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ABSTRACT. In this paper we establish scales of sufficient conditions for the boundedness of
Hardy’s averaging operators on weighted Lebesgue spaces. The estimations of the operator
norms are also obtained. Included in particular are the Erdélyi-Kober operators.
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1. INTRODUCTION

In [11], Sinnamon considered the weighted gradient inequality

(1.1)
{∫

Rn

|g(x)|qu(x)dx
}1/q

≤ C

{∫
Rn

|x · ∇g(x)|pv(x)dx
}1/p

, g ∈ C∞0 (Rn),

for 1 < p <∞ and 0 < q <∞, which is equivalent to

(1.2)
{∫

Rn

|Qf(x)|qu(x)dx
}1/q

≤ C

{∫
Rn

|f(x)|pv(x)dx
}1/p

,

for all f ∈ C∞0 (Rn). Here Qf(x) =
∫∞
1
f(xt)dt/t is a solution to the equation x ·∇(Qf)(x)+

f(x) = 0 for f ∈ C∞0 (Rn). Necessary and sufficient conditions for (1.2) to hold for 0 < q ≤
p < ∞, p > 1, were given in [11, Theorem 3.2 & Theorem 3.3]. Moreover, Sinnamon also
proved that if 1 ≤ p < q < ∞, n > 1, and the weight v is locally integrable on Rn, then (1.2)
holds only if u = 0 almost everywhere. If p, q > 1, then (1.2) holds for all measurable functions
f if and only if

(1.3)
{∫

Rn

|Pf(x)|p∗v(x)1−p∗dx
}1/p∗

≤ C

{∫
Rn

|f(x)|q∗u(x)1−q∗dx
}1/q∗

,

where Pf(x) =
∫ 1

0
tn−1f(xt)dt and 1/p + 1/p∗ = 1, 1/q + 1/q∗ = 1. The operator P is a

special case of Hardy’s averaging operator Hk defined as

(1.4) Hkf(x) :=

∫ 1

0

k(t)f(xt)dt,

where k : (0, 1) 7→ [0,∞) is a measurable function. Xiao [15] proved that Hk is bounded on
Lp(Rn), 1 ≤ p ≤ ∞, if and only if

∫ 1

0
k(t)t−n/pdt is finite. The operator norm of Hk was also

given.
In this paper, we consider the weighted inequality

(1.5)
{∫

E

(Hkf(x))
qu(x)dx

}1/q

≤ C

{∫
E

f(x)pv(x)dx

}1/p

for 0 < q ≤ p < ∞, p > 1, and u, v are measurable functions which are positive and finite
almost everywhere on E. Here E is a spherical cone in Rn and f ∈ L+

p,v, which are defined
below. In the case k(t) = tn−1 and E = Rn, Hkf(x) can be reduced to Pf(x) and necessary
and sufficient conditions on u, v for (1.5) to hold for all f ∈ L+

p,v can be obtained by the results
given in [11]. On the other hand, the one-dimensional case of (1.5) was studied by many authors.
See [2], [3], [6], [7], [8], [9], [10], [12], and [13] for k(t) = 1. In the case k(t) = (1 − t)α−1,
see [1] for 0 < α < 1/p and 1 < p < q = p/(1− αp), and [5] for α ≥ 1 and 1 < p ≤ q <∞.
Actually in [5], inequality (1.5) was investigated for more general k that is nonincreasing and
satisfies k(ab) ≤ D(k(a) + k(b)) for 0 < a, b < 1. For some more generalizations of these
results see [4], [14], and the references given there.

The purpose of this paper is applying the methods given in [11, Theorem 3.2 & Theorem
3.3] to obtain scales of sufficient conditions on u, v so that (1.5) holds for all f ∈ L+

p,v with a
finite constant C independent of f . The estimation of C is also given. As an application, the
operator

Jασηf(x) =

∫ 1

0

(1− tσ)α−1tση+σ−1f(xt)dt, σ > 0 and α > 0,

which is called the Erdélyi-Kober operator in the one-dimensional case, is also discussed.
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We say that E is a spherical cone in Rn if each x ∈ E can be written in the form x = ξσ for
some 0 < ξ <∞ and some σ ∈ B, where B is a given measurable subset of the unit sphere in
Rn. We assume that all functions involved in this paper are measurable on their domains. We
write f ∈ L+

p,v, 1 < p < ∞, provided that f is nonnegative on E and
∫
E
f(x)pv(x)dx < ∞.

For 0 < z < ∞, we define z∗ by 1/z + 1/z∗ = 1. We also take 00 = ∞0 = 1 and∞/∞ =
0/0 = 0 · ∞ = 0.

2. MAIN RESULT

Let 0 < q ≤ p < ∞ and p > 1. By the results given in [11] we see that (1.5) holds for
k(t) = tn−1 and E = Rn if and only if A <∞, where

(2.1) A = sup
x∈Rn

(∫ 1

0

v(xt)1−p
∗
tn−1dt

)1/p∗(∫ ∞
1

u(xt)tn−np−1dt

)1/p

for p = q and

A =

{∫
Rn

(∫ 1

0
v(xt)1−p

∗
tn−1dt

)q(p−1)/(p−q)
(2.2)

×
(∫∞

1
u(xt)tn−nq−1dt

)q/(p−q)
u(x)dx

}(p−q)/(pq)

for p > q. Now for 1 < s ≤ p, and δ ∈ R we define Apqsδ as follows:

(2.3) Appsδ = sup
x∈E

(∫ 1

0

(ts−δ+n−1v(xt))1−s
∗
dt

)(s−1)/p(∫ ∞
1

t−δ+n−1u(xt)dt

)1/p

for p = q and

Apqsδ =

{∫
E

(∫ 1

0
(ts−δ+n−1v(xt))1−s

∗
dt

)q(s−1)/(p−q)
(2.4)

×
(∫∞

1
t−δq/p+n−1u(xt)dt

)q/(p−q)
u(x)dx

}(p−q)/(pq)

for p > q. If E = Rn and we choose s = p and δ = np, then Apqsδ can be reduced to A defined
by (2.1)− (2.2). In the one-dimensional case n = 1 and E = (0,∞), Apqsδ can be reduced to the
well-known Muckenhoupt conditions by choosing s = δ = p. See [2], [7], [12], and [13]. The
following is our main theorem.

