

The Australian Journal of Mathematical Analysis and Applications

http://ajmaa.org

Volume 7, Issue 2, Article 22, pp. 1-7, 2011

THE BEST UPPER BOUND FOR JENSEN'S INEQUALITY VASILE CIRTOAJE

Received 14 June, 2010; accepted 18 October, 2010; published 4 May, 2011.

DEPARTMENT OF AUTOMATIC CONTROL AND COMPUTERS, UNIVERSITY OF PLOIESTI, ROMANIA. vcirtoaje@upg-ploiesti.ro

ABSTRACT. In this paper we give the best upper bound for the weighted Jensen's discrete inequality applied to a convex function f defined on a closed interval I in the case when the bound depends on f, I and weights. In addition, we give a simpler expression of the upper bound, which is better than existing similar one.

Key words and phrases: Jensen's inequality, Best upper bound, Weighted AM-GM inequality.

2000 Mathematics Subject Classification. 26D07, 26B25.

ISSN (electronic): 1449-5910

^{© 2011} Austral Internet Publishing. All rights reserved.

1. INTRODUCTION

Let $\tilde{x} = \{x_1, x_2, ..., x_n\}$ be a sequence of real numbers belonging to a given closed interval I = [a, b], a < b, and let $\tilde{p} = \{p_1, p_2, ..., p_n\}$ be a sequence of given positive weights associated to \tilde{x} and satisfying $p_1 + p_2 + ... + p_n = 1$. If f is a convex function on I, then the following inequality is well-known Jensen's discrete inequality [5]:

(1.1)
$$0 \le \sum_{i=1}^{n} p_i f(x_i) - f\left(\sum_{i=1}^{n} p_i x_i\right).$$

An upper global bound (depending on f and I only) of Jensen's difference

(1.2)
$$\Delta(f,\tilde{p},\tilde{x}) = \sum_{i=1}^{n} p_i f(x_i) - f\left(\sum_{i=1}^{n} p_i x_i\right)$$

is given by Dragomir in [4]:

Theorem 1.1. If f is a differentiable convex function on I, then

(1.3)
$$\Delta(f, \tilde{p}, \tilde{x}) \le \frac{1}{4}(b-a)(f'(b) - f'(a)) := D_f(a, b).$$

In [6], Simić gave an upper global bound without differentiability restriction on f:

Theorem 1.2. If f is a convex function on I and 0 , then

(1.4)
$$\Delta(f, \tilde{p}, \tilde{x}) \le \max_{p} [pf(a) + (1-p)f(b) - f(pa + (1-p)b)] := T_f(a, b).$$

Using Theorem 1.2, it is easy to show that

(1.5)
$$\Delta(f,\tilde{p},\tilde{x}) \le f(a) + f(b) - 2f\left(\frac{a+b}{2}\right) := S_f(a,b).$$

Indeed, (1.5) holds if

$$pf(a) + (1-p)f(b) - f(pa + (1-p)b) \le f(a) + f(b) - 2f\left(\frac{a+b}{2}\right)$$

for all $p \in (0, 1)$. This is equivalent to Jensen's inequality

$$(1-p)f(a) + pf(b) + f(pa + (1-p)b) \ge 2f\left(\frac{a+b}{2}\right).$$

In the present paper, we establish the best upper bound $C_{\tilde{p},f}(a,b)$ of $\Delta(f,\tilde{p},\tilde{x})$, show that $T_f(a,b)$ is the best upper global bound depending on f and I only, determine $C_{\tilde{p},f}(a,b)$ in the case of the weighted AM-GM inequality, and give a simpler expression $V_{\tilde{p},f}(a,b)$ of the upper bound, which is better than $S_f(a,b)$.

2. MAIN RESULTS

Our main results rely on an old result in [1], in virtue of which if f is a differentiable convex function on I, then Jensen's difference $\Delta(f, \tilde{p}, \tilde{x})$ is maximal when all $x_i \in \{a, b\}$. The following theorem states that this property holds without differentiability restriction on f and establishes the best upper bound $C_{\tilde{p},f}(a, b)$ of Jensen's difference Δ .

