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1. INTRODUCTION

The numerical study of Singularly Perturbed Problems (SPPs) has piqued interest among
researchers due to the intricate boundary layer phenomena inherent in their solutions. These
boundary layers emerged due to the outcome of the perturbation parameter (&, 0 < £ << 1),
multiples term involving the highest-order derivative, which causes the solution to exhibit rapid
transitions in confined regions, either at the boundary or in the interior, where the width is of
O (). These regions are predominantly positioned near the boundaries of the domain or at spe-
cific interior points where the solution encounters a drastic and intense variation. This complex
behavior necessitates the development of specialized numerical methods to precisely capture
and resolve the sharp transitions that characterize SPPs. Over the past few years, a broad spec-
trum of innovative techniques has been meticulously developed by many researchers to tackle
the difficulties inherent in obtaining approximate solutions of singularly perturbed problems.

Some articles related to time delay are as follows: A fitted Numerov method [7] is devised
for singularly perturbed 1D parabolic PDEs with a small negative shift in the temporal variable
term. A Crank-Nicolson and central difference method on Shishkin meshes [6] is formulated
for singularly perturbed time delayed parabolic problems, achieving second-order uniform con-
vergence and its accuracy is then enhanced to fourth-order using Richardson extrapolation.
An efficient method combining reproducing kernel spaces and collocation [13]] is proposed for
solving Singularly Perturbed delay parabolic PDEs, demonstrating uniform convergence, with
an accuracy scaling of T/n. A fitted operator-based approach [8] employing cubic B-splines and
implicit Euler is designed for solving SPPs of parabolic reaction-diffusion type with a general
time delay and improved accuracy in the temporal direction is achieved through Richardson
extrapolation.

Some articles related to space delay are as follows: A computational method [1] integrating
implicit Euler for time dimensions and cubic-spline in compression methods for space dimen-
sions is used solve second-order parabolic SPPs with large negative shift and discontinuous
coefficients. Finite difference scheme [2] is formulated using Shishkin mesh to solve Singu-
larly Perturbed Parabolic PDEs with spatial delay and integral boundary conditions, establish-
ing almost second order convergence. A novel numerical method [12] implementing a finite
difference technique on Shishkin mesh was developed to solve linear system of parabolic sec-
ond order SPDDEs of reaction-diffusion type.

The article [3] meticulously explores in-depth analysis of 1-D hyperbolic delay differential
equations (HDDEs), demonstrating the efficacy of numerical techniques such as, the method of
lines and Runge-Kutta methods to solve the problem by ensuring the stability and convergence.
In [4] , the authors have employed Restrictive Pade’ Approximation to solve the singularly per-
turbed first-order hyperbolic PDE where small perturbation parameter is multiplied with the
term involving time derivative.

The present paper differs from [4] in treatment of small perturbation parameter, multiplied
with the term involving time derivative and numerical approach. In this present work we have
crafted classical layer resolving finite difference scheme to tackle a related but distinct problem.
In our case, we focus on a system of two equations where the perturbation parameters (¢,&
are distinct) multiply spatial term involving highest order of derivative and the equations further
includes a delay terms in spatial variables. This divergence in problem structure, combined with
the robustness of the classical layer resolving numerical scheme, allows our method to effec-
tively handle the complexities introduced by the perturbation parameters and delay terms. As
a result, our approach demonstrates superior computational efficiency and accuracy, offering a
simpler yet highly effective solutions.

The following outlines are the structure of the present article: In Section [2] the problem is
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stated and some preliminaries related to the problem are presented. In Section[3] uniqueness and
stability of the solution are firmly validated. In Sectiond] we prove bounds for the solution and
its derivatives. In Section[5] singular and smooth components of the solutions were analysed. In
Section [6] Shishkin-mesh is constructed according to the requirement of the problem. Section
explores finite difference scheme and elucidates the discrete maximum principle, as well as
the stability result. Section [§] discusses Discrete Shishkin decomposition; Section [9] explains
about local truncation error. Error estimates are articulated in Section Finally, the numerical
illustration is computed for the problem to bolster the scheme in Section

2. THE PROBLEM STATEMENT

The problem stated for all (s, t) € U,

(2.1) Li(s,t) = %(%, )+ E ou (52, £) + R3¢, )i (56, £) + S (3¢, V) ii(3c— 1, £) = f(5¢,¢) on ¥

ot 0
with
> . ou S
(2.2) EU(se,t) = U(se,t) — E a—%(% t) = @ (5, t) on U*
(2.3) U(s2,0) = Gp(x) on Ap

where U = {(36,1) : 0 < 2 < 2,0 <t <THU* = {(s6,t) : —1 < %2 <0,0<t<T}H W
U UAA = AL UAg where AL ={(0,t) : 0 <t < T}and Ap = {(51,0) : 0 < »
20 ={(6et) 1 0 < < 1,0 <t <T}HLUT ={(60t) : 1 < 2 <20<t<T}
and U = {(36t) :0< < 1,0<t<THTU ={(ct):1<3%<20<t<
TY. Forall (56,t) € U, @(3e,t) = (u1(56,1),us(3¢, )T and §(5¢,t) = (F1(52,%), fa(5¢,1))".

R(5,t), S(5, t) are 2 x 2 matrices. Distinct perturbation parameters are defined in problem as
2 x 2 matrix, £ = diag(£),€ = (&1,e2) with the relation) < £; < €5 < lande,,t = 1,2.

— diag(F).F = (5,(52.1). By (5. 1)). Here

I
N

o

S

(2.4)

- 0 0
(2.5) L= §£+Ea—+§ff+

Remark 2.1. For all (5, t) € U, the components t,,(3, t) of (3, t) and 3, (3, t) of (¢, 1)
satisfy the inequalities

v, (5, t) > Z|%%t+ﬁ(%t)| =1,2
(2.6) s

=1
B,(52,1),t,(5,t) <0 for 0 <o# <2
Remark 2.2. « is considered as a positive number and it satisfy

(2.7) 0 < o < min {Ztu 1) + B, (5, t)}

cv
0<L<2 J=1
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The problem (2.1)) is re-written as,

(2.8) Luii(s,t) = (?{L ES—Z + D) (5¢,4) = A(5¢,) on U~
(2.9) Lyii(s,t) = (% + Eg—z + R@) (52, 4) + S(oe,4)ii(3c — 1, 1) = f(5¢,¢) on U

—

where A (3¢, t) = (3¢, t) — (3¢, )3, (3¢ — 1, 1).