Theorem 2.1. Let 0 < q ≤ p < ∞ and p > 1. Let k : (0, 1) 7→ (0,∞). Suppose that there
exist 1 < s ≤ p and δ ∈ R such that Ksδ <∞, where

(2.5) Ksδ =

{
{
∫ 1

0
k(t)p/(p−s)t(s−δ)/(p−s)dt}(p−s)/p, if 1 < s < p,

sup0<t<1 k(t)t
1−δ/p, if s = p.

If Apqsδ <∞, then (1.5) holds for all f ∈ L+
p,v and the best constant C satisfies

(2.6) C ≤
(

p

p− q

)(p−q)/(pq)

s1/p(s∗)(s−1)/pKsδA
pq
sδ .

Proof. Let hs = fp. For δ ∈ R, we have

Hkf(x) =

∫ 1

0

k(t)t(s−δ)/pt(δ−s)/ph(xt)s/pdt ≤ Ksδ

(∫ 1

0

tδ/s−1h(xt)dt

)s/p
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and hence ∫
E

(Hkf(x))
qu(x)dx ≤ Kq

sδ

∫
E

(∫ 1

0

tδ/s−1h(xt)dt

)sq/p
u(x)dx

=Kq
sδ

∫
B

∫ ∞
0

(∫ 1

0

tδ/s−1h(ξσt)dt

)sq/p
u(ξσ)ξn−1dξdσ

=Kq
sδ

∫
B

∫ ∞
0

(∫ ξ

0

zδ/s−1h(zσ)dz

)sq/p
u(ξσ)ξ−δq/p+n−1dξdσ.

Let ũ(ξ) = u(ξσ)ξ−δq/p+n−1, ṽ(z) = zs−δ+n−1v(zσ), and define

Dsδ(σ) =

{
supy>0(

∫∞
y
ũ(ξ)dξ)1/s(

∫ y
0
dλ)1/s

∗
, if p = q,

{
∫∞
0
(
∫∞
y
ũ(ξ)dξ)q/(p−q)(

∫ y
0
dλ)q(s−1)/(p−q)ũ(y)dy}(p−q)/(sq), if p > q,

where dλ = ṽ(z)1−s
∗
dz. It is well-known that Dsδ(σ) < ∞ is a necessary and sufficient

condition for

(2.7)
{∫ ∞

0

(∫ ξ

0

g(z)dz

)sq/p
ũ(ξ)dξ

}p/(sq)
≤ C

{∫ ∞
0

g(z)sṽ(z)dz

}1/s

to hold for all nonnegative function g and

C ≤
(

p

p− q

)(p−q)/(sq)

s1/s(s∗)1/s
∗
Dsδ(σ).

Here {p/(p− q)}(p−q)/(sq) is taken to be 1 when p = q. See [12] and [13]. This implies{∫
E

(Hkf(x))
qu(x)dx

}1/q

≤
(

p

p− q

)(p−q)/(pq)

s1/p(s∗)(s−1)/pKsδI
1/q,

where

I =

∫
B

Dsδ(σ)
sq/p

(∫ ∞
0

h(zσ)sv(zσ)zn−1dz

)q/p
dσ.

If p = q, then

I ≤
(
sup
σ∈B

Dsδ(σ)
s

)∫
B

∫ ∞
0

h(zσ)sv(zσ)zn−1dzdσ = (Appsδ)
p

∫
E

f(x)pv(x)dx.

On the other hand, if 0 < q < p <∞ and p > 1, then by Hölder’s inequality we have

I ≤
{∫

B

Dsδ(σ)
sq/(p−q)dσ

}(p−q)/p{∫
B

∫ ∞
0

h(zσ)sv(zσ)zn−1dzdσ

}q/p
= (Apqsδ)

q

{∫
E

f(x)pv(x)dx

}q/p
.

This completes the proof.

In the case k(t) = tn−1, we choose s = p and δ = np. Then Ksδ = 1 and Apqsδ can be reduced
to A defined by (2.1) − (2.2). Therefore we obtain the sufficient part of Sinnamon’s results in
[11].

As an application, we consider the case k(t) = (1− tσ)α−1tση+σ−1, where σ > 0 and α > 0.
In this case, Hkf(x) can be reduced to

Jασηf(x) =

∫ 1

0

(1− tσ)α−1tση+σ−1f(xt)dt.
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In the one-dimensional case, the operator Jαση is called the Erdélyi-Kober operator. If 0 < q ≤
p < ∞, p > 1, and α > 1/p, then by choosing s and δ so that 1 < s < min(αp, p) and
δ < (η + 1)σp, we have Ksδ < ∞. Therefore Apqsδ < ∞ is a sufficient condition for the
boundedness of Jαση from L+

p,v to L+
q,u.
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