Theorem 2.1. Let \tilde{p} and \tilde{x} be defined as above, and let

$$P = \{p_{i_1} + p_{i_2} + \dots + p_{i_k}\}, \ k = 1, 2, \dots, n-1, \ 1 \le i_1 < i_2 < \dots < i_k \le n.$$

If f is a convex function on I = [a, b], then

(2.1)
$$\Delta(f, \tilde{p}, \tilde{x}) \le \max_{p \in P} [pf(a) + (1-p)f(b) - f(pa + (1-p)b)] := C_{\tilde{p}, f}(a, b),$$

with equality when some of x_i are equal to a, and the others x_i are equal to b.

The following theorem establishes the best upper bound of Jensen's difference Δ for the case when the bound depends on f and I only.

Theorem 2.2. $T_f(a, b)$ is the best upper global bound (depending on f and I only) of Jensen's difference $\Delta(f, \tilde{p}, \tilde{x})$.

For

$$p_1 = p_2 = \dots = p_n = \frac{1}{n},$$

the set P contains the distinct elements $\frac{k}{n}$, k = 1, 2, ..., n - 1. Let us define

(2.2)
$$P_0 = \left\{\frac{1}{n}, \frac{2}{n}, ..., \frac{n-1}{n}\right\}.$$

From Theorem 2.1, one gets

Corollary 2.3. Let f be a convex function on I = [a, b]. If $x_1, x_2, ..., x_n \in I$, then

(2.3)
$$\frac{f(x_1) + f(x_2) + \dots + f(x_n)}{n} - f(\frac{x_1 + x_2 + \dots + x_n}{n}) \\ \leq \max_{p \in P_0} [pf(a) + (1-p)f(b) - f(pa + (1-p)b)].$$

Applying Theorem 2.1 for f(x) = -lnx, x > 0, we get

Corollary 2.4. For I = [a, b] with 0 < a < b, let \tilde{p} , \tilde{x} and P be defined as above. Then

(2.4)
$$\frac{A(\tilde{p},\tilde{x})}{G(\tilde{p},\tilde{x})} \le \max_{p\in P} \frac{p+(1-p)u}{u^{1-p}},$$

where $A(\tilde{p}, \tilde{x}) = \sum_{i=1}^{n} p_i x_i$, $G(\tilde{p}, \tilde{x}) = \prod_{i=1}^{n} x_i^{p_i}$ and $u = \frac{b}{a}$.

From Corollary 2.4, we get

(2.5)
$$\frac{x_1 + x_2 + \dots + x_n}{n\sqrt[n]{x_1 x_2 \dots x_n}} \le \max_{p \in P_0} \frac{p + (1-p)u}{u^{1-p}} := C_n(u).$$

In addition, for b = 2a, (2.5) becomes

(2.6)
$$\frac{x_1 + x_2 + \dots + x_n}{n\sqrt[n]{x_1 x_2 \dots x_n}} \le \max_{p \in P_0} g(p) := C_n(2),$$

where

(2.7)
$$g(p) = \frac{2-p}{2^{1-p}}.$$

Similarly, applying Theorem 1.2 for f(x) = -lnx, x > 0, we get [6]

(2.8)
$$\frac{A(\tilde{p},\tilde{x})}{G(\tilde{p},\tilde{x})} \le \frac{(u-1)u^{\frac{1}{u-1}}}{e\ln u}$$

For b = 2a, (2.8) becomes

(2.9)
$$\frac{x_1 + x_2 + \dots + x_n}{n\sqrt[n]{x_1 x_2 \dots x_n}} \le \frac{2}{e\ln 2} \approx 1.06147.$$

Logically, we have $C_n(2) \leq \frac{2}{e \ln 2}$ for any integer $n \geq 2$. For instant, $C_2(2) = g(\frac{1}{2}) \approx 1.06066$, $C_3(2) = g(\frac{2}{3}) \approx 1.05826$, $C_4(2) = g(\frac{2}{4}) \approx 1.06066$, $C_5(2) = g(\frac{3}{5}) \approx 1.06100$, $C_{10}(2) = g(\frac{2}{3}) \approx 1.06100$, $C_{10}(2) \approx 1.06100$ $g(\frac{6}{10}) \approx 1.06100, C_{11}(2) = g(\frac{6}{11}) \approx 1.06144.$ The following theorem establishes a simpler formula $V_{\tilde{p},f}(a,b)$ for the upper bound of Jensen's

difference Δ in the case when this bound depends on f, I and \tilde{p} .

