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ABSTRACT. The Jacobson density theorem for general non-commutative Banach algebras states
as follows: Letπ be a continuous, irreducible representation of a non-commutative Banach alge-
braA on a Banach spaceX. If x1, x2, . . . , xn are linearly independent inX and ify1, y2, . . . , yn

are inX, then there exists ana ∈ A such thatπ(a)xi = yi for i = 1, 2, . . . , n. By considering
ordered Banach algebrasA and ordered Banach spacesX, we shall establish an order-theoretic
version of the Jacobson density theorem.
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2 K. M UZUNDU

1. I NTRODUCTION

ThroughoutA or B will be a complex Banach algebra with unity1 andX will be a complex
Banach space. Thespectrumandspectral radiusof an element inA will be denoted byσ(a)
andr(a) respectively. All idealsF will be assumed to be two sided. TheJacobson radicalof
A will be denoted by Rad(A) andA is said to besemisimpleif Rad(A) = {0}. The center
of A will be denoted byZ(A). The termhomomorphismfrom A to B will mean an algebra
homomorphism fromA to B, and thecanonical homomorphismfrom A to a quotient algebra
A/F will be the homomorphisma 7→ a + F . The set of all non-negative real numbers will be
denoted byR∗. A Banach spaceX ordered by a positive coneP will be denoted by(X,P ), and
the abbreviation OBS will stand for ordered Banach space.

Every Banach algebraA can be ordered by analgebra cone, which is a subsetC of A such
that1 ∈ C andC is closed under addition, multiplication and multiplication by scalars inR∗.
ThenA is called anordered Banach algebra(OBA) and the elements ofC are calledpositive.
The algebra coneC is said to beclosedif it is topologically closed inA, properif C∩−C = {0},
inverse closedif a ∈ C anda is invertible implya−1 ∈ C, normalif there is a fixed scalarα > 0
such that||a|| ≤ α||b|| whenever0 ≤ a ≤ b, and the spectral radius ismonotonerelative toC if
r(a) ≤ r(b) whenever0 ≤ a ≤ b. A representationπ of an OBA(A, C) on an on OBS(X, P )
will be calledpositiveif π(a) is a positive operator onX whenevera ∈ C.

Spectral theory in OBAs first appeared in [14], where fundamental properties of algebra cones
were established, and key spectral theoretic results such as the OBA version of the Perron-
Frobenius theorem were obtained (See, [[14], Theorem 5.2]). Since then, OBAs have recieved
a considerable amount of attention and various aspects of the theory have been developed.
For instance, some domination theory is developed in [5] and [12]. In [7]and [13] asymptotic
properties of positive elements in OBAs are studied. In the year 2012, a groundbreaking paper
on the irreducibility in OBAs was published by Aleckno (see, [1]). The results of this paper have
found wide applicability in the theory of OBAs. For instance, they have played an important
role in the development of Fredholm theory in OBAs (see, [6]) and the references given there.
However, not much has been done in the area of representation theory of OBAs. This work
seeks to begin to address that gap, by establishing in the OBA setting one of the main results
in the representation theory of non-commutative Banach algebras (see, [[3], Theorem 4.2.5]),
namely the Jacobson density theorem.

The original Jacobson density theorem first appeared in [9] and is a result on the structure
of simple rings. This result has very important consequences in ring theory and is related to
other important results in algebra, such as the Von Neumann bicommutant theorem and the
Keplansky density theorem (see, [2],[8],[10],[15]). The Banach algebra version of the Jacobson
density theorem is established in ([3], Theorem 4.2.5).

2. POSITIVE HOMOMORPHISMS

We introduce positive homomorphisms between Banach algebras, which will play a central
role in the work. Let(A, CA) and(B, CB) be OBAs. A mapφ : A → B is called apositive
homomorphismif φ is an algebra homomorphism andφ(c) ∈ CB for all c ∈ CA. Positive
homomorphisms on ordered Banach algebras are implicitely discussed in [11].

