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1. INTRODUCTION

Usually,R andC denote the real and complex numbers, respectily" containsm x n
matrices on the quaternion skew fidld= {vy + vii + voj + v3k | i? = j2 = k? = ijk =
—1, vo,v1,v2,v3 € R}. Also, H™*™ marks the subset &> with matrices of rank-. For
v = vo + vl + voj + vsk € H, its conjugate i$ = vy — v1i — v9j — w3k, and its norm is
[v]| = VT = Vv = /02 + v + v3 + 3.

The rank, trace and conjugate transpose (Hermitia®) ef H™*", respectively, are denoted
asrank(A), tr(A) andA*. Due to noncommutativity in the quaternion skew field, the following
notions are used:

- Ni(A) = {n e H>*™: nA = 0} is the left null space (or left kernel) o;

- N (A) = {n e H"!: An = 0} is the right null space (or right kernel) &;

- Ri(A) = {m € H*" : m = nA, s € H*™} is the left row space (or left range) of
A;

- C.(A) = {m € H™! : m = An, s € H"*'} is the right column space (or right range)
of A.

The rank ofA € H™*" is determined asank(A) = dimC, (A) = dim R;(A*).
For A € H™ ™, its Moore-Penrose (or MP) invers&' is a cunique solutioX to the system

(1)A = AXA, (2)X=XAX, (3)AX=(AX)", (4)XA = (XA)".

By A®) we denote any matrix that satisfies the equations determinédbyl, 2, 3,4} and itis
called thes-inverse ofA.. In particular,A() and A are called thénner inverseand theouter
inverse respectively. One of the outer inverses isBrazin (D-)inverseAP of A ¢ H"*" that
is defined as a unique solution to the system

(2) X = XAX, (5) XA =AX, (6)A"=XAr"!

wherek = Ind(A) = min{k € NU {0} | rank(A*) = rank(A**!)} denotes the index oA.
If Ind(A) < 1, thenAP reduces to thgroup inverseA.

New generalized inverses can be generated by combining different generalized inverses or
applying them in certain (range or kernel) matrix spaces. In particular, such generalized in-
verses involve the core inverse [3], the core-EP (CEP-)inverse [30], the MPD-inverse [23], the
MPCEP-inverse [7], etc. Some extensions of these generalized inverses were given for tensors
[34,142], operators [26], and for elements of rings[[9,[24, 47]. Their extensions with determi-
nantal representations for quaternion matrices were introduced!in [14, 18].

Recently, Most in [25] presented two new classes of square complex matrices that can be
expanded to quaternion matrices.

Lemmal.l.LetA € H*™ andk = Ind(A).
(a) The system of equations

X(AN)'X =X, AFX = AFA*, and X(AT)* = APA,
is consistent and its unique solutionXs= APAA*.
(b) The system of equations
X(AT'X =X, XA* = A*A* and (AT)*X = AAP,
is consistent and its unique solutionXs= A*AAP.

Definition 1.1. Let A € H"*" andk = Ind(A).
(@) The Drazin-star matrix oA (or the Drazin-star inverse ¢fA)*) is defined as

(1.1) AP = APAA~.
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(b) The star-Drazin matrix oA (or the star-Drazin inverse ¢fAT)*) is defined as
(1.2) A*P = A*AAP.

Notice that ifInd(A) = 0 for A € H"*", then AP = A~! and in this case it follows
AP* = A*D = A*. ForA € H™" with Ind(A) = 1, the Drazin-star and star-Drazin matrices
reduce tdhe group-star matrixA#* = A# A A*, andthe star-group matrixA*# = A*AA7#,
respectively.

Recently, the topic of the Drazin-star and star-Drazin matrices has found its development in
[46] by the complex rectanguld#’-weighted Drazin-star matrix, in [28, 27] by operators on
Hilbert spaces, and in [37] by Drazin-theta and theta-Drazin matrices.

