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ABSTRACT. The Jacobson density theorem for general non-commutative Banach algebras states
as follows: Letr be a continuous, irreducible representation of a non-commutative Banach alge-
braA on aBanach spack. If z;,zo, ..., z, arelinearly independent i¥ and ify;, y2,...,yn

are inX, then there exists am € A such thatr(a)x; = y; fori = 1,2,...,n. By considering
ordered Banach algebrasand ordered Banach spacks we shall establish an order-theoretic
version of the Jacobson density theorem.
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2 K. MuzunDU

1. INTRODUCTION

ThroughoutA or B will be a complex Banach algebra with unityand X will be a complex
Banach space. Thepectrumandspectral radiusof an element ind will be denoted by (a)
andr(a) respectively. All ideald” will be assumed to be two sided. Thacobson radicabf
A will be denoted by Rad(A) andl is said to besemisimpldf Rad(A) = {0}. Thecenter
of A will be denoted byZ(A). The termhomomorphisnirom A to B will mean an algebra
homomorphism from4 to B, and thecanonical homomorphisiitom A to a quotient algebra
A/ F will be the homomorphism — a + F. The set of all non-negative real numbers will be
denoted byR*. A Banach spac& ordered by a positive cone will be denoted by X, P), and
the abbreviation OBS will stand for ordered Banach space.

Every Banach algebrd can be ordered by amigebra conewhich is a subset’ of A such
thatl € C' andC' is closed under addition, multiplication and multiplication by scalarR’in
Then A is called amordered Banach algebréOBA) and the elements @f' are calledpositive
The algebra coné€'is said to belosedf it is topologically closed inA, properif CN—C = {0},
inverse closed a € C anda is invertible implya~! € C, normalif there is a fixed scalax > 0
such that|a|| < «||b|] wheneve < a < b, and the spectral radiusmsonotoneelative toC' if
r(a) < r(b) wheneve) < a < b. A representatiom of an OBA(A, C) on an on OBS X, P)
will be calledpositiveif 7(a) is a positive operator oX whenevewr € C.

Spectral theory in OBAs first appearediinl[14], where fundamental properties of algebra cones
were established, and key spectral theoretic results such as the OBA version of the Perron-
Frobenius theorem were obtained (See,![[14], Theorem 5.2]). Since then, OBAs have recieved
a considerable amount of attention and various aspects of the theory have been developed.
For instance, some domination theory is developed]in [5] and [12].]In [7]and [13] asymptotic
properties of positive elements in OBAs are studied. In the year 2012, a groundbreaking paper
on the irreducibility in OBAs was published by Aleckno (séé, [1]). The results of this paper have
found wide applicability in the theory of OBAs. For instance, they have played an important
role in the development of Fredholm theory in OBAs (seg, [6]) and the references given there.
However, not much has been done in the area of representation theory of OBAs. This work
seeks to begin to address that gap, by establishing in the OBA setting one of the main results
in the representation theory of non-commutative Banach algebras (see, [[3], Theorem 4.2.5]),
namely the Jacobson density theorem.

The original Jacobson density theorem first appeared in [9] and is a result on the structure
of simple rings. This result has very important consequences in ring theory and is related to
other important results in algebra, such as the Von Neumann bicommutant theorem and the
Keplansky density theorem (se€|, [2],[8].[101.[15]). The Banach algebra version of the Jacobson
density theorem is established inl([3], Theorem 4.2.5).

2. PosiTIVE HOMOMORPHISMS

We introduce positive homomorphisms between Banach algebras, which will play a central
role in the work. Let(A,C,4) and(B,Cp) be OBAs. Amapp : A — B is called apositive
homomorphisnif ¢ is an algebra homomorphism agdc) € Cp for all ¢ € C,4. Positive
homomorphisms on ordered Banach algebras are implicitely discussed in [11].

Example 2.1. Consider the Banach algebra = /°°, under componentwise addition, scalar
multiplication and multiplication, and with nori(z,,)|| = sup |z,|- The seC = {(z,) € A :
neN

x, € R*} is a closed, normal algebra cone i The following bounded linear operators are
positive homomorphisms oty every projectionP on A, the left shift operatofz,, xs, ...,) —
(22, z3, ...), and the right shift operatofzy, o, ..., ) — (0, 1, T2, ...).
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Example 2.2.Let A = C(£2) be the Banach algebra of all continuous complex-valued functions
on a compact topological spa¢e under the norm|f|| = sup |f(¢)|. TheseC = {f € A :
teQ)

f(t) > 0forall t € Q} is a closed, normal algebra cone . Clearly, C' is non-empty as

it contains all constant functions whose ranges are singleton sets containing non-negative real
numbers. For fixed € C, the bounded linear operatof — fg is a positive homomorphism
onA.

