to Schmeidler [16]) able to rationalize

Ellsberg’s paradox without the introduction of non-additive measures.
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2 FRANK HANSEN

1. INTRODUCTION

The model developed by Arrow, Debreu and others (the standard model) is accepted by
most economists as the foundation of the modelling of the behavior of agents exposed to risk.
Knight [11] introduced the distinction between the notions of "measurable uncertainty”, which
can be expressed by a well-defined probability distribution known to the agents, and "unmea-
surable uncertainty" describing the circumstance arising, when agents only have vague or non-
existing ideas about the rules of the world. The former concept is by convention denoted risk
and the latter uncertainty. Savage |[15] formulated axioms that capture the situations where
probability distributions can be defined, and the subjects therefore are exposed only to risk and
not to uncertainty. Ellsberg [6] constructed some hypothetical experiments designed to check
compliance with the Savage axioms and interviewed people about their personal choices and
preferences in the experiments. The result was that some people, including Savage himself, gave
answers not compatible with adherence to the Savage axioms. Schmeidler and others [16, 13, 9]
introduced the notion of non-additive measures, and in the process they extended the reach of
mathematical modelling into the realm of uncertainty. Ellsberg’s paradox can in particular be
explained within this new setting.

In the standard model an event is represented by a measurable subset of a state space, and the
event occurs if the true state of nature represented by an element of the state space is contained
in the subset representing the event. We note that the one-point set representing the true state of
nature may not be a measurable set and therefore not observable to the agents. It is nevertheless
assumed that "knowledge" of the true state of nature makes it possible to determine which events
have occurred.

This way of modelling events is ubiquitous in much economic thought, although it places
severe and unrealistic constraints on the behaviour of agents. For example, it requires agents to
agree on which events have occurred, once the state is known. This constraint alone is very far
from the situation encountered in every day life. Agents of the real world may very well disagree
on the occurrence of historical events even after hundreds of years of study. Confronted with
such critique of the standard model, many economists answer that the model in question is not
sufficiently specified and with sufficient information given every agent will realize the true state
of nature, and they will then all agree on which events have occurred and which have not. Any
disagreement is thus due only to lack of knowledge and disappears with the enlightenment of
the agents.

1.1. The structure of the paper. We reformulate Arrow and Debreu’s model (the standard
model) in terms of a lattice of observable events without reference to the state space, and then
demonstrate that this formulation is completely equivalent to the traditional description, includ-
ing the reappearance of the state space as a purely mathematical construction. The theory is
based on the notion of an event which we consider more fundamental than the notion of a state.

We give an axiomatic description of the minimal requirements to any sensible theory of
decision making, before introducing the so called general model of decision making which is
then shown to satisfy eight listed axioms.

We discuss an additional axiofr] (9) and demonstrate that the general model of decision mak-
ing is equivalent to the standard model if and only if this additional axiom is satisfied.

We introduce securities, portfolios and expectations in the general model. There is a sharp
distinction between the notions of security and portfolio in the general model. Securities or bets
are valued solely in terms of a monetary numeraire. The theory does not in its present version
support a more advanced notion of utility.

We notice that the additional axiofn| (9) implies that the expected probability of the majorant
event (union) of two mutually exclusive events is the sum of the expected probabilities of each
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of the events, and we argue that this axiom may be too strong in many situations of interest to
economists. It is in particular incompatible with a rational explanation of Elsberg’s paradox.

We demonstrate that the behaviour of the agents in Elsberg’s paradox can be rationally ex-
plained in a very simple representation of the general model. This is done without any additional
assumptions or the introduction of non-additive measures aslin [16].

We finally demonstrate that the notion of arbitrage free asset evaluation may be introduced
in the general model, and that the absence of arbitrage can be characterized in terms which are
quite close to the familiar statements in the standard model. If there is riskless borrowing in an
arbitrage free economy, then there is an asset equally valued by all agents.