Due to the important role of generalized inverses in many application fields, significant ef-
forts have been made toward numerical algorithms for their efficient and accurate computation.
Most existing methods for calculating complex generalized inverses are iterative algorithms for
approximating generalized inverses|[[1] 35]. There are only several direct methods for finding
generalized inverse. One of the direct methods is constructing its determinantal representa-
tion (®-representation shortly). Th®-representation of the ordinary inverse as the matrix
with cofactors in entries inducts the well-known Cramer rule for solving systems of equations.
However, constructing aD-representations of generalized inverses is not as obvious and un-
ambiguous, even for matrices with complex or real entries. In the search for more applicable
explicit expressions, there are various widesprBapresentations of generalized inverses of
matrices over complex numbefs [6, 22] 36,/39, 31, 40], integral domainsl[5,4,129, 44, 43], and
the Riemannian space [38,/41]. The taskbfepresenting quaternion generalized inverses is
more complicated than the complex case, due to the non-commutativity of quaternions. Diffi-
culties arise in defining the determinant with noncommutative entries, known as a noncommuta-
tive determinant (see survey articles([2, 8, 45] for details). In this paper, we utilize the theory of
row-column noncommutative determinants recently developedin[11, 17] to d@mepresen-
tations of the Drazin-star and star-Drazin matrices. We also rely on representations of quater-
nion Drazin inverses previously obtained using the limit-rank method. This method has also
been used to derive new determinantal representations of various complex generalized inverses
[10,/16]. As a result, we provide new determinantal representations of quaternion Drazin-star
matrices and establish corresponding Cramer’s rules for complex matrix equations. The pri-
mary focus of our research is the study of two-sided quaternion matrix equations (TQME) of
the form AXB = C. This equation, a special case of the Sylvester equation, has wide-ranging
applications in fields such as image and signal processing [33], photogrammetry [32], etc. It
is known that the unique best approximate solution to this equatidh is ATCB'. In this
paper, we will study all possible two-sided quaternion matrix equations with restrictions that
are uniquely determined solutions based on the Drazin-star and star-Drazin matrices. Based on
obtained determinantal representations, these equations are solved by Cramer’s rules in both
cases for quaternion and complex matrix equations. This paper is a continuation of a number of
research studies [20, 18,119/ 21] dedicated to the study of two-sided quaternion matrix equations
with restrictions uniquely determined by various generalized inverses and focused on solving
these equations using Cramer’s rules by row-column determinants.

By bold capital letters we denote quaternion matrices, while capital letters are used for com-
plex matrices. As usualy™*"™ denotes the set ofi x n complex matrices. We use the next
notation

H™® = IA € H™™ | k=1Ind(A)},
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and
A €0-(B,C)<«<=C.(A) CC(B), Ri(A) C R)(C),
(AB) € H™WED s A ¢ H(m)(k)’ B e H®O,
The main research streams of this paper are briefly described as follows.

1. Determinantal representations of the Drazin-star and star-Drazin matrices for quaternion
and complex matrices are presented.

2. WhenC € H™", A € H™®) andB € H™@ we prove solvability of the quaternion
restricted matrix equation (or shortly Q-RME):

(1.3) A"XB? = A*A*CB*BY, X € O (A" BY)

and show that equation (1.3) possesses a uniquely determined solution based on the
Drazin-star matrix ofA and the star-Drazin matrix d3.

3. Particular kinds of equatiop (1.3) are studied wi¥en- 1,, or B = I,, or A andB are
partial isometries.

4. WhenC € H™", A € H™®*) andB € H™@, we verify solvability of the Q-RME

(1.4) (ANH*X(B")* = AAPCBPB, X € O (A*,B")

and express its unique solution using the star-Drazin matriX @nd the Drazin-star
matrix of B.

5. Special types of (1}4) are considered.

6. Several more Q-RMEs are solved based on Drazin-star matricAsamid B or star-
Drazin matrices oA andB.

7. Cramer’s rules for obtained solutions to above Q-RMEs are given.

8. An illustrative example illustrates the obtained results.

The remainder of our article is directed as follow®-representations of the quaternion
Drazin-star and star-Drazin matrices are derived in Seflion 2. S¢¢tion 3 investigates the solv-
ability of QRMEs of the form[(1.3) and (1.4) and their special cases. Cramer’s rule for consid-
ered solutions is derived in Sectiph 4. A numerical example is given in Sggtion 5 to illustrate
gained results. Concluding comments are stated in Sedtion 6.

2. DETERMINANTAL REPRESENTATIONS OF THE QUATERNION DRAZIN-STAR AND
STAR-DRAZIN MATRICES

By the theory of row-column determinants, f&r = (a;;) € H"*" there is a method to
producen row (R-)determinants and column €-)determinants by stating a certain order of
factors in each term.

e Theith R-determinantof A, for an arbitrary row index € I, = {1,...,n}, is given
by
rdetiA = (_1)71—7" (CL“‘kl aiklilirl R aikﬁlli) R (aikrikTH NP aikrﬂrikr)’
O'GSn

whereatS,, denotes the symmetric group én while the permutatiown is defined as a
product of mutually disjunct subsets ordered from the left to right by the rules

0= (Tiky g1 -+ Teyrt) (Gafhggt - Tkottn) - (b Bkt - Tppt, )
ikt <ikt+sa ikQ <ik3 < - <ikT, Vt:2,...,r, S:L...,lt.

e For an arbitrary column index € I,,, the jth ¢-determinanbf A is defined as the sum

— J— n_T . . DY . . DY .. DRI . . . .
cdet; A = E ,( D" (@ gyt T Qi sadinn) (a’]J}qu Ay 17k, a]k1])7
TESK
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in which a permutation is ordered from the right to left in the following way:

7= Ukotte " Jtor1db,) - bty ot 1dke) Ukt * 41010 d) 5
Tk < Jhitsy Jho < Jky <+ < Jk,-
Due to the non-commutativity of quaternions,&H and¢-determinants are generally different.
However, the following equalities are verified for a Hermitian magixn [11]:

rdet{A = --- = rdet,, A = cdet;{A = --- = cdet, A = o € R.
It allows us to define the unique determinant of a Hermitian mairigy puttingdetA = «a.
We also will use the denotatio\| := detA. For more details on quaternion column-row

determinants see [17].