The reduced problem of (2.8) and (2.9) are given by

(2.10) 8(;10(% t) 4+ R(s¢, )iy (5¢,£) = A(3¢, t) forall s € U
(2.11) %(%7 t) 4+ Rz, £)ilo (52, 1) + S (e, £)ilo (3¢ — 1,4) = f(5¢, t) forall sc € U,

ot

The arbitrary initial conditions cannot be imposed to the equations (2.10), (2.11)) since it has
an unique solution for each value of (s, t) which gives rise to the initial layers by the solution
components in the neighborhood of (sr,t) = 0. The solution components (s, t) features an
interior layer at z = 1, due the presence of delay term at this point and @ (1—, t) needs not be
equal to @y (1+, t) in general. The following layer pattern is exhibited by the components u; and
ug, where both components have layers of width O(ey) and in addition to this the component
uy has a sublayer of width O(ey).

3. ANALYTICAL RESULTS

In the succeeding lemma, the operator L satisfies maximum principle .

Lemma 3.1. Ler R(5¢,t) and (s, 1) satisfy @.6) and @7). Let N(3¢,t) be any function in
the domain ofL such that it satifies {N(% t) > 0 on ¥* and N(% 0) > (0 on Ap. Then
LiX(5¢,t) > 00on U~ and LyN(s¢,t) > 0 on U implies that R(52,£) > 0 on V.

Proof. For (*, »«*, t*, let us consider N« (5c*, t*) = m%r% min N, (s, t). I V. (5", t*) > 0, there is

=1, '
nothing to prove. Suppose that R, (3%, t*) < 0. For (»¢*, t*) € ¥*, then

- O«
N . kg% :N* * 0k . L *
(ER),« (>, t7) () — &, a%<%>

which contradicts our assumption and for t* = 0, N,.(5*,0) < 0, which also contradicts our
assumption. Therefore (»*, t*) ¢ A.

t) <0,

Also, ag (2", t") < 0and 5~ chiis (o7, 1) < 0.

Thus for (»*,t*) € U~, we have

(LR),« (56", £) = (L1N),+ (3%, )
aNL* % gk aNL* % gk % gk % gk

= ot (% 7t)+€L* O (% 7t )+tb*1<% 7t )Nl(% 7t)
—i—tb*g(%*,t*)NQ(%*,t*)

2
< S (o R (52, 1) <0,
=1
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which contradicts our assumption. For (s*,t*) € U™, we get
(LX), (5", t) = (L) (57, 1)
aNb* * gk aNb* * gk % (% * gk
(", ) + €, (", 87) + e (57, )N (57, tF)

ot Ox
+ o (5, )R (2" ) + B, (57, )R (3" — 1, 1)

2
< th*ﬂ(%*’ )N (27, ) + B (o7, )N, (57, ) <0,
1=1

which contradicts our assumption. This indicates that our assumption is not vaild. It follows
that N,- (»¢*, £*) > 0 and for all (5¢,t) € U, R(s, t) > 0, which proves the lemma.

The stability result is established in the next lemma as an immediate consequence of the pre-

ceding lemma.

Lemma 3.2. Let R(s¢,t), S(5¢,t) satisfy @6) and @7). Let N(3,t) be any function in the
domain of L, such that for each (3,t) €V, then

. L . 1 - L.
105,01 < mac {1 €80,) 11 K0 1, 2 1 T 3 1 21
Proof. Consider the barrier functions
" . , | T .
7o) = max {1 €509 1§ 0) 1 2 1R, 5 261} e
-+

U (56,8) = M £ X3¢, t)

where 01 = mas { | €80,0) |, 1| §04,0) . 1| Zi€ ], 2 1 X}

-+

E5°0.9 = 70,0 - B 0,9 + 0.9
=J7(0,) = B(0) + $,(0,) > 0.
G5 (5,0) = M+ R(5¢,0) = M =+ 35(5¢,0)
-+ -
(5,0) >0
If (52,t) € ¥, then
L0 e ) = b (5,)
81§i aﬁi +
= 5 () + B —(0) + R, )0 (3¢,t) £ LiR(5¢,t) > 0.

If (5,t) € U™, then
LT (e ) = Eﬁi(%, {)
819 819
= EZ—
o BB
LSO (e —1,8) £ LoR(5,1) > 0.

(52, 1) + R(s, t)ﬁ‘ (5,1)
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—

-t
It follows from Lemmathat, VU (5,t) > 0. Then,

. L . 1. - L
05,01 < max {1 €80.9) 1.1 ¥e0) 1, 21 L L 5 121}

The proof of the lemma is complete.
4. ESTIMATES OF DERIVATIVES

Theorem 4.1. Let R(s¢,t), (¢, t) satisfy (2.6) and 2.7). Let i represents the solution of the
= 1,2 and for all (3,t) € U, there exist a

problem R2.0), 2.2) and 2.3). Then for each 1,1 =

constant C' such that

(e, O < CL 1 @O |+ 11 Zs) 1|+ 1T

o0u, . . - f
5 Co Il < C LIl GL) Il + 11 650 | +Z: | o gl =

ou, —1 - f
e ) < O {usoL(t) I+ 1 Balr ||+Z|| o |}

9%u
¢ < -1 -
) < {u 20| + 1 Bl ||+Z|| o }

0%, L B 0
St < O {um) |+ 1 @504) I + f||+Z|| o }

| 0?
Proof. The bound on the solution components u, is an immediate outcome of Lemma 3.2}

(o, 01 < CL GO |+ 1 @a) 11+ 1T -

Now differentiate (2.1)) partially with respect to variable t once, we get

Foai 02 ou | oW  0u 9S. Of
4.1 " 4+E F R i + S 4 i =
“-D e TR TR TR THR N TR T

It is observed that,
ou . ou (9)“ 8?)? 8\$

-0 0 ou 0 ou
La_ﬁﬁﬂgaxat %a 5 ot ot ot

00 _0F_[oR 03]
ot ot |ot ' ot)"
and hence
2% <o ||+H*||
ot
N T . =
||L§HSC[II ||+H¢L<>||+||¢B<%>||+||fu}
<O 1@ I+ 1l g5 |+Zu ]
Also, )
ou > 0u ou o“u
(%,0)0=0  and gatm 0= 5:(0.1) = E5(0.) = C.

at

AJMAA
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Then by Lemma[3.2]

ou, T . 1 - o 1 - -
1B oe, 01 < € [ 1000 |+ 1 86 |+ I L, = B

<C LB |+ 11 @560 | +C| 1 Bu() | + | Z5(59) | +Z |97 H

<C 180 |+ 1 B0+ ||+Z 12

Now differentiating (4.1) partially with respect to Varlable t, it is found that
~0%U 8213 PR _ OUOR  0*°S_, 0udS  ou OR 03 ou

o2 " oe e dtot o' dtot otot ot ot

IT_OT_[OR 0%, [0R, 03)0n
oe o Lo oe ot otlot
Therefore,
824 < 82 Cl|ul| +C
|2 < I S+ al+o) o |
B . of %
c[nmoH+H¢B<z>u+ufn+u 5 ]
<O 18 1+ 11 859 ||+Z||atq J
Also,
O - 0% O O3
&ﬂ%m 0 and 5§®0 agmg E&ﬁﬂoo C.
Then by Lemma[3.2]
2

|8 u,

[ - — 1 = 2 1 - —
5 o < O G |+ 11 @p0a) [+ Il LR I, — [ LR H]