2. THE STANDARD MODEL

The observable (or knowable) events in (a representation of) the standard model are given
by the measurable subsets of a state space, or equivalently by their indicator functions. These
functions are by themselves projections when acting as multiplication operators. Let the state
spacel) be equipped with @a-algebra (or tribe)F of subsets. An event is thus a séte F,
or equivalently the indicator functioh,, or equivalently the projection operatéy, defined by
setting

(2.1) (Pad)(w) = 1la(w)i(w)  we,

for eachF-measurable functiof on €.

If an objective probability measuyeis given, rendering(, F, 1) into a measure space, then
P, becomes a self-adjoint projection on the Hilbert spa¢&?, F, ). We also assume that
setsA, B € F represent the same event if they only differ on a null set, or equivalently if
P, = Pg. Inherent in this formulation is the assumption that the measure space is complete. To
avoid excessive generalizations we shall assumethaia locally compact, second countable
Hausdorff space and thatis the completion of the Riesz representation of a Radon measure
(the integral of continuous functions with respecjto We refer to Bourbaki [3] for a general
introduction to integration theory.

Two eventsd, B € F are represented by commuting projectidghsand Pg. Indeed

(PaPp&)(w) = Lla(w)(Ppé)(w) = La(w)lp(w)s(w)
:(PBPAf)(w) Yw € Q

for each¢ € L?(Q, F, u). We collect together a number of well-known probabilistic concepts
related to events in the standard model of decision making and write down equivalent properties
in terms of the representing projections.

Proposition 2.1. Let A, B € F be events in (a representation of) the standard model, and let
P, and Py be the representing self-adjoint projections on the Hilbert spade), 7, i1).

(1) The eventB is majorizing the evend, if B occurs with probability one provided
occurs. The property is equivalent to the inequaltty < Pg.

(2) The events!, B have a minorant event} A B, which is the maximal event in the set of
events majorized by both and B. It is represented by the orthogonal projection on the
intersection of the ranges @t, and Py in the Hilbert spacd.?(2, F, u1).

(3) The events!, B have a majorant eventl \V B, which is the minimal event in the set of
events majorizing botll and B. It is represented by the orthogonal projection on the
closure of the sum of the ranges®f and P5 in the Hilbert space.?(2, F, 11).

(4) The eventsA, B are said to be mutually exclusive, if their minoratitA B = 0. The
property is equivalent to the inequalityy < 1 — Pg, wherel denotes the identity
operator on the Hilbert spacé?(2, F, ).
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(5) The eventsi, B are said to be complementary, if the probability of exactly one of them
occurring is one. The property is equivalent to the equaftan= 1 — Pg.

The events in the standard model are thus represented by self-adjoint projections on a Hilbert
spacel?(Q2, F, i) given by multiplication operators of the for.l). The so called simple
functions on(2 are linear combinations of indicator functions for measurable subsets, and they
(more precisely, their equivalence classes) are by construction weakly deh%&{h F, u).

We are now able to reformulate the standard model without reference to the state space.

2.1. The standard model reformulated.

Definition 2.1 (the standard model)The observable events are specified by a farilyf
commuting (self-adjoint) projections on a separable Hilbert spasatisfying:

(i) The zero projection ot (denoted 0) and the identity projection éh(denoted 1) are
both inF.
(i) 1 — P € F for arbitraryP € F.
(i) P AQ € FforarbitraryP, Q € F.
(iv) >, P € F for any family (P;);c; of mutually orthogonal projections it

It is a consequence of Theor¢ml4.2 to be proved later that a family of projegtieatsfying
the assumptions of Definitign 2.1 is a Booleamlgebral[17, page 10].

Proposition 2.2. The complex vector spade (F) generated by a family of commuting pro-
jectionsF satisfying the conditions in Definitign 2.1 is a commutativalgebra, where each
element can be written as a linear combination of mutually orthogonal projectidn in

Proof. We first notice thatPQQ = P A @ for projectionsP, ) € F. Indeed, since” and @
commute we hav®’() = PQP < P andPQ = QPQ < @, thusPQ < P A Q. On the other
handP A Q = P(P A Q)P < PQP = PQ. We thus obtainPQ € F from Definition[2.] (iii),
and since

P+Q=P(1-Q)+(1—-P)Q +2PQ,
we derive that a linear combination of projectionsArcan be written as a linear combination
of orthogonal projections itF, and that the product of linear combinations of projections in
JF again is a linear combination of projections/ih The algebral,(F) is invariant under the
adjoint operation and becomes an involutive algepra.