The next symbols related t©-representations will be used. Thth row andjth column
of A are marked witha; anda_;, respectively. LefA ; (c) (resp. A; (b)) mean the matrices
formed by replacingth column (respith row) of A by the column vectoe (resp. by the row
vectorb). Supposey := {a1,...,ax} C{1,...,m}andp = {F,..., 6.} € {1,...,n} are
subsets with < k£ < min {m,n}. ForA € H™*", the notationAg stands for a submatrix with
rows and columns indexed hyand 3, respectively. FurtherA® and|A | denote a principal
submatrix and a principal minor of Hermitiak € H"*" , respectively. The standard notation

Lin={a:a=(ag,...,0x), 1 <oy <-- <ag <n}
will mean the set of strictly increasing sequencestof {1,...,n} integers elected from
{1,...,n}. Inthis respect, we put
Lo{i} ={a:a€ L.pmica}l, J,{j} ={8:8€L,njcf}
for some fixed € v andj € (.

Denote bya_(;.”) andagf”) the jth column and theéth row of A™, and bya , anda, the sth
column of (AZ+1)*AF = A = (a;;) € H™" and thetth row of A¥(AZ+1)* = A = (a;) €
H™", respectively, for alls,t = 1,....n. The next lemmas giv®-representations of the
Drazin inverse over the quaternion skew field.

Lemma 2.1. [13] If A € H™® with rank(A¥) = r, then the Drazin inversdP possesses the
determinantal representations

~

(2.1) ag - 2;%1 * A 2k+1)|0
> (AT A2RFL

BeJr,n
(2.2) - by
S |AZHL (ALY

ae]r,n

where® = (ng”) — AF® and ¥ = (@%) = WA". The matricest = (¢,;) and ¥ = (v),,)
are determined by

(2.3) by = Z cdet, ((A2k+1)* (A2k+1)'t (&ﬁ)ﬂ,
BETr n{t} A

(2.4) Go= 3 rdet, ((A%“ (A%“)*) (ai_))a.
a€ly n{s} s @

In the special case wheA € H"*" is Hermitian, we can obtain simpler determinantal
representations of the Drazin inverse.
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Lemma 2.2. [13] If A € H™®) is Hermitian withrank(A¥) = r, then the Drazin inverse
AP = (aD) is represented as follows

> cdet; ((Akﬂ)j (a?))ﬁ

(2.5) ab =2l :
' 4 S |Ak+1|g
BE€Trn
S rdet; (AR, (@)
OCEI'r,n{j} «
2.6 =
=9 > AR
Oéelr,n

The corresponding statement is valid in the case of complex matrices.

Lemma 2.3. [10] If A € C™® with rank(A*) = r, then the Drazin inversel® = (al) by
componentwise can be represented as follows

S|y (a(k)> ‘ﬁ
D Bejr,n{i} * K 6
a,, =
v > AR
/BGJr,n
k? (e}
(A1) (a)

o

2.7)

2.

o OéEIr,n{j}

2 AN

Olelr,n

(2.8)

Now, we derive determinantal representations of the Drazin-star and star-Drazin matrices for
guaternion and complex matrice8-representations of various generalized inverses expressed
in terms of theR- and¢-determinants can be found in[12,15] 14].

Theorem 2.4.1f A € H™®) with rank(A¥) = r, then the Drazin-star matriAP* = (a?j’*)
possesses the determinantal representation

(k) * Y

S eden (A7) A, (@)
(2.9) aij’* = -t - 3
S |(A2k+1) A%H’B

ﬂeJr, n

Y

wherea ; is the jth column ofA = (A2F+1)* AR+ A*,

Proof. By (1.1),

n n
D« 2 : § : D *

=1 m=1

Suppose thaA is not Hermitian. ThemAP = (a})) is ©-presentable by (2.1). Therefore,

n n o
> Qbizalma:;zj
a]?,* _ I=1m=1
&) 3 ‘(A2k+1)*A2k+1’ﬂ’
BEJIr, n g
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where by[(2.B)

z": z”: gAbilalma;‘nj = Z Z aﬁf) Z cdet, (((A%’Ll)* A%H) t (é.l))galmamj
t=1 =1 ’