Theorem 2.5. Let \tilde{p} and \tilde{x} be defined as above. If f is a convex function on I = [a, b], then

(2.10)
$$\Delta(f, \tilde{p}, \tilde{x}) \leq [1 - \min\{p_1, p_2, ..., p_n\}] \left[f(a) + f(b) - 2f\left(\frac{a+b}{2}\right) \right]$$
$$:= V_{\tilde{p}, f}(a, b) \leq S_f(a, b)).$$

In the particular case

$$p_1 = p_2 = \dots = p_n = \frac{1}{n},$$

from Theorem 2.5 we get

Corollary 2.6. Let f be a convex function on I = [a, b]. If $x_1, x_2, ..., x_n \in I$, then

(2.11)
$$\frac{f(x_1) + f(x_2) + \dots + f(x_n)}{n} - f\left(\frac{x_1 + x_2 + \dots + x_n}{n}\right) \\ \leq \left(1 - \frac{1}{n}\right) \left[f(a) + f(b) - 2f\left(\frac{a+b}{2}\right)\right].$$

Applying in succession Corollary 2.6 for $f(x) = \frac{1}{x}$, f(x) = -lnx [3] and $f(x) = e^x$ [2], we obtain

Proposition 2.7. *If* 0 < a < b *and* $x_1, x_2, ..., x_n \in [a, b]$ *, then*

(2.12)
$$\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n} - \frac{n^2}{x_1 + x_2 + \dots + x_n} \le \frac{(n-1)(b-a)^2}{ab(a+b)}$$

(2.13)
$$\frac{x_1 + x_2 + \dots + x_n}{n\sqrt[n]{x_1 x_2 \dots x_n}} \le \left(\frac{\sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}}}{2}\right)^{2 - \frac{2}{n}},$$

(2.14)
$$x_1 + x_2 + \dots + x_n - n\sqrt[n]{x_1 x_2 \dots x_n} \le (n-1)(\sqrt{b} - \sqrt{a})^2.$$

In addition, the following statement is true.

Proposition 2.8. *If* 0 < a < b *and* $x_1, x_2, ..., x_n \in [a, b]$ *, then*

(2.15)
$$x_1 + x_2 + \dots + x_n - n\sqrt[n]{x_1 x_2 \dots x_n} \le \frac{(n-1)(b-a)^2}{b+k_n a},$$

where

$$k_n = \begin{cases} 7 - \frac{8}{n+1}, & n \text{ odd} \\ 7 - \frac{8}{n}, & n \text{ even} \end{cases}$$

is the best possible.

Remark 2.1. The inequality (2.15) is sharper than (2.14) if $\frac{b}{a} \leq (3 - \frac{4}{n+1})^2$ for odd n, and $\frac{b}{a} \leq (3 - \frac{4}{n})^2$ for even n.

3. PROOFS

Proof of Theorem 2.1. For given f and \tilde{p} , let $F(\tilde{x}) := \Delta(f, \tilde{p}, \tilde{x})$. It suffices to show that $F(\tilde{x})$ increases by replacing each $x_i \in (a, b)$ with either a or b. For convenience, consider that i = 1. For fixed $x_2, ..., x_n$, let us denote

$$s = \frac{p_2 x_2 + p_3 x_3 + \dots + p_n x_n}{1 - p_1}$$

and

$$f_1(y) := p_1 f(y) + p_2 f(x_2) + \dots + p_n f(x_n) - f(p_1 y + (1 - p_1)s).$$