Example 2.1. Consider the Banach algebraA = `∞, under componentwise addition, scalar
multiplication and multiplication, and with norm||(xn)|| = sup

n∈N
|xn|. The setC = {(xn) ∈ A :

xn ∈ R∗} is a closed, normal algebra cone inA. The following bounded linear operators are
positive homomorphisms onA; every projectionP onA, the left shift operator(x1, x2, ..., ) 7→
(x2, x3, ...), and the right shift operator(x1, x2, ..., ) 7→ (0, x1, x2, ...).
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Example 2.2.LetA = C(Ω) be the Banach algebra of all continuous complex-valued functions
on a compact topological spaceΩ, under the norm||f || = sup

t∈Ω
|f(t)|. The setC = {f ∈ A :

f(t) ≥ 0 for all t ∈ Ω} is a closed, normal algebra cone inA. Clearly, C is non-empty as
it contains all constant functions whose ranges are singleton sets containing non-negative real
numbers. For fixedg ∈ C, the bounded linear operatorf 7→ fg is a positive homomorphism
onA.

Example 2.3. Let (A, C) be an OBA andB a closed subalgebra ofA containing1. Clearly,
CB = B ∩ C is an algebra cone inB. The inclusion mapi : B → A is a positive homomor-
phism.

Example 2.4.Let (A, C) be an OBA andF a closed ideal inA. The canonical mapπ from the
OBA(A, C) to the OBA(A/F, πC) is clearly a positive homomorphism.

If (A, C) is an OBA, we will denote byK the set of all positive bounded linear operators
on A. While the set of all positive homomorphims onA is not in general a positive cone as
it may not be closed under addition and positive scalar multiplication,K is an algebra cone
in the algebraB(A) of all bounded linear operators onA. Moreover ifC is closed or inverse
closed, thenK is also closed or inverse closed. The same applies for normality, properness and
monotonicity of the spectral radius. To verify this, we will need the following lemma.

Lemma 2.1. If (A, C) is an OBA andT ∈ B(A), then||T || = sup
c∈C

||Tc|| andr(T ) = sup
c∈C

r(Tc).

Proof. Obviously,sup
c∈C

||Tc|| ≤ ||T ||. To verify the inequality||T || ≤ sup
c∈C

||Tc|| , it suffices to

show that for anya ∈ A, there is ac ∈ C such that||Ta|| ≤ ||Tc||. Let c = ||Ta||1 ∈ C. Since
T1 is an idempotent,||T1|| ≥ 1 and so||Ta|| ≤ ||Ta||||T1|| = ||T (||Ta||1)|| = ||Tc||. To
prove the second part, we have that

r(T ) = lim
n→∞

||T n||
1
n = lim

n→∞
sup
c∈C

||(Tc)n||
1
n = sup

c∈C
lim

n→∞
||(Tc)n||

1
n = sup

c∈C
r(Tc).

Proposition 2.2. Let (A, C) be an OBA. IfC is normal, proper or the spectral radius in(A, C)
is monotone, thenK has the same properties.

Proof. Suppose thatS, T ∈ K with 0 ≤ S ≤ T . Then0 ≤ Sc ≤ Tc for all c ∈ C and by
normality ofC, there is a scalarα > 0 such that||Sc|| ≤ α||Tc|| for all c ∈ C. From Lemma
2.1, it follows thatK is normal inB(A). To show that the spectral radius in(B(A), K) is
monotone, from0 ≤ Sc ≤ Tc for all c ∈ C and monotonicity of the spectral radius in(A, C)
we have thatr(Sc) ≤ r(Tc) for all c ∈ C. It follows from Lemma 2.1 thatr(S) ≤ r(T ).
Finally, to show thatK is proper, letT ∈ K ∩ −K. Then for anyc ∈ C we have that
T (c) ∈ C ∩ −C but if C is a proper cone,T (c) = 0. From Lemma 2.1, for anya ∈ A, there is
a c′ ∈ C such that||Ta|| ≤ ||Tc′|| = 0. HenceT = 0.