=1 m=1 =1 m=1 BEJT.’ 'n{t}

with a4, standing for thdth column of A = (A%**1)*A* DenoteA = (A2k+1)*Ak+1A*,
Since

n n

R " -
E E 1A Ay = A,
=1 m=1

then [2.9) follows

Corollary 1. If A € H™® with rank(A*) = 1, then the Drazin-star matriAP* = (a?j’*)
can be componentwise expressed by

D (bz
(2.10) - ((A2k+1;* ALY’

whered = ((}%) = Ak(AQkH)*Ak“A*,

Proof. If rank(A"*") = rank(A*) = 1, then

Gy = Z cdety <((A2k+l)* A%H)j (é.l))ﬁ =ay = z": (agk+1)> il)

ﬁeJ,.’n{t} p s=1

and

&ij = Z Z Qgilalma:{nj = Z Z Z agf)qbtlalma;knj =
—zzzz%ww>mw CYY Y () e,

Hence,® = ({bm> = AF(A2H1)* AR A* Since

Z ’(A2k+1)*A2k+1

/BEJT, n
which implies [2.1D)x

The®-representation of the complex Drazin-star matrix have its own features.

B
B

tr ((A2k+1)* A2k+1) 7

Theorem 2.5.1f A € C™®) with rank(A*) = r, then the Drazin-star matrixiP* = <a3’*>
possess the determinantal representation

AR ()|’

= D _ﬁegz{i} ’( )-z (@) 8
(2.11) @iy = Z ‘Akﬂ‘ﬁ
B

IBEJT,n

Y

whered ; is the jth column ofd = A*+1A*,
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Proof. By (1.1)),
o' = 2L 2w,
=1 m=1

TheD-representation of the Drazin invers® = (a;)) is obtained by Lemm@.& We use the
D-representation (2.7) of®. Then,

B
2 5@, ()] o,
D l=1m=15eJ, {i} ‘ B
i = Z |Ak+1|g
BETr,n

Denoted = A*+1 A*, Since}” aFf)alma:Ij = a;, then we have (2.11)

I=1m=1

Now, we derive determinantal representations of the star-Drazin matrix.

Theorem 2.6.If A € H™®) with rank(A*) = r, then the star-Drazin matriA*P = <a;;’.D)
possesses the determinantal representation

z": S rdet, ((A2k+1 (AQk—H)*)t <5i~)>za§f)

D _t:l aEIT7n{t}
(2.12) Qi = S |AZT (AZH)T ’
a€ly n ¢
wherea; is theith row of A = A*A*+1(A2k+1)x,
Proof. By (1.2),

n n
D __ § : E * D

=1 m=1

Suppose that the matriX is not Hermitian. Then th&®-representation of the Drazin inverse
AP = (a})) is obtained by Lemmia 2.1. We use tBerepresentatior (2.2) o&°. Then,

n n .
>0 a;‘klalmwmj

«xD _  l=1m=1
aj; = S [AZL (AT
aEIr,n “
where by [(2.4)
S ity = S S a3 et (A (A24)) (a,) ol
=1 m=1 t=1 =1 m=1 Oéelr n{t ’

with &, standing for thenth row of A = A*(A%+1)*, DenoteA = A*AF+!1(A?*1)* Since

n n
* « _
E § A AmAm,. = a;,

=1 m=1

then it follows [2.12)a

The following corollary can be proven similarly to Corollgry 1.

AJMAA Vol. 21(2024), No. 2, Art. 9, 28 pp. AIMAA


https://ajmaa.org

DRAZIN-STAR SOLUTIONS TO QUATERNION MATRIX EQUATIONS 9

Corollary 2. If A € H™® andrank(A*) = 1, then the star-Drazin matriA*P = (a;"]’.D)
can be componentwise expressed as

* ¢z]
(213) al]D (A2k+1 (A2k+1) )

where¥ = ({pw) — A*AFFL(AZH) AR,
If A € H*" is Hermitian, then

(2.14) AP* = APAA* = APA? = A2AP = AP, whenIndA =k > 2,
A = A" = ATPAA* = A*A%2 = A, whenIndA =k < 2.

Corollary 3. If A € H™®) is Hermitian withk > 2 andrank(A") = r, then its corresponding
Drazin-star and star-Drazin matrices coincide and

S cdet, ((Ak-&-l)'i <aFJI§+2))>ﬂ

D,* o *7D _IBGJT,n{i} ﬁ

(2.15) a; =a; = S |Ak+1]g

ﬂEJr,n

T ety (A5 )
aClrni) @

2.16 =
(2.10) > AT

OLEIr,n
Proof. By (2.14),

* . *D
- 'Lla’l] :

Using [2.5) for theD-representation cAP = (aﬂ), it can be derived

n B

S5 3 cdet; <(A"“+1) . (aFP)) al(?)