We denote by.(F) the norm closure oL, (F). Since the sum, the product and the adjoint
operations are continuous in the norm topology, we obtaintha) is a norm closed commu-
tative x-algebra of bounded linear operators on the Hilbert spate

Proposition 2.3. The spectral projections of the self-adjoint operatord.ii¥) are in F.

Proof. Let X be a self-adjoint element ib(F). There exists a sequence of self-adjoint elements
(X,,) in Lo(F) such that| X — X,,|| — 0 for n — occ. Since(X,,) is a Cauchy-sequence we can
find an increasing sequenae, no, ... such that

1 1 1

X, X, <= — k=1,2,....
1% al k(k+1) k k+1
It follows that ) )

Xnk_ESXnk+1_k——|—:l_ k:1,2,

The sequencgYy), whereY, = X, — k! € Ly(F), is thus monotone increasing 6.

LA norm closedk-algebra of linear operators on a Hilbert space is called a (coneréta)gebra. Thud.(F)
is an abelian (commutative)*-algebra.

AIMAA Vol. 2, No. 2, Art. 5, pp. 1-13, 2005 AIJMAA


http://ajmaa.org

A GENERAL THEORY OF DECISION MAKING 5

Since L(F) is commutative any increasing function is monotonelgrf), hence the spec-
tral projectionskt (¢, o) of Y, are monotone increasing necessarily to the spectral projection
E(t,00) of X. It thus follows from Theorenj 4]2 that the spectral projectib(t, co) is in F
for eacht € R. Any other spectral projectiof’(B) of X associated with a Borel sétin R is
contained in the Boolian-algebra generated by the fami{y(¢, ) | t € R} of commuting
spectral projections, and singeis closed under these operations, cf. Thedrern 4.2, we obtain
E(B)e F. 1

Theorem 2.4. Let the observable events be given by a farfilypf commuting self-adjoint
projections on a separable Hilbert space as specified in Defirjitign 2.1. There exists a probability
space(2, S, 1), where( is a locally compact, second countable Hausdorff spaceaisthe
completion of the Riesz representation of a Radon measure, and an isomofiphisi¥#) —
L>(Q,S, 1) such thatP € F if and only if ®(P) is (the equivalence class of) the indicator
function for a setinS.

Proof. We have shown that the subspaleF) is a commutative”*-algebra with the special
property that it contains all spectral projections of each of its self-adjoint elements. In fact, we
proved that each such projection is already includefl.i particular, each projection ib(F)

is in F, and sinceF is stable under arbitrary sums of orthogonal projections, cf. Definition
(1v), we derive thatL(F) has the same property. But(@-algebra of linear operators

on a Hilbert space which contains all the spectral projections of its self-adjoint elements and
is stable under arbitrary sums of mutually orthogonal projections is necessarily strongly (and
weakly) closed, cf.[[12, 2.8.4v) Theorem] and is therefore a von Neumann algébg&ince

it is also abelian (commutative) and is separable there exists, cf. [12, 3.4.4 Theorem], a
probability spac€(2, S, 1) where( is a locally compact, second countable Hausdorff space
andy is the completion of the Riesz representation of a Radon measure, and an isomorphism
® : L(F) — L>=(Q, S, n). Since the set of projections ib(F) is F, cf. Propositior] 2.3, the

last part of the statement follows.

In this formulation of the standard model we no longer rely on the notion of a state space,
which may be inaccessible to observation. The probability spacs, 1) is a purely mathe-
matical construction generated by the lattice of observable events.