<C LB 1+ 11 56 | +C| 1 Bo() || + || @55 ||+Z|| o H

<[ 180 I+ 8502) ||+Zr|a,f||].

q

To obtain bound on %,

ou - ou
o = - na-au- 5]
D U
from which it is found that for sufficiently large C,
du,
P < 0 [T+ 0+ 1 S ]

< 05;1[ G | + 1| B5() | +Z ” 8t‘1 }

and hence the required estimate of the bound on a 4 j5 obtained.
Now differentiate (2.T]) partially with respect to variable t once, we get
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i 00 00 OR | 00 03 Of
e P i i ri i T

0% 6f ou OR 08 0%
pr— E — _)_ —
D30t [at R+ S50 — e T ale 8’:2]
and hence it is observed that,
0%*u 0*u
L < _1 — ou
T e g < O [ D P nan+ .y G M

<[ 180 1+ 11 @669 | +Z 1200

Differentiating (2.1)) partially with respect to variable s,

0% +Ea2* %@ R s N +ad a_f
50t Loz T, T T 0 T 9t i
i [OF R 8S, ou 0%

92 b [a_%_[a_%+a_%]“_m+ S5~ 8%8’(}

and hence it is observed that

| 9%u,
02

.
80 ot H]

of o
<Cce | =L i —
(s t)] < Ce, [H 55 | T @+ 11+ ]

< O[O 11+ 150 11+ 1| ||+Z|l )

The proof of the theorem is complete.

5. SHISHKIN DECOMPOSITION

The exact solution « of (2.1) is decomposed as & = 7 + ¢, where the smooth component 7 is
the solution of

- oy oy
() LAGat) = (G + Bt + R9)(2.) = T2, = S(o6, 03, (3¢ — 1,1) on ¥~
- oy oy - - "
(5.2) Loq(5¢e,t) = (a + Ea— + 1Y) (3¢, t) + S(5¢,t)Y(3c — 1,t) = f(5¢,t) on ¥
(53) 57(07 t) = EﬁO(()? t)v ’7(%7 O) = ﬁo<%> O)
and the singular component ¢ is the solution of
(5.4) L13(5e,t) = (gi + Eg—g + RS (5¢,8) =0 on U™
(5.5) LoS(5e,t) = (gi + Eg—g + R3) (52, 4) + (3¢, )3(3c — 1,4) =0 on U

— —

with ¢ =4 — 7,
(5.6) £(0,4) = £(ii — 7)(0, 1), $(5¢,0) = 0.

Next two lemmas deal with finding the bounds on 7 and <.
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Lemma 5.1. Let R(s¢,t), (s, 1) satisfy 2.6), 2.7). Then for each v,. = 1,2 and for all
(52,t) € W, there exist a constant C independent of ¢, such that

7., ) < C
2
ot
0%y

- t
5 (56, )
2
0t
Proof. The proof is by the method of steps. The bounds on the interval ¥ for 4 and its

derivatives are derived first and by using these bounds, the bounds on the interval U are
derived. .
For (,t) € W , the bounds on 7 are an immediate result of the defining equations for 7 and

Lemma 3.2}

(6,01 < C, for £ =1,2

<C

(s5,8)| < Cel™", for £ =1,2.

7l < C.
Differentiating (5.1]) partially with respect to t once, we get

707 _ of {6% as}ﬁ

o "o o T ol
Therefore,
I L1 H_II H +C [ 7l=C.
Also,
oy - - 0y oy 0%y
0)=0 d —(0,t 0,t) — F 0,t) =C.
a0 = o 5 00 = 5 00— B 50,0 =

Using the stability result for the operator Ly, we get

el

ot —
Similarly, differentiating again the same equation with respect to t, we get
L 0%y 0% (0RO OR 03105
Lo - S R Sl
92~ oe  Loe e ot ol
Therefore,
. 82 7 82
Li— |I< C C <C.
I LSl ZEN+C 7 1+ 1 9L )<
Also,
82 ,7 82 i 82 ,7 83 ,7
2,0)=0 d 0,t 0,t) — & 0,t) =C.

Using the stability result for the operator Ly, we get

0%y

—|<C

| ot? =

To obtain bound on %, differentiating (5.1)) partially with respect to ¢, we get
ol 07 of o ad
Y03 O 8% 95|

AJMAA, Vol. 22 (2025), No. 1, Art. 10, 29 pp. AJMAA
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Therefore,
0y
I L1 ||<|| || +C |7 C.
Also,
0y B > 0 oy 0% =
8%(%’ 0)=C and 5 (0 t) = a%(0,{) E’(9 2(0 t) =0.

Using the stability result for the operator Ll, we get
| | <C.

To find the bound on Bt’

it is easy to check that

Lla%at:a%at_[a%at+a%ath [a%+a%] 5 Lot T ot o
Therefore,
B 0%
1<
LT <l 2 e g1 +o 1 Do) 2 <c.
Further,
P70y = 228000 5 ana £27 (0.0 = LT (0.0 527 (0.9 =0
920t T 0t O D520t D220t D22

Using stability result for the operator Ly, we get
0?5
Differentiating (5.1)) partially with respect to », we get

925 9?5y 9y  OR oy 0. of
E LTy gl Ty
Gt P PN T e T T e T o

@_E_l[a_f OR O3 87_82’7]

. 7
r=Rak 2 il ol vol tll L b il yorn
and hence it is observed that
8%y o Of 07 0%y .
L < - —r = _ .
SOl < C It I+ 171+ 152 I+ 52 1| < ¢

Therefore,

8 ’Y[, —1
<
’3% (5e,t)| < C¢;

Using analogous procedures, the bounds of ¥ on the interval T follow.

By incorporating results for 7 in W and @Jr, we obtain the required bounds of 7 in the whole
of W. The proof of the lemma is complete.