It would be interesting to consider positive homomorphisms from an OBA(A, CA) to an OBA
(B, CB) such that properties ofCA carry over toCB. Let φ : A → B be a homomorphism.
If φ is for instance bijective andφ(CA) = φ(CB) it can easily be shown that closedness or
properness ofCA will imply that CB also has the same properties. Ifφ is a positive isometry
and if CA is closed, normal, proper or the spectral radius is monotone w.r.t.C, thenCB will
have the same properties. Ifφ is positive and spectrum-preserving, then monotonicity of the
spectral radius in(A, CA) implies monotonicity of the spectral radius in(B, CB). If in addition
A andB are semisimple andφ is onto, then ([4], Proposition 2.1) impliesCB will be closed,
normal, proper or inverse closed ifCA has these properties.
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3. JACOBSON DENSITY THEOREM FOR NON-COMMUTATIVE ORDERED BANACH

ALGEBRAS

Here we will present the Jacobson density theorem for OBAs, which is Theorem 3.4. Its
proof will rely on Lemma 3.3, which in turn relies on Lemma 3.2, and we require Lemma 3.1 to
prove Lemma 3.2. To obtain the results in this section, we shall co-opt some spectral theoretic
methods and follow along the lines of the development in [3].

Lemma 3.1. Let (A, C) be an OBA withC closed and normal, andπ a continuous, irreducible
representation on an OBS(X,P ). LetK be the set of all positive operators onX andE(X) =
{T ∈ B(X) : Tπ(a) = π(a)T for all a ∈ A} a subset ofB(X). ThenE(X) is a closed
subalgebra ofB(X) containingI and is isomorphic toC, K ′ = E(X) ∩K is a positive cone
in E(X) andK ′ ⊂ {λI : λ ∈ R∗}.

Proof. That E(X) is a closed subalgebra ofB(X) containingI and is isomorphic toC is
obtained from ([3], Theorem 4.2.2). ThereforeE(X) is one-dimensional. We define the map
φ : E(X) → C by φ(T ) = λ, whereλ is the scalar such thatT = λI. Obviouslyφ is an
injective homomorphism. In addition,φ is positive. To verify this suppose thatφ(T ) = λ,
whereT ∈ K. BecauseK is closed and normal, we have thatr(T,E(X)) ∈ σ(T,E(X))
by ([14], Theorem 5.2). This means thatr(T, E(X)) − T is not invertible inE(X). Since
E(X) is isomorphic toC, it follows thatT = r(T,E(X))I, so thatλ = r(T,E(X)). Hence
K ′ ⊂ {λI : λ ∈ R∗}.

To discuss the next result, we shall introduce the notion of real linear independence. IfV is a
real or complex vector space, we say thatv1, v2, ..., vn ∈ V arereal linearly independentif the
only real solution to the equationα1v1+α2v2+· · ·+αnvn = 0 (whereα1, α2, ..., αn are scalars)
is the trivial solutionα1 = α2 = · · · = αn = 0. From real linear independence we define real
linear dependence in the usual way. IfV is real, linear independence (dependence) and real
linear independence (dependence) are equivalent, whereas it may not be so ifV is complex.
The motivation for real linear independance is that it is associated with the scalar multiplication
property of algebra cones, which will play a significant role in the proof of some results leading
to the main theorem.

Lemma 3.2. Let (A, C) be an OBA withC closed and normal andπ be a continuous, irre-
ducible, positive representation on an OBS(X,P ). If x1, x2 ∈ P are real linearly independent,
then there exists ana ∈ Z(A) ∩ C such thatπ(a)x1 = 0 andπ(a)x2 6= 0.