D _ D _ =18l ' a

i = Q= 118 :
> [AR

Be Jr,n

From Z allal? = a"*?, itfollows (Z.15).
Usmg (2:6) for theD-representation oAP = (a})),

n k (0%

Salf S rdet; (A1) (af))
D« *,D_lzl o€l n{j} @
v > AR

aclypn

Because of_ a!Pal") = al*™ from this it follows [2.16) 1
=1

The®-representation of the complex star-Drazin matrix can derived with a similar procedure
as in Theorerh 215.
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Theorem 2.7.1f A € C™®) andrank(A4*) = r, then the star-Drazin matrixd*P = (a;"]’.D)
componentwise can be expressed as

Z{ } (4441 (@) *

*7D _OCEI'r,n ] o

(2.17) a;; = S AR ,
OéEIr,n

wherea; is theith row of A = A*AF+1,

3. DRAZIN -STAR—STAR-DRAZIN SOLUTIONS TO Q-RMESs
This section is devoted to the solvability of Q-RMEs {1[3)(1.4) as well as their special types.
Theorem 3.1. The Q-RMEK(L.3)is uniquely solvable by
(3.1) X = AP*CB*P.
Proof. Recall thatC,(AP) = C,.(A¥) andR,;(BP) = R;(B?). SinceX = AP*CB*P satisfies
X = APAA*CB*BB® € O-(AP,BP) = O-(A*, BY)
and
A*XB? = (A*APA)A*CB*(BBPBY)
= AFA*CB*BY,
we conclude thaf (1} 3) has uniquely determined solulos AP*CB*P.

For two solutionsX; andX of (1.3), notice that*(X, — X)B? = 0, C,(X,) C C.(A*) and
C.(X) C C.(A*) give

(X; — X)B? € N, (A*)ncC,.(AF) = {0}.
ThenR,(X;) C R;(BY), Ri(X) C R,(B?) and(X; — X)B? = 0 yield
X; — X e N(BY)NRy(BY) = {0}.
So, [3.1) represents the unique solutior] to](1s3).
Theorenj 3]l implies the next result in the case that I,, or B = I,.

Corollary 4. LetC € H™*".
(@) If A € HO™®) then

(3.2) X = AP*C
iS unique solution to
(3.3) A"X = A*A*C, (. (X) c C.(AF).
(b) If B € H™@, then
(3.4) X = CB*”
IS unique solution to
(3.5) XB?=CB*BY, Ry(X)C Ry(B?).

Under additional assumptions dr, we solve the following Q-RMEs wheA andB are
partial isometries.

Corollary 5. Let(A|B) € H™™®9) andC € H™*™,
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(a) If A andB are partial isometries, then
(3.6) X = APCBP
IS unique solution to
A"XB?= A*A*CB*BY, X € O-(A*,B%), CcO-(A,B).

(b) If A is a partial isometry, theiX = APC is unique solution to
AFX = A*A*C, C.(X) CC.(A%), C.(C)cCC(A).

(c) If B is a partial isometry, theiX = CBP is unique solution to
XB?=CB'B?, R;(X)cC Ri(B?), Ri(C)cC Ri(B).

The Q-RME [(1.4) is solvable in terms of the star-Drazin matrixAokind the Drazin-star
matrix of B.

Theorem 3.2. The Q-RMHK(1.4) has the unique solution presented by

(3.7) X = A*PCBP*.

Proof. We observe thak = A*PCBP* = A*AAPCBPBB* € O(A*,B*) and
(AH)*X(B")* = (A")*A*AAPCB"BB*(Bf)* = AAPCB"B,

i.e. the Q-RME[(1.4) has a solution of the forim (3.7).
In the case if[(T}4) has two solutiods; andX, from (A")*(X; — X)(B")* = 0, C.(X;) C
C.(A*) andC,.(X) C C,(A*), we deduce that

(X; = X)(B)* € No((A)) NC (A7) = No(A) NC(A") = {0}
BecauseR,;(X;) C R;(B*), Ri(X) C Ry(B*) and(X; — X)(B")* = 0, then
X1 — X € M((BY)*) N Ry(B*) = Mi(B) N R,(B*) = {0}
implies that[(I.4) has the unique solution given [by]|(3s7).

Under additional restrictio® € O~ (A*, BY) for the equation(3]7), we obtain the following
consequence of Theorgm 3.2.

Corollary 6. Let(A|B) € H™™*9) andC € H™*". Then the Q-RME
(AT)*X<BT)* = Ca X € OC(A*aB*)a Ce OC<Ak7Bq)
has unique solution presented by
X =A"CB".
Proof. The hypothesi€C € O-(A* B?) yieldsC = APAC = CBBP. The rest follows by
Theoren 3.2x
Remark that, ifA andB are partial isometries in Corollafy 6, then
AXB=C, XcO-(A*"B*), CecO(A* B

has unique solution presented §y= A*CB* = ATCB'.
The solution of one more Q-RME can be represented by (3.7).