3. THE LATTICE OF EVENTS

In this section we list the most basic and intuitive criteria associated with the notion of an
event. They constitute the minimal requirements to any sensible theory of decision making. The
(observable) events are represented by a latfice<), which is a partially ordered set such that

(1) There are elementsand1 in F such that < a < 1foralla € F.

(2) To arbitrary events, b € F there is a minorant eventA b € F. It has the property that
c < a A bforany event € F with ¢ < aandc < b.

(3) To arbitrary events, b € F there is a majorant eventv b € F. It has the property that
a Vb < cforanyevent € Fwitha < candb < c.

If « < bforeventsa,b € F, then we considel to be a larger or more comprehensive event
thana. The minorant event A b is for arbitrary events, b € F interpreted as the combination
of a andb, while the majorant event (uniom)V b represents the event of eitheor b.

The observable events are divided into two classes: The obtaining (occurring) events and the
non-obtaining events. We assert by convention thegpresents the vacuous (empty) event,
while 1 represents the universal (sure) event. We assume that i for eventse, b € F anda

2None of the theorems in Section 4 depends on the material in this section.
3A von Neumann algebra is a weakly closedlgebra of linear operators on a Hilbert space.
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is obtaining, them is also obtaining. This is in line with the interpretationbads being a more
comprehensive event than
We furthermore assume the existence of an orthocomplementatidn thiat is a bijective

mappinge — a* of F onto itself such that

4 a<b=b-<at forallabecF.

(5) att =a forallac F.

6) anat =0 forallac F.

(7Yavat=1 forallacF.

Definition 3.1. We say that events andb in F are mutually exclusive ifi A b = 0. They are
said to be orthogonal if < b*.

Proposition 3.1. We list the following immediate consequences of the preceding axioms:
(i) 1+ =0andot = 1.
(i) The events anda' are complementary, meaning that exactly one of them occurs.
(iii) The orthocomplementation mapping— a is a bijection from the set of occurring
events onto the set of non-occurring events.
(iv) Orthogonal events are mutually exclusive.

Proof. We deduce) from (1) and [(4), andii) from (6) and [(}). In combination witf [5) we
then obtain(iii). Suppose: < b+ andc is an event such that< « andc < b. We then have
¢ < a < btandthus: < bA bt =0 by (6). Therefores A b = 0 which proves(iv). a
We furthermore assume the following extension of axigms (2) [dnd (3):
(8) To any family(a;);c; of events inF there is a minorant event; a; in 7 and a majorant
eventV,csa; in F.

We also consider the following axiom, which we do not in general require to be valid:

9 anb=0=a<b- foralla,becF.
Axiom (9) states that mutually exclusive events are orthogonal.

4. THE GENERAL MODEL

We will not try to determine all representations of the "lattice of events" satisfying the eight
axioms in the preceding section, but rather exhibit a large class of representations.

Definition 4.1 (the general model)A representation of the general model is specified by a
family F of projections (the observable events) on a separable Hilbert $paed¢isfying:
(i) The zero projection ot (denoted 0) and the identity projection éh(denoted 1) are
both contained i

(i) 1 — P € F for arbitraryP € F.

(i) P AQ € F for arbitrary P, Q € F.

(iv) > e, Ps € F for any family (P;);c; of mutually orthogonal projections i
The minorant event t@, ) € F is the minorant projectio® A () on the intersection of the
ranges ofP and(@. The majorant event is the majorant projectiBry ) on the closure of the
sum of the ranges. The orthocomplementation is giveby= 1 — P.

We first collect some useful facts.

Lemma4.1. If P and( are self-adjoint projections on a Hilbert space, then

() PANQ=1-(1-P)V(1-Q)
() P<Q = Q-P=QA(1—P).
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Proof. By construction the majorarii — P) v (1 — Q) majorizesl — P and1 — @ hence
1—(1—-P)V(1-Q)ismajorized byP and@, thusPAQ >1—(1—-P)Vv(1—-@Q). Onthe
otherhand — (1-P)V(1-Q)>1—-(1-PAQ)V(1—-PAQ)=PAQ.This proveg).