Example 2.3. Let (A, C') be an OBA andB a closed subalgebra of containingl. Clearly,
Cp = BN C'is an algebra cone iB. The inclusion map : B — A is a positive homomor-
phism.

Example 2.4.Let (A, C') be an OBA and” a closed ideal inA. The canonical map from the
OBA(A, C)tothe OBA(A/F,nC) is clearly a positive homomorphism.

If (A,C) is an OBA, we will denote byx the set of all positive bounded linear operators
on A. While the set of all positive homomorphims ehis not in general a positive cone as
it may not be closed under addition and positive scalar multiplications an algebra cone
in the algebraB(A) of all bounded linear operators oh Moreover ifC is closed or inverse
closed, then¥ is also closed or inverse closed. The same applies for normality, properness and
monotonicity of the spectral radius. To verify this, we will need the following lemma.

Lemma2.1.1f (A,C)isan OBAand’ € B(A), then||T|| = sup||T'c|| andr(T") = supr(Tc).
ceC ceC

Proof. Obviously,sup ||T¢c|| < ||T||. To verify the inequality|T’|| < sup ||T¢|| , it suffices to
ceC ceC

show that for any: € A, thereis a € C such that|Ta|| < ||T¢||. Letc = ||Tal|1 € C. Since
T1 is an idempotent||7'1|| > 1 and so||T’a|| < ||Tal|||T1|| = ||T(||Tal|1)|| = ||T¢||. To
prove the second part, we have that

r(T) = lim ||T"|* = lim sup ||(T¢)"||* = sup lim ||(Tc)"||* = supr(Tc).
n—0o0 nN—0 ccC ceC N—© ceC

Proposition 2.2. Let (A, C') be an OBA. I is normal, proper or the spectral radius {2, C)
is monotone, thel has the same properties.

Proof. Suppose that, T € K with0 < S < T. Then0 < Sc¢ < Tcfor all ¢ € C and by
normality of C, there is a scala® > 0 such thatf|Sc|| < «||T¢|| for all c € C. From Lemma
2.1, it follows thatK is normal inB(A). To show that the spectral radius (B(A), K) is
monotone, fromd < Se¢ < Tcfor all ¢ € C' and monotonicity of the spectral radius(id, C')
we have that(Sc) < r(T¢) for all ¢ € C. It follows from Lemmd 2.l that(S) < r(T).
Finally, to show thatK is proper, letl’ € K N —K. Then for anyc € C we have that
T(c) € C N —C butif C'is a proper conel’(c) = 0. From Lemma 2]1, for any € A, there is
ac € Csuchthat|Tal|| < ||T|| =0. Hencel = 0. i

It would be interesting to consider positive homomorphisms from an QBA” 4 ) to an OBA
(B, Cp) such that properties af'4 carry over toCz. Let¢ : A — B be a homomorphism.
If ¢ is for instance bijective and(C4) = ¢(Cp) it can easily be shown that closedness or
properness of’4 will imply that Cz also has the same properties.¢lfs a positive isometry
and if C'y is closed, normal, proper or the spectral radius is monotone wW.r.thenCy will
have the same properties. d@fis positive and spectrum-preserving, then monotonicity of the
spectral radius it4, C'4) implies monotonicity of the spectral radius(iB, Cz). If in addition
A and B are semisimple and is onto, then (]4], Proposition 2.1) impligsg will be closed,
normal, proper or inverse closed(f, has these properties.
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3. JACOBSON DENSITY THEOREM FOR NON-COMMUTATIVE ORDERED BANACH
ALGEBRAS

Here we will present the Jacobson density theorem for OBAs, which is Thgorgém 3.4. Its
proof will rely on Lemma 3.3, which in turn relies on Lemfnal3.2, and we require Lgmra 3.1 to
prove Lemma 3]2. To obtain the results in this section, we shall co-opt some spectral theoretic
methods and follow along the lines of the developmentiin [3].

