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ABSTRACT. In this paper we give the best upper bound for the weighted Jensen'’s discrete in-
equality applied to a convex functighdefined on a closed intervalin the case when the bound
depends ory, I and weights. In addition, we give a simpler expression of the upper bound,
which is better than existing similar one.
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2 VASILE CIRTOAJE

1. INTRODUCTION

Letz = {1, 29, ..., 2, } be a sequence of real numbers belonging to a given closed interval
I =la,b],a < b,and letp = {p1, po, ..., pn } be @ sequence of given positive weights associated
to © and satisfyingy; + p2 + ... + p, = 1. If fis a convex function or, then the following
inequality is well-known Jensen’s discrete inequality [5]:

(1.1) 0< Zpif(xi) — f (pr> .

An upper global bound (depending grand ! only) of Jensen’s difference

(1.2) f]% sz x@ <sz$1>

is given by Dragomir in[[4]:

Theorem 1.1.1f f is a differentiable convex function dnthen
o 1 / /

(1.3) Alf,5,%) < (0= a)(f () = f(a)) := Dy(a,b).

In [6], Simic gave an upper global bound without differentiability restrictionfon
Theorem 1.2.1f f is a convex function ohand0 < p < 1, then
(14)  A(f,p,8) < maxlpf(a) + (1 = p)f(b) - flpa + (1 = p)b)] := Ty(a, b).

Using Theorem 1]2, it is easy to show that

a+b

(15) A7) < @)+ 50) 25 (“57) = Sitab)
Indeed,(1.5)) holds if

pf(@) + (1—p)f(B) — f(pa+ (1 —p)b) < f(a) + F(b) — 2f ( - b)

for all p € (0, 1). This is equivalent to Jensen’s inequality

(1= p)f(a) +pf () + fpa+ (1 —p)b) > 2f (“‘2”’) |

In the present paper, we establish the best upper bénda, b) of A(f,p,z), show that
T¢(a,b) is the best upper global bound dependingfoand! only, determine’; ;(a, b) in the
case of the weighted AM-GM inequality, and give a simpler expresgjgfia, b) of the upper
bound, which is better thafi;(a, b).

2. MAIN RESULTS

Our main results rely on an old result in [1], in virtue of whichfifis a differentiable con-
vex function onl, then Jensen’s differenck(f, p, z) is maximal when alk; € {a,b}. The
following theorem states that this property holds without differentiability restrictiorf and
establishes the best upper boutig, (a, b) of Jensen’s differenca.

Theorem 2.1.Letp andz be defined as above, and let

P:{p21+p22++plk}7 ]’{,’:1,2,,71—1, 1§21<Z2<<Zk§n
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If fis a convex function oh = [a, b], then
(2.1) A(fp,7) < max[pf(a) + (1 = p)f(b) = fpa+ (1 = p)b)]
= ﬁyf(a’ b)?
with equality when some af are equal tos, and the others; are equal tob.

The following theorem establishes the best upper bound of Jensen’s difféxdncéhe case
when the bound depends grand/ only.

Theorem 2.2.T%(a, b) is the best upper global bound (dependingfoand / only) of Jensen’s
differenceA(f, p, 7).

For
1
P1=P2=...=Pn=—,
n

the setP contains the distinct elements k£ = 1,2,...,n — 1. Let us define
n

(2.2) Poz{l 2 ...,"_1}.

)y Ty
n n n

From Theorem 2|1, one gets

Corollary 2.3. Let f be a convex function oh= [a, b]. If z1, 23, ..., z, € I, then
f@1) + flz2) + o+ flan) f(xl +ao+ ..+ $n>
n n
< max[pf(a) + (1 = p)f(b) = f(pa + (1 = p)b)].
Applying Theoren 2]1 foif (z) = —Inx, = > 0, we get
Corollary 2.4. For I = [a,b] with0 < a < b, letp, Z and P be defined as above. Then

A7) _ e 2T (1-pu
G(p,z) — peP  ul?