Theorem 3.3.Let(A|B) € H™M*4) andC € H™*". Then the Q-RME
(3.8) AP(ANY*X(BN)*B? = A*CB?, X € O-(A*A* B‘B*),
has unique solution presented /7).
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Proof. By Theoreni 3.2,[(3]7) is a solution to (IL.4), which leads to the conclusion that it is a
solution to [3.8):
A*(ANY*'X(B")*B? = AYAAPCBPBB? = A*CB.

Let X; andX be two solutions of (3]8). Now, b *(AT)*(X; — X)(B")*B? = 0,
(X) - X)(BI) B € N, (AF(A1)") NC.(ATAF) = N, (A"P(AT)") N C.(A"P(AT)) = {0}.
Further,

X, — X € M((B")*BY) N R,(B‘B*) = V(B‘B”*) N R,(B‘B"*) = {0},

that is, [(3.7) is uniquely determined solution[to {3.8).

As a consequence of Theorem|3.2 and The¢reim 3.Aferl,, or B = I,,, we get solvability
of the next Q-RMEs.

Corollary 7. LetC € H™*".
(@) If A € H™®) then
(3.9) X =A*PC
IS unique solution to
(i) (AN)*X = AAPC, (. (X)CC.(A%);
(i) A*(AT*X = A*C, C.(X) c C.(A*AR).
(b) If (B) € H™W@, then
(3.10) X = CBP~
IS unique solution to
(i) X(B')* = CB"B, Ry(X) C Ry(B");
(i) X(BN)*B? = CBY, Ry(X) C Ry(BB").

Similarly, we solve the following Q-RMEs utilizing Drazin-star matrices®ofandB or by
star-Drazin matrices oA andB.

Theorem 3.4.Let(A|B) € H™M®*9) andC € H™ ™.

(@) Then
(3.11) X = AP*CBP*
iS unique solution to
(3.12) (i) A*X(B")* = A*A*CBPB, X € O-(A*,B*);
(3.13) (ii) AFX(B")*B? = A*A*CB?, X € O-(AF B‘B*).
(b) Then
(3.14) X = A*PCB*P
IS unique solution to
(3.15) (i) (AT)*XB? = AAPCB*B?, X € O-(A* BY);
(3.16) (ii) A*(AT)*XB? = AFCB*"BY, X € O-(A*A* BY).

Consequently, by Theorem 8.4, we obtain solvability of several Q-RMEs as follows.
Corollary 8. Let(A|B) € H™™*9) andC € H™*™,
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(@) Then
(3.17) X = AP C
is unique solution for
(i) AFX = APA*C, C.(X) c C.(AF);
(i) A*X = A*A*C, (. (X) c C.(AF).
(b) Then
(3.18) X = CBP*
is unique solution for
(i) X(BH* = CB"B, R;(X) C Ri(B*);
(i) X(B")*B? = CB?, R;(X) C R;(B'B").
(c) Then
(3.19) X = A*PC
IS unique solution for
(i) (AT*X = AAPC, C.(X)CC.(A%);
(i) AF(AT*X = AFC, C.(X) C C.(A*AR).
(d) Then
(3.20) X = CB*P
IS unique solution for

(i) XB? = CB*BY, Ry(X) C R;(BY);
(i) XB? = CB*BY, Ry(X) C Ry(BY).

4. CRAMER’S RULES TO OBTAINED SOLUTIONS

In this section, we establish Cramer’s rules for QRMEs considered in Séttion 3.

Theorem 4.1.LetC € H™", (A|B) € H™*4) with rank(A*) = r, andrank(B?) = s.
The unique solutioX = (z;;) € H™*" from (3.1) can be expressed componentwise as follows.
(i) If the matricesA andB are arbitrary, then

«

5 (B ), )

t=1 aEIs,n{t} o

(4.1) Lij = 2k+1\* A 2k+1|8 2g+1 (B2g+1)*|¥
> |(AZEFD)T ARG 57 [B2att (BT
ﬁEJnm Ole[s,n
m i ~ \\ 8
a3 cden (%) A% (9,))
42 = pednlt) | ’
' o S ‘(A2k+1)*A2k+1’g ST B+l (Bat1)*|2 ’

BEIr, m a€ls n
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where ¢, is the ith row of & = ®B*B7+!(B2+!)* and 17;_j is the jth column of ¥ =
(APF1)*AFTA*W. Here® = (¢,;) and ¥ = (¢,;) are determined, respectively, by

(4.3) ¢ip _ - agk) cdet AZEFLN* A 2k+1 (é.p) ’8’
; l ﬁe%{l} l<<( ) >'l >ﬂ
x by =20 X et (B (B, (e,))20)

t=1 aels,n{t}
where ¢, is the pth column ofC = (A?*1)*A*1A*C and ¢, is the gth row of C =
CB*BY ™ (B2t1)*,
(i) If both matricesA andB are Hermitian,k > 2 andq > 2, then

> rdet; ((Bqﬂ)j.(aﬁi.))