Lemma 3.1. Let (A4, C') be an OBA withC' closed and normal, and a continuous, irreducible
representation on an OB&, P). Let K be the set of all positive operators ohand £(X) =
{T' € B(X) : Tw(a) = ©(a)T for all a € A} a subset ofB(X). ThenE(X) is a closed
subalgebra ofB(X) containing/ and is isomorphic t€C, K’ = F(X) N K is a positive cone
in E(X)andK’' C {\ : A € R*}.

Proof. That £(X) is a closed subalgebra @ (X) containing/ and is isomorphic tdC is
obtained from ([3], Theorem 4.2.2). Therefdi#X ) is one-dimensional. We define the map
¢ : E(X) — Chy¢(T) = A\ where) is the scalar such th&t = M. Obviously¢ is an
injective homomorphism. In additior; is positive. To verify this suppose that7T) = ),
whereT € K. BecauseK is closed and normal, we have thdfl, E(X)) € o(T, E(X))

by ([14], Theorem 5.2). This means thatl’, £(X)) — T is not invertible inE(X). Since
E(X) is isomorphic taC, it follows that7T = (7, E(X))I, so that\ = »(T, E(X)). Hence
K' c{AM:XeR}. &

To discuss the next result, we shall introduce the notion of real linear independelics.df
real or complex vector space, we say that,, ..., v, € V arereal linearly independent the
only real solution to the equatian v, +asvs +- - - + v, = 0 (Whereaq, as, ..., a,, are scalars)
is the trivial solutiona;; = as = --- = «a,, = 0. From real linear independence we define real
linear dependence in the usual way.Vifis real, linear independence (dependence) and real
linear independence (dependence) are equivalent, whereas it may not bé sodbmplex.
The motivation for real linear independance is that it is associated with the scalar multiplication
property of algebra cones, which will play a significant role in the proof of some results leading
to the main theorem.

Lemma 3.2. Let (A, C') be an OBA withC' closed and normal and be a continuous, irre-
ducible, positive representation on an OBS, P). If z;, x, € P are real linearly independent,
then there exists am € Z(A) N C such thatr(a)z; = 0 andn(a)zy # 0.

Proof. Suppose that(a)z; = 0 if and only if 7(a)x, = 0 for all a € Z(A) N C. This implies

thatr(b)z, = 0 if and only if 7(b)z, = 0 forallb € B = Z(A) N Span(C). Note thaB is a

closed subalgebra of containingl. Now consider the subsets = {b € B : n(b)z; = 0 for

i = 1,2} of B. These are two sided closed idealsifand because(b)z; = 0 if and only if

m(b)xy = 0forallb € B, we have that, = F, = F'. We define linear maps, : B/F — X by

T;(b+ F) = n(b)x; (i« = 1,2). By continuity ofr, the map¥/; are bounded, and by positivity of

m, they are positive. In addition, it is easy to show by direct calculation that they are injective.
Now we define a linear map = 7,7;' from Im(T}) onto the corresponding subspacef

X. Then obviouslyS is continuous, positive and bijective. Letc Y such thaty = =« (b)z; for

someb € B. Then for any € B we have that

m(c)Sy = w(c) LTy 'y = w(c)To(b + F) = 7(c)m(b)xy = 7(ch)ws.
On the other hand,
Sr(c)y = ToTy ' n(c)y = ToTy ' n(c)n(b)x; = ToT;  n(ch)x, = To(ch + F) = n(cb)w,.
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Hencer(c)S = Sw(c) and by Lemma 3]1, there is a positive real numbsuch thatS = AI.
HenceTl, = AT, and soT,(1 + F) = AT (1 + F'). This implies thatc, = Az, which is a
contradiction.y

Lemma 3.3. Let 7 be a continuous, irreducible and positive representation of an QBA”)
on an OBS(X, P), whereC' is closed and normal. &y, zs,...,z, € P are real linearly
independent, then there existsare Z(A) N C such thatr(a)z; = 0for1 <i <n—1and

m(a)x, # 0.