SupposeP < . The difference) — P is a projection and sinc@ > Q — P andl — P >
@ — P,we obtainQ A (1— P) > @ — P. Let R be a projection such thdt < Q@ andR < 1— P.
We obtain

R+P=QRQ+QPQ=QR+P)Q<Q,

henceR < @ — P andthusQ A (1 — P) < @ — P. This provegii). i

Theorem 4.2. A family F of projections on a separable Hilbert spaéksatisfying the condi-
tions in Definitior] 4.]L, with lattice operations and orthocomplementation as specified, satisfy
the axioms[([1) tq(8).

Proof. Axioms (1) and[() follow from condition&) and(iii) respectively, and axiom(3) then
follows by invoking Lemmli). The orthocomplementation map defined®y = 1 — Pis

by condition(i) a bijection ofF, and the axioms {4)] [5), {6) arld (7) are well-known properties
of projections.

We shall finally consider axiom(8). LéF;);c; be a family of projections itF. We consider
the subsetg C I such that the majora; = V<, F; is in F. The setD of such subsets of
I is inductively ordered. Indeed, if(«) is a monotone increasing netIawith union J, then
the majorant projectio®; is the limit of the monotone increasing gt ) of projections in
F. But since a monotone increasing net/nby transfinite induction can be replaced with a
net inF of orthogonal projections with the same majorant, cf. Lerhmg#)1we obtain from
condition(:v) that the majoranP; is in 7 and thus/ € D. Therefore, by Zorn’s lemmd) has
a maximal element,. If the majorant

P=\/P<\/P
Jj€Jo el
then there is an € I such thatP? < P Vv P,. But sinceP ¢ F and thusP Vv P, ¢ F

this contradicts the maximality of,. We conclude that,.; P, = P € F. The statement for
minorants then follows by Lemnja 4(1). &

Theorem 4.3. A representatior of the general model is commutative, if and only if axipmm (9)
holds.

Proof. If F is commutative, the® AQ = P(Q for any projections” and@ in L(F). Therefore,
if P A Q = 0 the projections are orthogonal, and thais< Q+.
Let P and(@ be arbitrary events itF. Since both? < P Vv @ and@ < PV () we obtain
41) (PVQ) -P=(PVQA(l-P) and (PVQ)-Q=(PVQA(l-Q)
by Lemmd 4.]i(i7). The projectiongP Vv Q) — P and(P v Q) — @ are therefore events ift
by (iii) and (i) in Definition[4.1. LetR be a projection majorized by bot® v Q) — P and
(P V Q) — Q. We have in particular
R<PVQ=1-(1-P)N(1-0Q),
cf. Lemmd 4.](¢). Butwe also havé: <1—PandR <1—@Q, henceR < (1-P)A(1-Q).
Adding the two inequalities we obtai? < 1, thusR = 0 sinceR is a projection. Therefore
(PVQ)~P)A((PVQ)—Q)=0.
The events P v Q) — P and(P Vv Q) — @ are thus mutually exclusive. If we assume axi¢n (9)
they are therefore also orthogonal, hence

(PVQ)=P)((PVQ)-Q)=(PVQ)-Q—-P+PQ=0
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or PQ = P+ @ — (P V Q). Since the right hand side is symmetric ihand ) we obtain
PQ = QP. ThereforeF is commutative g

Corollary 4.4. A representation of the general model is a representation of the standard model,
if and only if axiom|[() is satisfied.

4.1. Securities and portfolios. Let (F, H) be a representation of the general model. An event
P is also called a pure security. It pays one unit if it obtains and zero if it does not. In the
standard model a pure security is called an Arrow security. The pure seciriied] — P are
complementary events. An elemetic B(H) of the form

k
(4.2) A=>"\P,

i=1
where P, ..., P, are mutually orthogonal projections jA with sumP, +---+ P, = 1 and
A1, ..., Ax are real numbers, is called a simple security. The projectidns. ., P, are the

events associated with the security and the numbgers . , A, are the corresponding dividends.
Since exactly one of the evenis, . . ., P, obtains, we know tha#l pays one of the numbers
A1, ..., A\ as dividend.