If we prove that f_1 is decreasing on [a, s] and increasing on [s, b], then the proof is completed. We need to show that $f_1(y_1) \ge f_1(y_2)$ for $a \le y_1 < y_2 \le s$ and for $s \le y_2 < y_1 \le b$. Write the desired inequality $f_1(y_1) \ge f_1(y_2)$ as

$$p_1f(y_1) + f(p_1y_2 + (1-p_1)s) \ge p_1f(y_2) + f(p_1y_1 + (1-p_1)s).$$

This inequality follows by adding Jensen's inequalities

$$(p_1 - \alpha)f(y_1) + \alpha f(p_1y_2 + (1 - p_1)s) \ge p_1f(y_2)$$

and

$$\alpha f(y_1) + (1 - \alpha)f(py_2 + (1 - p_1)s) \ge f(p_1y_1 + (1 - p_1)s),$$

where

$$\alpha = \frac{p_1(y_1 - y_2)}{y_1 - p_1y_2 - (1 - p_1)s}$$

We see that $y_1 - p_1y_2 - (1 - p_1)s < 0$ for $a \le y_1 < y_2 \le s$, and $y_1 - p_1y_2 - (1 - p_1)s > 0$ for $s \le y_2 < y_1 \le b$. Therefore, we have $\alpha > 0$. In addition,

$$p_1 - \alpha = \frac{p_1(1-p_1)(y_2-s)}{y_1 - p_1y_2 - (1-p_1)s} \ge 0,$$

$$1 - \alpha = \frac{(1-p_1)(y_1-s)}{y_1 - p_1y_2 - (1-p_1)s} > 0,$$

$$(p_1 - \alpha)y_1 + \alpha(p_1y_2 + (1-p_1)s) = p_1y_2,$$

$$\alpha y_1 + (1-\alpha)(py_2 + (1-p_1)s) = p_1y_1 + (1-p_1)s.$$

Proof of Theorem 2.2. For fixed a and b, let us denote

$$g(p) := pf(a) + (1-p)f(b) - f(pa + (1-p)b)$$

Since g is concave on [0,1] and satisfies g(0) = g(1) = 0, g(p) attains its maximal value $T_f(a,b)$ for a $p_0 \in (0,1)$. To complete the proof we only need to show that there exists a finite sequence \tilde{x} and an associated sequence \tilde{p} such that $\Delta(f, \tilde{p}, \tilde{x}) = T_f(a, b)$. Indeed, choosing n = 2, $\tilde{x} = \{a, b\}$ and $\tilde{p} = \{p_0, 1 - p_0\}$, this condition is fulfilled.

Proof of Theorem 2.5. Let us denote $p_0 = \min\{p_1, p_2, ..., p_n\}$. In the nontrivial case $n \ge 2$, for any $p \in P$, we have $p \ge p_0$ and $p + p_0 \le 1$.

Using Theorem 2.1, it suffices to show that

$$(1-p_0)\left[f(a) + f(b) - 2f\left(\frac{a+b}{2}\right)\right] \ge pf(a) + (1-p)f(b) - f(pa + (1-p)b)$$

for any $p \in P$. Indeed, this inequality is equivalent to Jensen's inequality

$$(1 - p - p_0)f(a) + (p - p_0)f(b) + f(pa + (1 - p)b) \ge 2(1 - p_0)f\left(\frac{a + b}{2}\right)$$

Proof of Proposition 2.8. Applying Theorem 2.1 for f(x) = -lnx, x > 0, and $p_1 = p_2 = ... = p_n = \frac{1}{n}$, it suffices to show that

$$ka + (n-k)b - n\sqrt[n]{a^k b^{n-k}} \le \frac{(n-1)(b-a)^2}{b+k_n a}$$

for all k = 1, 2, ..., n - 1. Due to homogeneity, we may assume that b = 1 and 0 < a < 1. Thus, we need to show that $g(a) \ge 0$, where

$$g(a) = (n-1)(a-1)^2 - (k_n a + 1)(ka + n - k - na^{\frac{k}{n}})$$

We have

$$g'(a) = 2(n-1)(a-1) - k_n(ka+n-k-na^{\frac{k}{n}}) - k(k_na+1)(1-a^{\frac{k}{n}-1}),$$