«

Olels n{]} «
(45) .flfij = . o
> AR Y (Bt
ﬁeJr,m ae]s,n
~ B
> cdet; ((AM), (9,))
(4.6) _Pednti) ' ’
> AR Y (Bt
ﬁeJr,m ae[s,n

where® = ®B and T = A*'WU. Hered = (¢;;) and ¥ = (v;;) are determined,
respectively, by

4.7 Gp= Y cdeti (A1) (2,))
BETr,m {3}

(4.8) ng: Z rdet; ((Bqﬂ)j‘(ég.))Za
a€lsn{j}

whereg, is thepth column ofC = A*+2C andc,, is thegth row ofC = CB?+2.
(iii) If the matrix A is Hermitian withk > 2, andB is arbitrary, then

S cdet, (A1), (&.j))ﬁ

BETrm{i} p
3 |Ak+1|g S B2l <B2q+1)*|3’

ﬁEJT,m Oée[s,n

where® = A1 ¥ and ¥ is determined b{4.4)
(iv) If the matrixB is Hermitian andy > 2, and A is arbitrary, then

S rdet; ((B'),(8,))

«

(410) xl] = O‘EIS,TL{j} . B >
>0 (AT AR S0 Bt
BEJT,m Dlels,n

where® = ®B¢*! and ® is determined by4.3).

Proof. (i) According to [3.1) and®-representation$ (4.9) ard (2] 12) for the Drazin-star matrix
AD* = (agf*) and the star-Drazin matriB*" = (bf;D), respectively, it is derived
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D,x *,D
Lij :ZZ% Copbyp;
g=1 p=1
W ) Y cden (((ATH) AT (&)
_Z =1 BETr m{l} ' ﬁc
= - 3 9p
(4.11) gl S |(A2k1) A2k+1’ﬁ

BEJT‘, m

Zn: ST rdety ((B2q+1 (BQQH)*)t, (Bn))zbg?)

t=1 acl, ,{t}

Z |B2q+1 (B2q+1)*|z ’

OéEI'r, n

wherea,, is thegth column ofA = (A?++1)* A1 A* andb,, is thepth row of B = B*B¢+!(B2+1)*,
To obtain expressive formulas, we make some convolutiors of|(4.11).
DenoteC = (A%*1)*A*1A*C andC = CB*B?"(B%*1)*, Then,

m n
E :aycgp = Cp, E :Cgpbp. = Cq.
g:l p:l

If we denote by

B
B

Bip = Em:al(lk) Z cdet, (((A%—i-l)* A2k+1>

=1 Bedr,mil}

(&)

1z

the (ip)th element of € H and put® = ®B, then from

D0y Y wdet, (B (BH)T), (b)) b))
p=1

t=1 acl n{t}

Q

= i Z rdet, <(qu+1 (BQqH)*)t, (97%)>ab§]q)

t=1 Cvelr, n{t}

it follows (4.7)). If we denote by

=30 Y wdety (B (B, (e,))"HY

t=1 C!EIT, n{t}

the (gj)th element ofr € H and putl = AW, then the equality

m

i Zaz(zk) Z cdet, (((AQk—H)* A%H),z (é,g)>2ng

g:l =1 ﬂej'r,m{l}

_ m al(-lk) Z edet, <<<A2k+1)*A2k+1>_l <?’7,]>>

=1 BEJTr, m{l}

o~

B
B

gives [4.2)
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(if) Using @-representation 5) a.16) for the Drazin-star matHx = (ag-’*) and the
star-Drazin matrixB*P = (b;;’.), respectively, one derives

N e (e, ()’
g BEJr,m{i} '
Lij = Z Z ai’; Cgpme - Z Z $ ‘Ak+1|g Cop

g=1 p=1 g=1 p=1
BEIrm

«

> rdet; ((BqH)j.(bgH)))

a€lsn{j}
> (B

CMEIs,n

Let us do the following designations

Gpi=y al ey, 6, = > cdet; (A (€,))),
g=1 BGJr,m{i}

and construct the matri@ = (¢,,) € H™*". Then from puttingp = ®B+2, and

«

S0y, Y xdet; (B )0 = S rdet; (B)(,))

a
a€lsn{j} a€ls n{j}

whereg, is theith row of @, it follows (4.3).
By denoting

Cy. 1= chpo-v Vi = Z rdet; ((BqH)J(Eg-))z
p=1

a€lsn{j}

as the(gj)th element oft € H™*" and® = A*2®, then the equality

i Z cdet; ((Akﬂ)j (aF§+2)))§¢gj = Z cdet; ((AHI)_i (%;))2
9=1 peJrm{i} BEJr,mii}
gives [4.6).

The proofs of the cases (iii) and (iv) are similar to above by using correspo@degresentations
of the Drazin-star and star-Drazin inverses.