Theorem 4.5. Let (F, H) be a representation of the general model, andidie a self-adjoint
projection onH. If there exists an upwards filtering net;);; of positive semi-definite simple
securities such thatl; ; P, thenP € F.

Proof. SupposeA is a positive semi-definite simple security majorizedmyhat is
k
A=>"NQ; <P,
j=1

where\q, ..., \, are non-negative numbers any, ..., (), are orthogonal projections &
with sum one. Then\;Q); < A < Pforj =1,...,k and thus, for\; > 0, we obtain); < 1
and@; < P. Consequently,

k
A=Y "NQ; <> Q=Q<P
j=1 ;>0
But since( is a projection inF, we derive thatP is the majorant projection of a family of
projections inF, henceP € F by Theorenj 425

Definition 4.2. Let (F, H) be a representation of the general model. An opetéaterB(H) is
called a security, if all its spectral projections are event#iThe set of securities is denoted
by A(F).

Definition 4.3. Let (F, H) be a representation of the general model. The space of portfolios
L(F) is the norm closed linear subspaceRifH ) generated byl(F).

The spectral projections of a portfolio are not generally includei Bnd may therefore not
be observable events. There is hence a sharp distinction between securities and portfolios in the
general model, while the distinction is more blurred and non-essential in the standard model.
We find this situation quite natural as we would not expect to be able to replicate a general
portfolio as a single security with a well-defined associated family of events and dividends. An
example of a portfolio is an operator of the form

(4.3) A= [ Acaute),
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wheret — A, is a bounded norm continuous family of securities and a bounded positive
measure.

4.2. Expectations. We consider a representatiQft, H) of the general model. Subjective be-
liefs are specified by norm continuous linear mappipgs.(F) — C satisfying

(1) ¢(1) =1

(2) p(A) > 0 for any positive semi-definitd € L(F)

(3) p(A;) i w(A) for each upwards filtering nétl; )., in L(F) converging to a portfolio
A€ L(F),

and we denote by (F) the set of such mappings. In the case of the standard model these
mappings are given by probability measures on the state space.

If an agent’s expectations are given byc S(F) and P € F thenp(P) is the expected
probability of P occurring. Moreover, for eventB, () € F we have the implication

P<Q = ¢oP)<e@).

It follows, sincep(Q) — ¢(P) = ¢p(Q — P) > 0 where we used the linearity of and (2).
Agents in the economy are thus forced to consider more comprehensive events to be also more
likely. The following result is standatd

Lemma 4.6. If Ais an elementir.(F) andyp(A) = 0 forall ¢ € S(F), thenA = 0.

If P,Q € F are two events such that(P) = ¢(Q) for everyyp € S(F), thenP = Q
according to the above lemma. That is, if all possible agents agree on the likelihood of two
events, then the events coincide.

If the condition in axiom([(P), that is the implication

PANQR=0 = P<1-0Q
holds for some family of events i, then
PAQ=0 = ¢(PVQ)=¢(P)+¢Q)

for such events just like in the standard model. This follows because the majoranPevept
to two mutually orthogonal event’ and( is the algebraic sun® + Q. In general, as we shall
demonstrate in the next section, there exist mutually exclusive efegtsE F such that

e(PVQ)#o(P)+ Q)

for somep € S(F).
We calculate the expected dividend fopae S(F) of the simple security irff (4]2) to be

> hipl(P) = o(A).

If Ais a security with spectral measukgit follows that B — ¢(F(B)) is a bounded positive
Borel measure with compact support and the expected dividend

(4.4 [ rdeB) = o)
for eachp € S(F).
*Indeed, the functionab, defined by setting(B) = (B¢ | £) for B € L(F) is for each unit vectof € H in

S(F), so we have A¢ | ) = 0 by assumption. By polarization we obtgiA¢ | n) = 0 for all §,n € H, hence
A = 0 as desired.
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The von Neumann algebrd™>(£2, F, ;1) in the standard model is finite dimensional when
the state space is essentially finite. Corresponding to this case we may in the general model
consider representatio$’, H) whereH is a Hilbert space of finite dimension.