We introduce the layer functions Y ,, Ty ,,¢ = 1,2, which are associated with the solution
u,, defined by

(5.7) T () = e @9/ =01, 1=1,2 on (3,t) € U
where __

Yo, (5) = e %= on ¥

Y1, (3) = e *=V/e on U

AJMAA, Vol. 22 (2025), No. 1, Art. 10, 29 pp. AJMAA
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It has to be noted that for . = 1,2
T07L(% — ]_) = TLL(%)'

Lemma 5.2. Let R(s2,t), (52, t) satisfy and [2.7). Then there exist a constant C, such
that for (»,t) € ¥ and 1= 1,2,

s,
| ot (5e,4)| < CYoa(x), for ¢ =0,1,2
&, Yo q()
< )
5 ()l O; .

and for (3¢,) € U and 1 = 1,2,

o',
|W<%v t)’ < OT1,2(%)7 fOl’g = 07 172

Ox = &

0%, = Tog(x)

|w< 7t>| <C€L Z ;q
q=1

Proof. The bound for < and its derivatives are derived first in the interval ¥ . To acquire the
bound of ¢, the barrier functions are defined as

NE(5e,t) = C Yoo +6,(50,t), 1 =1,2.
It is clear that, for (s,t) € U, (EX%),(0,t) > 0, X*(3,0) > 0, and (L1N*),(3¢,t) > 0 on
(s,t) € ¥ . Then by Lemma NF(5¢,t) > 0 for (5, t) € U . It follows that,
(56, )] < CToa().
Now differentiate (5.4)) partially with respect to variable t once and using Lemma [3.2] it is not

hard to see that
7O\ __|oR
T P

Therefore,
- 0%
Li— <Cl|s,
H< 1at>L =cled
- 0¢
Li— <CT .
|(55) | sco
Also,
os ~ os ou oy
—(s,0) =0 d —(0,t) = —(0,t) — —(0,¢t) = C.
o) and 20,6 = S2(0,6) = ZL(0.9
Using the Lemma for the operator Ly, we get
ds,
<C7T .
[5¢] < € Toz(>)

AJMAA, Vol. 22 (2025), No. 1, Art. 10, 29 pp. AJMAA
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Similarly, differentiating again the same equation with respect to variable t, we get

- 0% 0*R R 08
Li—=—|—1|0—-2|=|=.
Loe [a@] [8t]8t
Therefore,
- 0%
Li— || <C C
LIS <clsl+ols
- 0%
I Lizg | < CToa(5).
Also,
0% 0%¢ 0% 0?5
7e (% 0) =0 and W(O t) = e —(0,t) — 7 (O t)=C.
Using the Lemma for the operator Ly, we get
0%¢
\6t2|<CT02( ).

Now differentiate (5.4) partially with respect to variable t once, for . = 1,2 we get
2

(92@ 0%, 8tL
ot? (9 ot Z t 8’( Z -

2, . < ds, aq]
oxot COILT ot Z ot 8’:2

‘77

Therefore,
82
| 030t
To obtain bound on %2, let us consider (L13); = 0.

| < C€_IT02( )

S
2L (50, 4) + 111 (32, £)61 (52, 1) + t12(5, )52 (32, 1) = 0

8§1 a§1

- = 11161 — T12Q2 — E

8§1 8§1

— = €f1[ T1161 — 1262 — E]

s
|—| < CepMfsal + lso| + | - ]

SC&Tl TQQ( )

Hence,

0
’i‘ <C€ T(]Q( )

Similarly,

8
yﬁ\ < Cey'oa(50).

To find Sharper estimates of %, consider the equation
el

(L o< ) 0 051 0 8g1 Sl [/ Oty Otyo
13—
1

9 ) " 0 00 Mo T2, T T 90T 55
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Clearly,

158
(L@)l

Define the barrier functions
=+ 0s1

(0 )1 = Cley ' To(3¢) + g5 Toa(5)] £ e

It is clear that, for (5, ¢) € ¥~ and C sufficiently large, (Eﬁi)l >0, (ﬁi)l(%, 0) >0, and

< Cls1] + Is2]] < C Toa(5).

(0%

()1 = Clar( T Toa () + 1) T (7]

1
N _ s
+vinfer Yo (50) + 65 ' Too(3)] |L1—1 |

Z C(—OZ + tll)[él_lTOJ(%) + 62 1T072( )] + CTQQ(%) Z 0.

— -+ —_—
Then by maximum principle for the operator L, , (¢ ); > 0 for (s¢,t) € ¥ . Hence the
required bound for |%| is

oc _
|—1|< Cler "o (50) 4 &5 Yo 2(50)].

Differentiating (f/l? )1 = 0and (Li<); = O partially with respect to 3 once and using the

8§L 82§L

estimates of | 3|, |53

, we get

| | < Cepler Yo, (5¢) + €5 Yo (5)],

| | < 06 [51_1T0,1(%) + 82_1T072<%)].

- . —+ . . -
The bounds of ¢ and its derivatives on W  are analogous. By incorporating the results for ¢

and its derivatives in gle intervals U and @Jr, we arrive at required bounds of ¢ and its deriva-
tives in the whole of W. The proof of the lemma is complete.

Definition. As in [11], we have for each 1 < ¢ # j < 2, define an unique point g + s, ,
in (g,9+1],9 =0,1as
Ty (9t Yy,(g+5,)

(5.8) : 2=
g, £,

Uniqueness and ordering of the points g + 5, , in (g,g + 1], ¢ = 0, 1 are shown in succeeding
lemma.

Lemma 5.3. For all v, ) such that 1 < 1 < j < 2, the points g + »,,,g = 0,1 are uniquely
defined and satisfy the following inequalities. [11]

T,, T
(5.9) 9, (%) > 9,J (%)’ 2 e [g’g + %[,J),
£, g
T,, T
(5.10) 9’6(%) < g’éw, x € (g+ 2,,9+1].
L J
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In addition to this, ordering of the points also established as,
(5.11) <y, I +1<y,
(5.12) n,, <, I L <.

6. SHISHKIN MESH

A piecewise uniform Shishkin mesh is established in the domain of problem (2.1)) with M x N
mesh intervals.

Let U = {t: ;L W0 = {12l ¥ = {%J}j b UL = o)l WY = U X W,
[ v andAMﬁN:Aﬁ\IJ
@tM: uniform mesh comprising M mesh intervals on Ay.

=N . . . . .
W : piecewise-uniform mesh comprlslng N mesh intervals on Ap.

U, =V Uﬁer where@f = {%]}j 7 —{ j}N
“MN =M —-N
{%]}] 1 7\IJ+N_{%]}N Jrl,\Ij —MN \IIMX\I] N \Il :\If \IJ% ’\Ij""MvN —
\If{” X fo;N,\IﬁMN . q;jN,

The domain A is partitioned into 6 sub-intervals as follows

[07771) U [7717 772) U [7727 1] U [17 1+ 771) U [1 + M1, 1+ 772) U [1 + N2, 2]
where 7),, 1, are the transition parameters, defined as:

(6.1) nL:min{ngl SLI N} =1,2 and ny; = 1.
Clearly,
1

Then, on the subinterval [1,, 1] and [1 + 7, 2], a uniform mesh with £ mesh points is deployed
and on each of the sub-intervals [0, 7, ), [17,,7,), [1, 14+n;) and [1+7,, 1+n,) a uniform mesh of

% mesh points is deployed. In particular, when both the transition parameters 7,,s = 1, 2 take

on its left-hand value, the Shishkin mesh ﬁ;v becomes classical uniform mesh in the interval
[0, 2]. We introduce the following notations:

(6.3) $, = — 2,4

If 5, = n, then " = 5, — 3¢, 4, Sﬁj =0 — 2, J = {5 9H; # Sﬁj} and p, = t, — t. 1
This framework generates a collection of four possible Shishkin piecewise meshes &, where
b,=0ifn, = m+1 and b, = 1 otherwise.