Proof. Suppose thatπ(a)x1 = 0 if and only if π(a)x2 = 0 for all a ∈ Z(A) ∩ C. This implies
thatπ(b)x1 = 0 if and only if π(b)x2 = 0 for all b ∈ B = Z(A) ∩ Span(C). Note thatB is a
closed subalgebra ofA containing1. Now consider the subsetsFi = {b ∈ B : π(b)xi = 0 for
i = 1, 2} of B. These are two sided closed ideals ofB, and becauseπ(b)x1 = 0 if and only if
π(b)x2 = 0 for all b ∈ B, we have thatF1 = F2 = F . We define linear mapsTi : B/F → X by
Ti(b+F ) = π(b)xi (i = 1, 2). By continuity ofπ, the mapsTi are bounded, and by positivity of
π, they are positive. In addition, it is easy to show by direct calculation that they are injective.

Now we define a linear mapS = T2T
−1
1 from Im(T1) onto the corresponding subspaceY of

X. Then obviouslyS is continuous, positive and bijective. Lety ∈ Y such thaty = π(b)x1 for
someb ∈ B. Then for anyc ∈ B we have that

π(c)Sy = π(c)T2T
−1
1 y = π(c)T2(b + F ) = π(c)π(b)x2 = π(cb)x2.

On the other hand,

Sπ(c)y = T2T
−1
1 π(c)y = T2T

−1
1 π(c)π(b)x1 = T2T

−1
1 π(cb)x1 = T2(cb + F ) = π(cb)x2.
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Henceπ(c)S = Sπ(c) and by Lemma 3.1, there is a positive real numberλ such thatS = λI.
HenceT2 = λT2 and soT2(1 + F ) = λT1(1 + F ). This implies thatx2 = λx1, which is a
contradiction.

Lemma 3.3. Let π be a continuous, irreducible and positive representation of an OBA(A, C)
on an OBS(X, P ), whereC is closed and normal. Ifx1, x2, ..., xn ∈ P are real linearly
independent, then there exists ana ∈ Z(A) ∩ C such thatπ(a)xi = 0 for 1 ≤ i ≤ n − 1 and
π(a)xn 6= 0.

Proof. We prove by mathematical induction. Forn = 2, the statement is true by Lemma
3.2. We now assumen > 2 and that the statement is true forn − 1 real linearly independent
vectors inX. Then there is ana1 ∈ Z(A) ∩ C such thatπ(a1)x1 6= 0 and π(a1)xi = 0
for 2 ≤ i ≤ n − 1. If π(a1)xn = 0, then we are done. Suppose thatπ(a1)xn 6= 0. We
claim thatπ(a1)x1 andπ(a1)xn are real linearly independent. Suppose to the contrary that they
are real linearly dependent. Letλ be the real number such thatπ(a1)xn = λπ(a1)x1. Then
xn − λx1 ∈ Y = Ker(π(a1)). Becauseπ(a1) 6= 0, we have thatY = Ker(π(a1)) 6= X. We
claim thatY = {0}. Sinceπ is irreducible, it suffices to verify thatY is invariant underπ(a)
for all a ∈ A. Let y ∈ Y anda ∈ A, and suppose thatπ(a)y = z. Sincea1 ∈ Z(A), we have
that0 = π(a1)π(a)y = π(a)π(a1)y = π(z), so thatz ∈ Y . ThusY is invariant underπ(a) for
all a ∈ A. Consequently,xn = λx1, which contradicts the assumption thatxn andx1 are real
linearly independent. Henceπ(a1)x1 andπ(a1)xn are real linearly independent, and by Lemma
3.2 there is ana2 ∈ Z(A) ∩ C such thatπ(a2)π(a1)x1 6= 0 but π(a2)π(a1)xn = 0. Taking
a = a2a1, we see thatπ(a)x1 6= 0 andπ(a)xi = 0 for all 2 ≤ i ≤ n.

We now present the main theorem of the paper.