Proposition 4.7. Let (F, H) be a representation of the general model and assume that the
Hilbert spaceH is of finite dimension. Then there exists to eack S(F) a positive semi-
definite operatot3 in L(F) with traceTr B = 1 such that

p(A) = Tr(AB)
for eachA € L(F).

Proof. Applying Hahn-Banach'’s theorem we may extenddefined on the closed linear sub-
spaceL(F), to a positive linear functionab on B(H) with (1) = 1. Hence there exists [10,
4.6.18] a positive semi-definite operatore B(H ) with traceTrC = 1 such that

P(A) =Tr(AC) VYA€ B(H).

The linear spac#&(H) is a (finite dimensional) Hilbert space with the inner product defined by
(A | B) = Tr(A*B). The orthogonal projection (with respect to this inner product) dit6)
is thus a conditional expectatidn: B(H) — L(F). SettingB = ®(C') we obtain

0(A) = @(A) = Tr(AC) = Tr(A®(C)) = Tr(AB)
for eachA € L(F). FurthermoreB € L(F) andTrB = (1) = 1. 1

4.3. The interpretation of a portfolio. Let (F, H) be a representation of the general model,
and suppose that an agent with beliefs giverply S(F) consider two securitied; and A, in
A(F).

The expected dividend of the portfolio consisting of the two securities is given by the sum
©(A1) + ¢(As), and sincep is linear this figure is equal tp(A; + Ay). The operatord; +
A, € L(F) may therefore be used to calculate the agent’s expected dividend coming from the
portfolio of the two securities. In fact, it follows from Lemina4.6 that the algebraic.4wmA,
is the only operator iri.(F) reproducing the expected dividend of the portfolio for all possible
agents.

Scholium 4.8. A portfolio of two securities!; and A, in A(F) is represented by the algebraic
SumA; + A, € L(",E’)

We should notice that the representing operator+ A, may not be a security since it is
entirely possible that some of its spectral projections are n@t im fact every pair of events,
associated wittd; and A, respectively, may be mutually exclusive. In the standard model we
may add dividends in each state, but such a description is not generally possible in the general
model.

5. ELLSBERG’S PARADOX

Let (F, H) be the representation of the general model suchih@stof dimension three and
F is the set of all self-adjoint projections @h Note that in this casé(F) = B(H).

We consider three events, B andC' representing the drawing of a red, a blue, and a black
ball from a box. They are given by the projections:

100 000 L[
A=lo0o00 ). B=l010) C=g(111
000 000 111
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It is an easy calculation to show that the events are mutually exclusive, thani® = 0,
BAC =0,andA A C = 0. The event of drawing either a red ball or a black ball, or a blue ball
or a black ball are given by the projections

1 0 0 1/2 0 1/2
AvC=1|0 1/2 1/2 and BvC=| 0 1 0
0 1/2 1/2 1/2 0 1/2

We consider expectations € S(F) by settingp(A) = (AL | €) for A € L(F) where the unit
vectoré = 271(v/2, —1, 1) and calculate

p(A) = p(AVC) =

Tt N =

V2

If the pay-offs of the eventsl, B andC' are equal, then a rational agent with monotone pref-
erences will choose the events with the highest probabilities and therefore priefe3, but
BV Cfor Av C.ltis thus rational to prefer a red ball for a blue, but a blue ball or a black ball
for a red ball or a black ball, although such preferences contradict Savage’s Postulate 2 or the
"Sure-Thing Principle”. This is obtained without using non-additive measures.

Sincep(C') = 1/6 we havep(AV C) < p(A)+¢(C) while p(BV C) > ¢(B) 4+ ¢(C). We
realize that there is no simple relationship between the probabilities of two mutually exclusive
events and the probability of their majorant event. This is very natural in every day life. The
expected probability of building either of two competing bridge designs at a certain location is
not the sum of the expected probabilities of building each of them.