(2.3)

(2.4)

n n ] b
whereA(p, z) = > pixi, G(p,Z) = [[ ¥ andu = —.
i=1 i=1 a

From Corollary 2.4, we get
T+ a9+ ...+, p+(1—pu
2.5 < —_— =
@9 T = T
In addition, forb = 2a, (2.5)) becomes

x|+ T+ ... +x,

2. < = 2
(2.6) i - max g(p) = Cn(2),
where
2-p
(2.7) 9(p) = 51,
Similarly, applying Theorern 1.2 fof () = —inz, x > 0, we get[[6]
A@p.#) _ (u—1ums
2. <
(2.:8) G(p,z) = elnu
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Forb = 2a, (2.8) becomes
T+ 2o+ ...+, 2

2.9 < ~ 1.06147.
(2.9) nm “eln2 06147
Logically, we haveC,(2) < —Z for any integem > 2. For instant(5(2) = g(3) ~ 1.06066,

C3(2) = g(2) ~ 1.05826, 04( ) = g(2) = 1.06066, C5(2) = g(2) ~ 1.06100, C19(2) =
9(3%) ~ 1.06100, C11(2) = g(<) ~ 1.06144.

The following theorem establishes a simpler formidja(a, b) for the upper bound of Jensen’s
differenceA in the case when this bound dependsfoii andp.

Theorem 2.5.Letp andz be defined as above. ffis a convex function oh = [a, b], then
. : a+b
@10 AU < [ - mindprpa )] £+ 10) - 27 (257

= ﬁ,f(a7b> < Sf(aa b))

In the particular case

1
Pr=p2=...=PDn= n’
from Theorenj 2J5 we get
Corollary 2.6. Let f be a convex function oh= [a, b]. If 21, z, ..., x, € I, then

fln) + flw) + oot flon) o (mtmt +xn)
n

<(-2) oo (5

Applying in succession Corolla. 6 fgi(x) = 1 , f(x) = —=Ilnzx [B]and f(z) = e* [2], we
xz
obtain

(2.11)

Proposition 2.7.1f 0 < a < bandzy, xs, ..., z, € |a,b], then

2 _ 2
(2.12) L - cm-Dlb-af
T T Ty X1+ To+ .. T, ab(a + b)
9_2
a b "
2.13 T Tyt T _ \/E+\/;
' nNYTi1Te... Ty 2 ’
(2.14) 1+ T+ T, —nYrixe. T, < (0 — 1)(\/5— Va)?.

In addition, the following statement is true.

Proposition 2.8.1f 0 < a < bandzy, xs, ..., x, € |a,b], then

—1)(b = a)?
(2.15) L1+ 2o+ ...+ x, — YT T2, < (n J(b—a)

b+ k,a
where

b

kn:{ 7— -5 nodd

7 — 5, n even
is the best possible.
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Remark 2.1. The inequality(2.15) is sharper thai2.14)) if b < (3-—

1 1)2 for oddn, and

Q| o

4
< (3 — —)* for evenn.
n

3. PROOFS

Proof of Theorerf2.1. For givenf andp, let F(z) := A(f, p, ). It suffices to show that'(z)
increases by replacing eache (a, b) with eithera or b. For convenience, consider that 1.
For fixedzo, ..., z,,, let us denote

g = P22 + P3T3 + ... + Py
IL—m

and

fi(y) = pif(y) + paf(x2) + . + puf (@) — f(pry + (1 —p1)s).
If we prove thatf, is decreasing ofu, s| and increasing ofs, b], then the proof is completed.
We need to show that (y1) > fi(ys) fora < y; < yo < sand fors <y, < y; < b. Write the
desired inequalityf; (y1) > fi(y2) @s

pif(yn) + f(prye + (1 = p1)s) = pif(y2) + f(piyn + (1 —p1)s).

This inequality follows by adding Jensen’s inequalities
(p1 — ) f(y1) + af(pry2 + (1 — p1)s) = p1f(ye)
and

af(y) + (1 —a)f(py2 + (1 —p1)s) > f(piyr + (1 —p1)s),
where

o — pl(yl - y2) .

Y — P1Y2 — (1 —p1)8
We see thal; — p1ys — (1 —p1)s < 0fora <y, <y, < s,andy; —p1y2 — (1 —py)s > 0 for
s < 1ys < y; < b. Therefore, we hava > 0. In addition,

1 — —
p—a= pi(l —pi)(y2 —s) >0,
Y1 — p1y2 — (1 —p1)8
A =p)y—s)
Y1 —piye — (L —p1)s
(p1 — a)yr + a(pry2 + (1 — p1)s) = p1ye,

ayr + (1 — a)(py2 + (1 = p1)s) = pryr + (1 — p1)s.