7. THE DISCRETE PROBLEM

In this section, to construct the discrete problem with the help of finite difference operator, we
discretized (2.1) with the help of uniform and piecewise uniform mesh, @tM and @5 respec-
tively.

(7.1) LMNU = (D7 U+ ED,U+RU) (5, t:)+S (54, ) U (56,— 1, £,) = §(5¢,, t,.) on WMV,

and
“M,N =

(72) € U= (U—-ED:U)(5,t.) = @.(56, 1), on MV T3, 0) = @p(se,).
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The problem (7.1), (7.2)) is rewritten as
(13)  LY"NU(,t.) = (DU 4+ EDLU + RU) (3¢, ) = A(5¢,, ) on UMV,

and on UMV

—

(7.4) LA"NU (3¢, :) = (DU + EDLU + RU) (3¢, t,.) + S(56,, 4,)U (55, — 1, 4,) = f(5¢,, )

-M,N - . — .
3 U(%]7 t.) = SOL(%Jv te), U(%Ja 0) = SOB(%J)>

where

Df(j(%ﬁtﬂ) _ U, t,) — Uy, t—1)

tn - tli—l
- U(5),t:) — U561, )
D%U<%]7tfﬂ) = / w — 3 1]
J J—
. U(styin, b)) — Use,,t)
DU (5, t,) = — Poa— T
J J

Lemma 7.1. Let (5, t,.) and S(5¢,, t.) satisfy (2.6) and @7). Then for any mesh function =,
—»M,N - — —
the inequalities ¢ =(0,t,) > 0, =(s,0) > 0 and LMN > () on UM, LMN: > (0 on

UM imply that = > 0 on [

Proof. For ¢*, j*, k*, let us consider =, (3, t,+) = mln E, (51, ;) and assume that the lemma
does not hold. Then =,-(s¢,t,+) < 0. Using the hypotheses, it is simple to establish that,
(3, b ) € AMN = ey te ) — Zpe (521, tir ) < 0and Zps (560, tr ) — 2 (50, te—1) < 0.

It follows that, for (s¢,+, t,+) € U=

(LMNH) (50, tr) = Dy Eis (55, ) + €0 DB (510, +thl%3’ )Ei(54)1, ter)

= Dy Zp (51, tr) + €0 D E e (510, b —i—ZtL*l P2 ISR R
<0

which contradicts our assumption and for (5¢«, t,«) € UMY
2
(LM NE )L* (%] ) tn*) = D;EL* (%j* ’ tn*) + & D;EL* (%]* > tn*) + Z tb*l<%]*7 tﬁ*)El(%J*v tli*)
=1
+ B (50, b )2 (5 — 1, L)

= D:EL*(%]*,tH*) +€L*D;:L %j , + ZtL *] %] , *(%]*,tﬁ*)

+ B, (%]’ )= L*(%]*7t"€*)
<0
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which contradicts our assumption.
If 52~ = 0, then

—»M7 — — —
£ 7E(0,4,) = 2(0,t,0) — EDEE(0, 4,) < 0,

a contradiction. Therefore s¢,- # 0. For t.- = 0, E(%]*, 0) < 0, this proves that our assumption

is contradictory. Therefore, t,- # 0. The proof of the lemma is complete.

The stability result is established in the next lemma as an immediate result of the preceding
lemma.

Lemma 7.2. Let R(x¢,, 1) and (¢, ) satisfy 2.6) and 2.7). Then for any mesh function =
on @Y
>M,N

= = = Lsunz, 1 pun=
=05, te)] < max{]| € =(0,4), [I=0Go, O)ll, — 1 L=, — 1 L= 1)
Proof. Define barrier functions

M,N = = I 2unNz 1 2unNz =
6% (54, t,) = max{| € 20,40, [[EG, Ol — MLy =0, — N L7 = 1} £ 20, ).

-M,N - - = — - — —
It is simple to demonstrate that £~ ©%(0, t,) > 0, ©%(s,,0) > 0 and also L, ©* > ( on
v <. = —MN
§-MN MNGE > (G on WM, From Lemmal7.1| we get the result ©F > 0 on ¥
8. DISCRETE SHISHKIN DECOMPOSITION

Just as in the continuous case, U = f—i—f be the Shishkin decomposition of the discrete solution
U of (7.1) and (7.2)), where I is the smooth component of the solution

(8.1) LY"NT (5, 4,) = (DT + ED,T + Al)(5,,t,) = A on & ~¥:N,
and on ¥ M.V,

(82) L™ T(s,,t,) = (DT 4+ ED,T + AT)(5¢,,t,) + B(5¢), £, )T (56, — 1, 4,) = f(5¢,, t.)

—»M,N*»‘ i — .
(8.3) ¢ T0,t) =700, t),  T'(55,0) =7(s,0)
and the singular component 5 is the solution of
(8.4) LMNC=0on 0 MN  [MNE_§on gHMN,
SM,N > . - .
(8.5) & €0,t) =&5(0,4),  ((56,0) = <(54,0).

9. THE LOCAL TRUNCATION ERROR

From Lemma it’s evident that in order to bound the error U — 4, it is enough to bound

N — @)(0, 1), (T — @)(5,,0) and LMV (T — @). Note that, for (32, t,) € WMV
IMN ([ — @) = [N — [MNg

Then . B
(BN (G — ), =

(LMN(U = @), = (LN = 7)), + (LMN(C =),
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which denotes that the local truncation error is associated with the first derivative. Then the
triangular inequality is given below,

(LYY = @)). (50, )| < (LM = 7). (565, )| + [(L(C = )35, 1))
Let I and 5 be the discrete analogous of 4 and ¢ respectively. Then,

PMNE oy (O 9 =
- - _ 0 _
9.2) (LN -Q)), = (5 —D{)s, + &(ﬂ — D})s,.
Therefore
B o o
93) LMV =) 0] < (5 = DO bl + el = D2 (5]
I o o
(94) |(LM7N(< - g))£(%]7tl€>| S |(a_t - Dt )Q(%j,t,@)’ + 6L|(8_% - D;{)gL(%ﬁ tn)|
Further,
LMN B
©9.5) E™ (=00, )] = |au( = D0, 4)
>M\N > 0
9:6) €€ = 0] = el = DD(0, 1)

Thus, the local truncation error corresponding to the smooth and singular components is handled
separately. It is important to highlight that the following distinct estimates of the local truncation
error of its first order partial derivatives are valid for any function N.