Theorem 3.4.Letπ be a continuous, irreducible and positive representation of an OBA(A, C)
on an OBS(X, P ), whereC is closed and normal. Suppose thatx1, x2, ..., xn ∈ P are real
linearly independent. Ify1, y2, ..., yn ∈ P are any elements, there exists ana ∈ Z(A) ∩ C such
thatπ(a)xi = yi for i = 1, 2, ..., n.

Proof. By Lemma 3.3 there existbj ∈ Z(A)∩C such thatπ(bj)xi = 0 if i 6= j andπ(bj)xj 6= 0.
We show that there existcj ∈ Z(A) ∩ C such thatπ(cj)π(bj)xj = yj. Suppose thatyj = 0.
By Lemma 3.3, there existscj ∈ Z(A) ∩ C such thatπ(cj)xj = 0, so thatπ(cj)π(bj)xj = 0.
Now suppose thatyj 6= 0. If π(c)π(bj)xj 6= yj for all c ∈ Z(A) ∩ C, thenπ(c)xj 6= 0 for
all c ∈ Z(A) ∩ C, which contradicts Lemma 3.3. Hence there is acj ∈ Z(A) ∩ C such that
π(cj)π(bj)xj = yj. Let a =

∑n
j=1 bjcj. Then clearlya ∈ Z(A) ∩ C andπ(a)xj = yj for each

j = 1, 2, ..., n.

An application of Theorem 3.4 is to the representation of an OBA that is induced by a quotient
algebra. This is the next corollary.

Corollary 3.5. Let (A, C) be an OBA whereC is closed and normal, and letF be a maximal
ideal inA. Suppose thata1 +F, a2 +F, ..., an +F ∈ πC are real linearly independent, whereπ
is the canonical homomorphism. Ifb1+F, b2+F, ..., bn+F ∈ πC there exists ana ∈ Z(A)∩C
such thatπ(a)(ai + F ) = bi + F for all i = 1, 2, ..., n.

Proof. SinceF is maximal, it is closed, so thatA/F is a Banach algebra. Now,π induces a
continuous, irreducible representation of the OBA(A, C) on the OBS(A/F, πC) be means of
π(a)(b + F ) = ab + F (cf. [3], p.80). Obviously, this representation is positive and we apply
Theorem 3.4 to deduce the result.

We next apply Theorem 3.4 to obtain the following version of the Sinclair corollary ([3],
Corollary 4.2.6).
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Corollary 3.6. Let (A, C) be an OBA withC closed and normal, and letπ be a continuous,
irreducible, positive representation of(A, C) on an OBS(X, P ). Suppose thatx1, x2, ..., xn ∈
P are real linearly independent. Ify1, y2, ..., yn ∈ P are real linearly independent, then there is
ana ∈ A−1 ∩ Z(A) ∩ C such thatπ(a)xi = yi for i = 1, 2, ..., n.

Proof. We consider the2n-dimensional vector subspaceY spanned by the set

{x1, x2, ..., xn, y1, y2, ...., yn}

and define the mapT : Y → Y by Txi = yi for i = 1, 2, , , , n. Clearly,T is bijective. Since
it is finite dimensional, the algebraB(Y ) is isomorphic to a matrix algebraMk(C) for k ≤ 2n.
ThusB(Y ) is a Banach algebra and by ([3], Theorem 3.3.6), there is anR ∈ B(Y ) such that
T = eR. Let B be a basis forY containingx1, x2, ..., xn. By Theorem 3.4 there exists an
a ∈ Z(A)∩C such thatπ(a)x = Rx for all x ∈ B. Thusπ(a) andR coincide onY , and so are
π(a)k andRk for any integerk ≥ 1. Continuity ofπ implies thatπ(ea)xi = eRxi = Txi = yi

for i = 1, 2, ..., n and sinceC is closed,ea ∈ A−1 ∩ Z(A) ∩ C.

We end by noting that Theorem 3.4 is possibly obtainable in an ordered normed ring, and
it may have interesting implications in relation to the known consequences of the classical
Jacobson density theorem in ring theory.
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