1—

> 0,

I
Proof of Theorerf2.3. For fixedz andb, let us denote

9(p) :==pf(a) + (1 —p)f(b) — f(pa+ (1 —p)b).

Sinceg is concave or0, 1] and satisfieg/(0) = ¢(1) = 0, g(p) attains its maximal value
Ty(a,b) forap, € (0,1). To complete the proof we only need to show that there exists a finite
sequence: and an associated sequericsuch thatA(f, p, #) = T¢(a,b). Indeed, choosing
n=2,% = {a,b} andp = {po, 1 — po}, this condition is fulfilled.

|

Proof of Theorerf2.5. Let us denotg, = min{pi, po, ..., p, }. In the nontrivial case. > 2, for
anyp € P, we havep > py andp + pg < 1.
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Using Theorem 2]1, it suffices to show that

(=) [ 70+ 10 = 21 (“57)] 2 7@ + (1= 9 f0) = flpa+ (1=t

for anyp € P. Indeed, this inequality is equivalent to Jensen’s inequality

(1 =p—=po)fla) +(p—po)f(0) + flpa+ (1 = p)b) = 2(1 — po) f (a;rb> '

Proof of Propositiof2.§. Applying Theorer 2|1 fof (z) = —lnz, z > 0, andp; = p; = ... =

1 . )
p, = —, it suffices to show that
n

. . 2
ka+ (n— k)b — nVakpt < M-V —a)
b+ k,a

forall k = 1,2,...,n — 1. Due to homogeneity, we may assume that 1 and0 < a < 1.
Thus, we need to show thata) > 0, where

k

gla)=(n—1)(a—1)*— (kna+1)(ka+n —k —nar).

We have
gd@)=2(n—1(a—1) = kn(ka+n—k —nan) — k(k,a + 1)(1 —an 1),
g"(a) = 2(n — 1) — 2kkn(1 — a5~1) — W(kna ek
(1) = 2n — 2 K=k £ 1)
n
and i i
" n— E_
P =K i
where

h(a) =2n — k — k,(n + k)a.
2 2

: -1
Sincek(n — k) < nz for evenn, andk(n — k) < o for oddn, we getg”(1) > 0. From
h(0) =2n—Fk > 0andh(l) = 2n—k—k,(n+k) < 2n—k—3(n+k) < 0, it follows that there
isa; € (0,1) such thaty” (a) > 0 for a € (0,a;) andg”(a) < 0for a € (ay,1]. Therefore,
¢"(a) is strictly increasing ort0, a;] and strictly decreasing dn,, 1]. Sincelir% g"(a) = —o0
andg”(1) > 0, there isay € (0,1) such thaty”(a) < 0 for a € (0,a2), andg”(a) > 0 for
a € (az, 1). Thus,g'(a) is strictly decreasing o(D, a»| and strictly increasing ofu,, 1]. From
lir%g’(a) = oo andg¢'(1) = 0, it follows that there isu3 € (0,1) such thaty'(a) > 0 for
a € (0,a3), andg’(a) < 0fora € (as, 1). Then,g(a) is strictly increasing of0, a;] and strictly
decreasing ofus, 1]. Sinceg(0) = k — 1 > 0 andg(1) = 0, we havey(a) > 0 for a € [0, 1].

To prove that the original value @f, is the best possible, we see tlhét1) = 0 for k = g if

: -1., . .
n is even, and fok = nT if n is odd. Therefore, for this value éfand for any value ok,
greater than the original one, we hay&1) < 0. Then, there is > 0 such thayy”(a) < 0 for
a € (1 —¢,1]. Sinceg'(a) is strictly decreasing ofll — ¢, 1] andg’(1) = 0, we havey'(a) > 0
fora € (1 —¢,1). Thus,g(a) is strictly increasing onfl — ¢, 1], and fromg(1) = 0 it follows
thatg(a) < 0 fora € (1 — ,1). From this result, the conclusion follows.
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