For each (3, t,,) € UMWV
0 ORN
. — — D, < —t._
OD G DONGo ] S Ol ty) _mas, [9506.9)
0 . RN
. - < _
©8) (g = DINGa ] < Clt —1)_max [5764,9)
0 PR
©9) (= DORGa )| < Clog =) _puas [5(s, 4
0 ON
(9.10) ‘(Er — D )R(,,t,)| < C se[Lnafc%] |8 (s, t)]
0 IR
O.11) ‘(3_% —DINGo, t)| < Clgen — 3) se[gjla%ﬁl] ‘(9%2 (s, to)]
0 N
(9.12) |(0_% — D+)N(%J,t,$)| < C se[glafﬂ] |(9 (s, to)l-

10. ERROR ESTIMATE

The succeeding theorem estimates the error estimates of the smooth component of the local
truncation error.

Theorem 10.1. Let R(s¢,t) and (¢, t) satisfy and [2.7). Let 7 represents the smooth
component of the solution of (5.1), (5.2) and (5.3) and let T represents the smooth component

of the solution of (8.1),(8.2) and (8.3) then
| T=7 <+ N,

AJMAA, Vol. 22 (2025), No. 1, Art. 10, 29 pp. AJMAA


https://ajmaa.org

18 K. RAMIYA BHARATHI, G. E. CHATZARAKIS, S. L. PANETSOS,
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SM,N = 0
(€ (=0 )] = ez~ ~ DE)7,(0, t)|
82
< Ce (50 — ) 2 | a;j (s,ts)]
< Ce N 'Ce'<CN.

It is easy to demonstrate that

(LT =)o, )l < 155 = DO )l + e 5= = D)4, )l
8 Y, aZfYL
< Cu, sertlzal ] | o (55, 5)| + Ce. 9, se[gfff%]] | 0522 (s, t)]
< CM™'4+ CN'¢,Ce; !, using Lemma[5.]]
<CM '+ N

The proof of the theorem is complete.

Prior to estimating the singular part of the error, the following lemmas are established.

Lemma 10.2. Let (52, t) and (¢, t) satisfy 2.6) and @2.7). Let < represents the singular

component of the solution of (5.4), (5.3) and (.6) and let
of the solution of (8.4), (8.3)) then

represents the singular component

o 9,
. - _ < (2
(10.1) ]a(a% D)<, (5, )] 081 and
(10.2) (LN (C = Q)).(56,4)| < C(ME + ”%).
1
Proof.
2L~ DLl )] < O Lot (s, 1)
R A e e I R LY o
2
< Ce,H,Ce! Z r%(%), using Lemma5.2]
g=1 1
()
< ©,9
<09, .
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0 _ 9,
_  _ < (=,
e~ DIt < 02
|(LM’N(§ — )5, )| < ’(a — D¢ )su (5, te)| + ‘5L(a_% D, )c. (54, t)]
0%,
<
- O'uﬁ sE[r’ijill)»(fn] ‘ ot? ( j’s>’
2q,
a0, a2t

2

T
<CM™ '+ Ce et Z M, using Lemmal[5.2]
€

¢=1 e

<CM '+ CAl

€1
VN E 9
(N (= 2,0 t0)] < C(UH 4 22),
The proof of the lemma is complete.

Lemma 10.3. Let R(s¢,t) and (¢, t) satisfy 2.6) and @2.7). Then for each . = 1,2 and for
any mesh My with by = 1, there exist a decomposition

(36, ) = 1056, 8) + Gu2(50,1)
for which the following estimates hold. For (»,t) € ¥

1l (50, < O T (39
]%(%, t)] < Ce; ey ' Toa(5).
For (%) € @_F,
1%l (e, ] < O ()
|8(92§L22( ) < Ce; 521T12( ).
Proof. Since ¢, < 2, define a function ¢, »(s¢,t), c = 1,2 for (5¢,t) € U as follows
G, (5, 1) if 2 € [5,,,1]
Guals 1) = > o ggé(%L,j,t)—(% _;”)E if 3¢ € [0, 50,,)
G1(o6,t) = ¢, (50, 1) — ¢, 2(52, 1) for » € [0, 1].

For s € [0, 5, ,) and by using Lemma[5.2] we get

0? L2 0%, -1 Toq(5.,)
| a 2(%7t)| |a 2(%037 )’<€C€ ; gq ’
< Cey ' Toa(54,)
S 0651T072(%).

For s € [5,,,1] and by using Lemma[5.2] we get
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Y

0%, 2 :
0] = 2] 2 Ss(oe, 0] < e, Y Toal)
q=1 q

< CE;IT072(%>.
On the interval [, ), 1],

gL].:gL_g[,QZO

)

and hence
agL,l _ asz,l _
0 02
On the interval [0, 5, ,) and using Lemma 5.2t follows that
a Sl a Sy gL 2
G 0 = e e

Y
<CZ You() +0551T02() < 2 ().

€1

Integrating over (s, 5, ),

8§L71 agb,l o e 82<L,1(5)
D P = )= [ s
s, #0261 (s
Sl < [ 15 as
< " ’1C’T01<) ds
=/ -
< 05_151_1/ " Yo1(s)ds

< C&?L_lsfl[%]wo,l(s)]?’]
< Cgil[frg 1( ) - To,l(%,])]

< Céf TO 1( )
For the interval (s, t,;) € U ", define the functions Su2(2, 1), L = 1,2 as follows
S, (s, t) if c € [14 5,,,2]
G2(o,t) = (e — (14 32,))" .
S @ (1 + 5, ,,t) 7 - if e € (1,14 5,,)
Gl t) = ¢, (56,t) — ¢0(50, t) for s« € [1,2].

For > € [1,1+ »,,) and by using Lemma[5.2] we get

62§L,2 62
65252 (,)] = 2| 5221+ 75,0
2
<e 05_1 Z Tl,q 1 -+ %L’])
>~ . g £q

S C€51T1’2(1 + %LJ)
S C&TZ_ITLQ(%).
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For » € [1 + »,,,2| and by using Lemmal[5.2] we get

82§L anL
| 8 22(% t)| _8b|8 2(% t)|
2
<oty T14(5)

5
g=1 e

S 052_1’1\172(%).
On the interval [1 + x, ,, 2],
Sp,1 =60 — 62 = 0

and hence )
agL,l o 0 Sl

O»x 02 =0

On the interval [1,1 + 5, ) and using Lemma[5.2] it follows that

ang

0258 e, ] = 6 25k ) [0 222

02

8§L ) 143, 82§L 1(8)
) < I
Seals [T

</l+m] 710T11< )ds

1+/1L]
05_1 _1/ Tll

< 05;15;1[7][T1 1(s)]F
< Oé‘i [Tl 1(%) - Tl,l(%L,J)]
<Ce¢; T, 1().

The proof of the lemma is complete.