$$g''(a) = 2(n-1) - 2kk_n(1-a^{\frac{k}{n}-1}) - \frac{k(n-k)}{n}(k_na+1)a^{\frac{k}{n}-2},$$

$$g''(1) = 2n - 2 - \frac{k(n-k)(k_n+1)}{n}$$

and

$$g'''(a) = \frac{k(n-k)}{n^2} a^{\frac{k}{n}-3} h(a),$$

where

$$h(a) = 2n - k - k_n(n+k)a.$$

Since $k(n-k) \leq \frac{n^2}{4}$ for even n, and $k(n-k) \leq \frac{n^2-1}{4}$ for odd n, we get $g''(1) \geq 0$. From h(0) = 2n-k > 0 and $h(1) = 2n-k-k_n(n+k) \leq 2n-k-3(n+k) < 0$, it follows that there is $a_1 \in (0,1)$ such that g'''(a) > 0 for $a \in (0,a_1)$ and g'''(a) < 0 for $a \in (a_1,1]$. Therefore, g''(a) is strictly increasing on $(0,a_1]$ and strictly decreasing on $[a_1,1]$. Since $\lim_{a\to 0} g''(a) = -\infty$ and $g''(1) \geq 0$, there is $a_2 \in (0,1)$ such that g''(a) < 0 for $a \in (0,a_2)$, and g''(a) > 0 for $a \in (a_2,1)$. Thus, g'(a) is strictly decreasing on $(0,a_2]$ and strictly increasing on $[a_2,1]$. From $\lim_{a\to 0} g'(a) = \infty$ and g'(1) = 0, it follows that there is $a_3 \in (0,1)$ such that g'(a) > 0 for $a \in (0,a_3)$, and g'(a) < 0 for $a \in (a_3,1)$. Then, g(a) is strictly increasing on $[0,a_3]$ and strictly decreasing on $[a_3,1]$. Since $g(0) = k - 1 \geq 0$ and g(1) = 0, we have $g(a) \geq 0$ for $a \in [0,1]$.

To prove that the original value of k_n is the best possible, we see that g''(1) = 0 for $k = \frac{n}{2}$ if n is even, and for $k = \frac{n-1}{2}$ if n is odd. Therefore, for this value of k and for any value of k_n greater than the original one, we have g''(1) < 0. Then, there is $\varepsilon > 0$ such that g''(a) < 0 for $a \in (1 - \varepsilon, 1]$. Since g'(a) is strictly decreasing on $(1 - \varepsilon, 1]$ and g'(1) = 0, we have g''(a) > 0 for $a \in (1 - \varepsilon, 1)$. Thus, g(a) is strictly increasing on $(1 - \varepsilon, 1]$, and from g(1) = 0 it follows that g(a) < 0 for $a \in (1 - \varepsilon, 1)$. From this result, the conclusion follows.

REFERENCES

- [1] V. CÎRTOAJE, Asupra unor inegalitati cu restrictii, *Revista Matematica din Timisoara*, Nr. **1** (1990), pp. 3-7.
- [2] V. CÎRTOAJE, Algebraic Inequalities-Old and New Methods, GIL Publishing House, 2006.
- [3] V. CÎRTOAJE, VO QUOC BA CAN AND TRAN QUOC ANH, *Inequalities with Beautiful Solutions*, GIL Publishing House, 2009.
- [4] S. S. DRAGOMIR, A converse result for Jensen's discrete inequality via Gruss inequality and applications in information theory, *Analele Univ. Oradea, Fasc. Math.*, 7 (1999-2000), pp. 178-189.
- [5] D. S. MITRINOVIĆ, J.E. PEČARIĆ AND A.M. FINK. *Classical and New Inequalities in Analysis*, Kluwer Academic Publishers, Dordrecht, 1993.
- [6] S. SIMIĆ, On an Upper Bound for Jensen's inequality, *J. Inequal. Pure Appl. Math.*, **10**(2) (2009), Art. 60. [ONLINE:http://www.emis.de/journals/JIPAM/article1116]