B = DN

6. ARBITRAGE FREE ASSET VALUATION

6.1. A one-period model. Let (F, H) be a representation of the general model. We shall
assume that the Hilbert spaékis of finite dimension which corresponds to a finite state space
in the standard model. This is far from the most general situation that can be handled, but it has
the advantage that we are able to explain the theory without using general tools from functional
analysis.

We consider an economy consistingiadecuritiesd = (A, ..., A,,) in A(F) with beginning-
of-period price vectoy = (q1,...,q,). A portfolio § - A is given by a vector of weights
0 = (04,...,0,) and the beginning-of-period price of the portfoliddisq. The expectations of
an agent are specified byzac S(F), and the agent’s expected return of the portfolio is thus

p(0-A)= ZeiSO(Ai)~

Let Tr denote the trace oB(H ).

Definition 6.1. An arbitrage is a portfolio vectar € R"™ such that - A > 0 and either the price
0-q <0, orthe priced - ¢ = 0 andé - A is hon-vanishing.

Theorem 6.1. There is no arbitrage in the econonif, H, A, q), if and only if there exists a
positive definite elemerit € L(F) such that the asset prices= Tr(A;B) fori =1,...,n.

Proof. Suppose there is a positive definite elem8n L(F) such thaty; = Tr(A;B) for
i=1,...,nandletd € R" be any portfolio vector. Then

0-q =01+ +0,q,=60Tr(AB)+---+0,Tr(A,B)
=Tr((6- A)B) = Tr(BY%(0 - A)BY/?).
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The trace is a positive linear functional, thusq > 0 for 6 - A > 0. If in additiond - A is non-
vanishing, then the operaté'/?(6 - A) B'/? is positive semi-definite and non-vanishing, thus it
has positive trace. Therefore the portfolio pricey > 0 and there are no arbitrage possibilities.
We consider the real vector spaex L(F),, with the positive coné< = [0, co) x L(F) and
the subspace

M=1{(-0-q,0-4)]0cR"}.

Suppose there are no arbitrage possibilities. Then K = {(0,0)} and sincek is convex,
there exists a hyperplariéin R x L(F),, such that

MCU and UNK ={(0,0)}.

Consequently, there exists a continuous linear functidgh@n R x L(F),, with kernel U,
and we may without loss of generality assufie\, z) > 0 for each(\, z) € K\{(0,0)} and
F(0,1) = 1. In particular, the numbet = F'(1,0) > 0. SinceF is linear we obtain

F(A\z)=F(\0)+F(0,2) = a+ F(0,2) AR, z€ L(F)s.

The linear functional: — F'(0,z) may be extended to a positive linear functiopah S(F)
and this implies, cf. Propositign 4.7, the existence of a positive definite elethent (F) such
that (0, z) = ¢(z) = Tr(zC) for anyz € L(F). SinceM C U we thus have

F(=0-q,0-A) = —0-¢)a+Tr((0-A)C) =0
for any portfolio vecto € R". SettingB = o~'C we obtainB > 0 and
0-q="Tr((6-A)B) Vo e R".
In particularg; = Tr(A;B)fori=1,....,n. &
Suppose there is riskless borrowing in the arbitrage free ecoridmy/, A, ¢), that is a
portfolio # - A given by a portfolio vectoé € R™ such that the expected end-of-period dividend

(0 - A) = 1foranyy € S(F). Thend - A is the identity matrix by Lemmp 4.6, and the
beginning-of-period price of the portfolio

0-q=Tr((0-A)B)=TrB

for a positive definiteB € L(F). The trace ofB is therefore the discount on riskless borrowing.
Let us in this situation define the density matrix

Q= (TrB)"'B
and sep = Tr(B). We define expectation8? ¢ S(F) by setting
EY9X)=Tr(QX) X e L(F).

Note thatE?(1) = TrQ = 1. The mappingE¥ is equivalent to the trace sindg is positive
definite, and the security prices

¢ = Te(AB) = pTr(QA) = pER(A)  i=1,....n

are the discounted expected dividends with respect to the equivalent fundiiérals (F).
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