Lemma 10.4. Let R(5¢,t) and (¢, t) satisfy 2.6) and @2.7). Then for each v« = 1,2 and
J=12,...,N,k=1,2,..., M on each mesh M, the following estimates

0
le. (D, — a—%)gL(%],tH)| < CTY,o(2-1) where p=0,1
and

[(EMN(C = )56, )] < C(M T+ Yg2(561))
hold.
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Proof. From the standard estimates for first derivatives of Lemma forall : = 1,2 and
1=12,...,N,k=1,2,..., M it’s not hard to verify that

0 B s,
le(5= — D,)s.(54,t:)| < Ce,  max Ia—%(& te)|

0x s€[25-1, 2]
2

<05y —T“qi%]‘l)

q=t 1

0 _
’&(8_% - D;{)gL(%J? t)] < CT@Q(%J*l)

(Y =) )] < (= D )| e = D) )

2

S
< C 5 +C L a 7t/€
< Cu, seﬁfafﬁﬂa?(%ﬁ s)| 3 se[ﬂ?f%ﬂa%(s )l
T
SCM*IJFC&E M

5
q=t a

(EMN(C =)o )] < O+ Y a(551))-
The proof of the lemma is complete.

Theorem 10.5. Let R (3¢, t) and (52, t) satisfy 2.0) and 2.7). Then for each . = 1,2 and
J=12,...,N, ks =1,2,..., M on each mesh &, the following estimates

[(ZMN(C = )u(5, t)| < C(MP+ N ' In N)
hold.

Proof. The lemma is proved for four cases.

Case (i): On mesh &; with b = (0,0).

Here the mesh is uniform and hence $H,=x,—»x, 1 =N -1
Sincen; = 1,2 InN > Tore;' < Cln N, similarly ;" < CIn N.
From (9.6) and Lemma@, it’s not hard to verify that

M,N

@00 <4l ~ DD, 1)

Su
= CEL(%l B %0) Ser[r)l{?iil] |6 2 (S tk)|

Yo%)
< Cem N Ce ! Z %

q=1 1
< CN~'lnN.
0 B 9, .
|Eb<a_ - D%)gb<%37tﬁ)| S 06_7 using "
x 1
<CN'InN.

(EYN(E =) )] < (o = D )| o0y - = D) )

52
< Cp, max ‘8’;(%]’ )| +CN'InN

SE[tk—1, tx]

<CM'+N'InN).
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Case (ii): On mesh &; with b=(0,1).

In this scenario, the mesh is piecewise uniform and the following conditions hold
m =21, =%=2InN.Hence 2 < &L InNore; > Z. Alson, — 1, =1;.

On the interval (g, g + 1,], where g = 0, 1,

SMN - 0

(€7 (€= )0, )] < el(5- = D)<.(0, &)

O
2

0%c,
< Ce, (50 — 35) e |3%2 (s, t)]

2

P T, q(5)
< Cen N 1C<€L ! Sl CVASESA
jECN‘%gihMkaT“ﬂ%)
<CN 7 'InN.
B (i — D)5, (5,,4)| < C’& <oy using (10.1))
L B 2 )5S\ )| = e = e )

<CN 'InN.

- > 0 _ 0 _ .
(EMHC = O)uloa, )] < 155 = Di)sulog, te) + e 5~ = D)4, )] using

2

0
<Cpu, max | g(%], s)|+CNtIn N
s€lg, g+771 8t2

<CM'+N'lnN).

On the interval (g + 1, g + 1), where g = 0, 1,

0 - 9, (M2 = M) 1 M oar—1 .
— —D <0 <21 <.
|€L<a% %)gb(%ﬁtfi)’ — 051 — C €1 N — 051 N , using @

<ON'InN, asn, —n, =1,

N 4 4
(MM = 95 1) < 15, = DO, )| + el = D)6, )|

2

Ny -1
X 7,8)|+CN " InN
s€[g+n1, g+72)] e ot (4 9)

<C(M™ 4+ N"'InN).

< C,

On the interval (g + 15, g + 1], where g = 0, 1,

0 _ s,
|5L($ — D )s. (54, t:)| < Ce, ephax |8 (s, t.)|, using (9:10)
2

T _
<Ce Y M, using Lemma[5.2]
&q
q=t
< 0528271'1“@’2(%],1) since €1 < E9

< CN~ .
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Since 3, > g+ 1y, 5,1 > g+, andhence T o(3,1) < N°L

N 0 0
[(EMN(C = uloys )l < M5 = D)o )l + (5 = D)5, )

2

S _
<(C ma —(3,,8)|+ CN~!
— /l’n Se[g+n2?§]+1} ’ atg (%J )’

<CM'+ N

Case (iii): On the mesh & with b = (1,0).
In this scenario, the mesh is piecewise uniform and following conditions hold
Ny =73.6, <ClnNandasn, =< InN, e < 2.

On the intervals (g, g + 1,], where g = 0, 1,

SM,N - 0

(€ (=0, )] < el(5- = D2)au(0, )]

2

0°¢
< Ce.(oa — 5) sebm] |8%2L

(s, tx)], using (O.1T)

2
T
< Cenm N 'Ce ! Z #, using Lemmal5.2]

q=1 a
< CN‘l(%ln N)er ' Ty (5)
<CON'InN.
’@(i — D). (5, t)| < C& < LN, using (10.1)
O £1 £1

<CN 'InN

N J 9
|(LM7N(C - 6))L(%]7t:‘€)| < |(6_f - Dt_)gL(%]a tn)‘ + ‘EL(E - D;)CL(%J’ t”)|

2

S _
<cC ma —(5,,8)|+ CN'InN
Mnse[g,gfm]‘ag( 0 5)l

<CM '+ N 'InN).

On the interval (g + 7y, g + 15],where g = 0, 1,

0 _ 0 _
|€L(3_% - D%)§L<%j7tﬂ)’ < |5L<a_% - D%)[§L,1<%J7tﬁ) + §L,2(%yatn)]|
0 _ 0 _
< |5L(£ - D%)gb,l(%ﬁtfi” + |5L(£ - D%)gL,Q(%ﬁtH”
<(Ce, max 3R (s, t)]

s€lg+ny.gtny) O
0%,2
+C$He, max | 2

s€lg+ny,g+ny] O

< CN~'In N, using Lemma [10.3]

Since s, >g+m,, ,.1>g+n, andhence fort=1,2, T, (35,1) < N .
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" - 0 0
|(LM7N(C - 5))L(%]7 tf-i>| < |(8_t - Dt_)qL(%]7tf€>| + |€L(8_}f - D;>§L(%J7 t"f)|
2

0°g
<C — (2, CN'InN
= T gt g | ot (. ) + "

<CM™7'4+CN'InN
<C(M™'+N"'InN).

On the interval (g + 71, g + 1], where g = 0, 1,

0 B 0 _
\&(a — D). (5, t:)| < \ﬂa —D;,)[s.,1(5¢), ) +<u2(22, te)]|
0 3 0 _
< \Eb(a—% — D,)s.1(5, te)| + ‘EL(87 = D,)s.2(7, t)|

s,
< s max | 28l(s, 1)

s€lg+ns,9+1] O
+Ce,$H, max

a2§L2
= (s, t.)|, usin and
[ 1), using @) and @10)

< CN~'In N, using Lemma[T0.3]

Since ¢, >g+mn,, ,1>g+n, andhencefor.=1,2, T, (5, 1) < N .