Proof. We prove by mathematical induction. Far = 2, the statement is true by Lemma
[3.7. We now assume > 2 and that the statement is true for— 1 real linearly independent
vectors inX. Then there is am; € Z(A) N C such thatr(a;)z; # 0 andn(ay)z; = 0
for2 < i <n-—1. If 7(a;)z, = 0, then we are done. Suppose that,)z, # 0. We
claim thatr(a, )z, andr(a,)z, are real linearly independent. Suppose to the contrary that they
are real linearly dependent. Latbe the real number such thata,)z, = Aw(a;)z;. Then

x, — Ar; € Y = Ker(m(ay)). Becauser(a;) # 0, we have thalt” = Ker(w(a;)) # X. We
claim thatY” = {0}. Sincer is irreducible, it suffices to verify that is invariant undetr(a)
foralla € A. Lety € Yanda € A, and suppose that(a)y = z. Sincea; € Z(A), we have
that0 = 7(a;)m(a)y = m(a)m(a1)y = 7(z), so thatz € Y. ThusY  is invariant undetr(a) for

all a € A. Consequentlyz,, = Az, which contradicts the assumption thgtandzx, are real
linearly independent. Henega,)x; andr(a,)x, are real linearly independent, and by Lemma
there is am, € Z(A) N C such thatr(az)m(ar)x; # 0 but 7(az)m(ay)x, = 0. Taking

a = asay, we see that(a)z; # 0 andr(a)x; = 0forall2 <i < n.§

We now present the main theorem of the paper.

Theorem 3.4.Letr be a continuous, irreducible and positive representation of an QBA”)
on an OBS X, P), whereC'is closed and normal. Suppose that zs,...,z, € P are real
linearly independent. If, vs, ..., y, € P are any elements, there existsag Z(A) N C such
thatm(a)z; = y; fori =1,2,... n.

Proof. By Lemmg 3.8 there exist € Z(A)NC such thatr(b;)z; = 0if ¢ # j andr(b;)x; # 0.

We show that there exist € Z(A) N C such thatr(c;)7(b;)x; = y;. Suppose thag; = 0.

By Lemma 3.8, there exists € Z(A) N C such thatr(¢;)z; = 0, so thatr(c;)m(b;)z; = 0.

Now suppose thay; # 0. If 7(c)m(b;)z; # y; forallc € Z(A) N C, thenn(c)x; # 0 for

all c € Z(A) n C, which contradicts Lemma 3.3. Hence there is & Z(A) N C such that
m(cj)m(bj)r; = y;. Leta = 37 bjc;. Then clearlya € Z(A) N C andn(a)z; = y; for each
i=1,2...n.1

An application of Theorein 3.4 is to the representation of an OBA that is induced by a quotient
algebra. This is the next corollary.

Corollary 3.5. Let (A, C) be an OBA wheré€’' is closed and normal, and ¢t be a maximal
ideal in A. Suppose that; + F,ay+ F,, ...,a, + F € wC are real linearly independent, where
is the canonical homomorphism.blf+ F, by + F', ..., b, + F € wC there existsan € Z(A)NC
such thatr(a)(a; + F) = b; + F foralli = 1,2, ....n.

Proof. Since F' is maximal, it is closed, so that/F is a Banach algebra. Now, induces a
continuous, irreducible representation of the OBA C') on the OBS(A/F, #C') be means of
m(a)(b+ F) = ab+ F (cf. [3], p.80). Obviously, this representation is positive and we apply
Theoreni 3.4 to deduce the resut.

We next apply Theorern 3.4 to obtain the following version of the Sinclair corollary ([3],
Corollary 4.2.6).
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Corollary 3.6. Let (A, C) be an OBA withC' closed and normal, and let be a continuous,
irreducible, positive representation ¢fi, C') on an OBS X, P). Suppose that,, z,, ..., x, €

P are real linearly independent. If;, s, ..., v, € P are real linearly independent, then there is
ana € A~' N Z(A) N C such thatr(a)z; = y; fori = 1,2, ..., n.

Proof. We consider th@n-dimensional vector subspatespanned by the set

{1, 29, .. Ty Y1, Y2, ooy Un }

and definethemap : Y — Y by Tx; = y; fori = 1,2,,,,n. Clearly,T is bijective. Since
it is finite dimensional, the algebia(Y") is isomorphic to a matrix algebtél,,(C) for £ < 2n.
ThusB(Y) is a Banach algebra and by|([3], Theorem 3.3.6), there i8 & B(Y') such that
T = ef'. Let B be a basis fo” containingz, xs, ..., z,,. By Theore there exists an
a € Z(A)NC such thatr(a)z = Rz forall z € B. Thusw(a) andR coincide onY’, and so are
7(a)* and R* for any integerk > 1. Continuity ofr implies thatr(e®)z; = effa; = Ty = y;
fori =1,2,....nand since’ is closede® € A'NZ(A)NC. 1

We end by noting that Theorejm B.4 is possibly obtainable in an ordered normed ring, and
it may have interesting implications in relation to the known consequences of the classical
Jacobson density theorem in ring theory.
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