[(ZYN(C =)ot )] < (5 = DOl )|+ eul - = D)o, 1)

2

S _
<Cp, max |=—(s,5)|+CN 'InN
= 86[9+n27g+1]|(9f2( )

<C(M'+N'lnN).

Case (iv): On the mesh &; with b= (1,1).
Here the mesh is piecewise uniform as 7, = =t In N, n, = =2 In V.
On the intervals (g, g + 7,], where g = 0, 1,

@ (C = 0.0 <<l ~ D0, 4], using @B)
2

d%, :
< Oc,(3 — 5) max |2—=(s,t.)|, using (O-TT)

S€[30,51] 02
2
T
< Cem N 'Ce !t Z M, using Lemma5.2]
£

q

q=1
< (JN‘I(% In N)ey T (52)
<CN'InN.
0 0%¢
2 D < g5
|EL(3% 2)s(, te)| < Ce®, seg}jfm} |a%2 (s, )]

2

T
< CeN'Cet Z M, using Lemma[5.2]
£
q=1 4
< Cem N7 le el Ty 0(5,1)

<CN'InN.
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. L o B 0 _

(I = e )] < 15 = DOl bl + a5 = D)l )
< Cp, max |82§(% s)|+CN'InN
B [9,9+n1] ot 7

gaM Ly N'InN).
On the interval (g + 71,9 + 1,], where g = 0, 1,

0 0 B 0 _
e <8_% - D, )§L(%],tﬁ)| < |€L(8_% - D;{)gL,l(%Jth” + |€L(a_% - D%)§L72(%J,t,§)|

agL 1
< (Ce max ~(s, t
o L56[9+7I179+”72]| O ( 7 H)|

+CHe, max |68222 (s, t.)|, using (9.9) and (9.10)

s€[g+n1,9+n2]
< CN~'In N, using Lemma [10.3]

Since », > g+m,, »,1>g+mn, and hence for.=1,2, T, (5, 1) < N~%
0
(5
ot
2

0°s
<C ma ,8)|+CN'InN
= S 56[9+771}§§+772] 5e ot? (5, 9)]

<C(M ' 4+ N'lnN).

- - 0
(N = 0ot )] < N5 = DOl )] + Jeu (5 = D),

On the interval (g + 715, g + 1], where g = 0, 1,

0 _ 0
\&(a—% — D). (5, t:)] < e, (8_% — D, )[s1(5, t) + 6,205, t) ]|
0 N 0 _
f§|£¢(gﬁ; —'1)%)<L1(?%=fn)|4‘|€L(Eﬁz = D)<2(54, 4|
ang
<
= O i e )

9%, ,
+Ce,$, max | b2 (s, tx)|, using (9.9) and (9.10)
s€lgtn.g+l] 02
< CN~'In N, using Lemma[10.3]
Since 3, > g+mn,, »#,-1 > g+mn, and hence for . = 1,2, T, ,(3,.;) < N7L.
(LMMC =), )l < N(57 = Di)sulog to)l + leul 5 = Do)su(o4 )]

2

S _
<Cpu ,8)|+CN ' InN
< O 2055 0o+ ON

<CM'+N'lnN).
The proof of the theorem is complete..

Theorem 10.6. Let @ represents the solution of the continuous problem 2.1),(2.2)) and 2.3),
while U represents the solution of the discrete problem (T.1), (7.2)). Then,

U (56, t) — @i(5¢), £,)]| < CN"'In N.
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Proof. Based on Lemma it is evident that to prove the above theorem, it suffices to prove
that || (LN (U = i@)),(55,, t)|| < ON ' In N. But |[|(LMN(U = @), (55, t,)]| < [[(LMN(T ~
NG t)l] + (LN (C = §)).(52), )| |. Hence using theorem @I and theorem the
aforementioned result is derived.

11. NUMERICAL ILLUSTRATION

An example presented in this section exemplifies the numerical scheme proposed in this paper.

Example 11.1. Let us consider the problem

%(%, t) + 51%(%, t) + (54 s0) us (56, t) — ua(oe,t) —us(sc — 1,¢) = 3,
ot O
o o YV (s,t) € U
8_’5(%’ t) + 628—%2(%, t) —uy (5, 1) + Sug(s,t) — L.5ug(3c — 1,t) =2
with
1 (0,8) — &1 20,6 = 1,101 (34,0) = 1
1(Y, 18% ) — 5 U1 ) -
0
us(0, ) — 52£(0,t) = 1, us(s,0) = 1.

In Table [I1.1] the order of convergence and the error constant for example [I1.T] are shown,
calculated using a variant of Two mesh algorithm [12]. In this table

2)Y . maximum point-wise two-mesh differences,

2% : ¢ - uniform maximum point-wise two-mesh differences,
pN : € - uniform order of local convergence,

p* : ¢ - uniform order of convergence and

@fﬂ : & - uniform error constant.

12. CONCLUSION

Table 11.1: Values of DY, DV, pV, p* and Qé\i generated for ey = {5,623 = %.
X N': Number of mesh points
64 128 256 512
0.250E+00 | 0.143E+00 | 0.112E+00 | 0.793E-01 | 0.515E-01
0.625E-01 | 0.143E+00 | 0.112E+00 | 0.793E-01 | 0.514E-01
0.156E-01 | 0.143E+00 | 0.112E+00 | 0.793E-01 | 0.514E-01
0.391E-02 | 0.143E+00 | 0.112E+00 | 0.793E-01 | 0.514E-01
0.977E-03 | 0.143E+00 | 0.112E+00 | 0.793E-01 | 0.514E-01
PN 0.143E+00 | 0.112E+00 | 0.793E-01 | 0.515E-01
pN 0.348E+00 | 0.500E+00 | 0.624E+00
Cév 0.283E+01 | 0.283E+01 | 0.255E+01 | 0.211E+01
p* = 0.3482349FE + 00
¢ = 0.2833228FE + 01

First order convergence was proved in this paper using a classical layer resolving scheme,
with the construction of a Shishkin Mesh for spatial discretization and a uniform mesh for time
discretization, applied to a system of two singularly perturbed time-dependent delay differential
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equations with robin initial condition. Solutions to the problem was further classified as singular
components and smooth components for in-depth analysis of the layer behavior of the solutions.
Layer functions was constructed. Spacial discretization is carried with Shishkin mesh, since
it allows us to capture layer pattern induced by the solutions. Our method is effective since
it provides better order of convergence and also it capture the solution’s layer behavior due
the presence of perturbation parameters and delay terms. To bolster our scheme, a numerical
illustration was carried out for an example problem, and the resulting table shows the order
of convergence and error constant, demonstrating the effectiveness of our scheme. The future
work will focus on solving semi-linear problems and also the problems with discontinuous
source terms.
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