Remark 1. Since for a Hermitian matrix their corresponding Drazin-star and star-Drazin ma-
trices coincide, then forward the case of both Hermitian matrix could be represented only by
Cramer’s rules(4.5)-(4.6) as the most optimal.

The proofs of the next corollaries evidently follow from Theoienj 4.1 by puting I,,, or
B =1, respectively.

Corollary 9. If A € H™® andrank(A*) = r. The unique solutioX = (z,;) € H™*" from
(3.2) can be expressed componentwise as follows.
(i) If the matrix A is arbitrary, then

Z aglk) Z cdet; (((A2k+1)* A2k+1) l (6J))5

(4.12) b EL Bl _ 5

. g Z ‘(A%Jrl)*A%JFl’g ,
BETr, m
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wherec ; is the;jth column ofC = (A2++1)* A1 A*C,
(i) If the matrix A is Hermitian andk > 2, then
~ \\8
3 | cdet; ((Ak“)i (c,j))ﬂ
_IBGJT,m{Z}

e > |AFI]
ﬁeJr, m

(4.13)

Y

whereg ; is the;jth column ofC = A*+2C.

Corollary 10. If B € H™@ andrank(B?) = s. The unique solutioX = (z;;) € H™*" from
(3.4) can be expressed componentwise as follows.
(i) If the matrixB is arbitrary, then

S % adet, (B2 (BHHY), (€)) b

t=1acl; n{t}
E ‘B2q+1 (B2q+1)*‘0‘ ’
a€ls n “
whereg;_is theith row of C = CB*B?+!(B%+1)*,
(i) If the matrixB is Hermitian andg > 2, then

> rdet; ((B7);.(C))5
- _Oéels,n{j}
e > B; |

aEIs, n

whereg; is theith row of C = CB?+2,

(4.15)

Remark 2. Note that Cramer’s rules for one-side right and left equations with Drazin-star
and star-Drazin matrices of Hermitian matricdsandB, respectively, are optimally described
by Egs. (4.13)(4.15) So, we will consider henceforth one-side right and left equations with
Drazin-star and Star-Drazin matrices only for arbitrary matricAsand B.

The case of complex matrices can be proven similarly usin@tmepresentations (2.[11) of
the Drazin-star matrixi®* and [2.1}) of the star-Drazin matrix*".

Theorem 4.2.LetC € C™", (A|B) € C™m*4) with rank(A*) = r andrank(B?) = s. The
unique solutionX = (z;;) € C™*" can be expressed componentwise as follows.

(i) For Eq. (3.1),

~ | ~ B8
> B0 > [, (9)
o oclali} S R O B
T ARG Y B 2 AR S B
ﬁGJr,m Ole[s,n Bejr,m ae[s,n
where® = ®B*Bi+! and ¥ = A1 A*U. Hered = (¢;;) and ¥ = (1),;) are determined by
NT:
(4.16) Sp= Y (A1), @,
BE€JTr,m{i}
(4.17) PRI RN (CRDHCHI
ae]s,n{j}

wherec , is thepth column ofC = AFLA*C andeé,. is thegth row ofC = CB* B+,
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(i) For Eq. (3.2),
~ |8
> (A @)l
(418) Iij = BEJT’M{I}
> A
BETr, m
(iii) For Eq. (3.4),
= }|(Bq“)j.(éi.)lz
ac s,n ]
(419) Tij = E |BQ+1’Z
aEIs,n

Remark 3. Cramer’s rules in the framework of the theory of row-column determinants for Eq.
(3.8) and its one-side consequences have been derid&]n

Theorem 4.3.LetC € H™ ", (A|B) € H™™*9) with rank(A*) = r andrank(B?) = s.
The unique solutioX = (z;;) € H™*" from (3.7) can be expressed componentwise as follows.
(i) If the matricesA andB are arbitrary, then

Cij

DD AT ST | (B2 B2t

a€lr m B€Js, n

whereé;; is the (ij)th element oC = ®PA*CBIW. Hered = (¢;;) and ¥ = (v,;;) are
determined, respectively, by

(4.21) bp= 3. rdet (A% (A%)) (@),
P aeg;ﬂ{t} t << ( ) )t. >a

- B

(4.22) by = cdet; ( ((B**1)"B**) (b))
lj ﬁe%{l} ! ( 1 ( j))ﬁ

wherea, is theith row of A = A*A*1(A%+1)* andb ; is thejth column ofB = (B%+!)*Be+'B*,
(i) If the matrix A is Hermitian withk > 2, andB is arbitrary, then

~ B
S cdet; ((Ak“) . <¢.j>>
BEJrm{i} ' d

D |Ak+1’g S B+l (qu+1>*‘z’

BEIr, m a€ls n

where® = AF2CBW and ¥ is determined by (48).
(iii) If the matrixB is Hermitian withg > 2, and A is arbitrary, then

> rdet; ((B7);(6,))

«

(4.24) PP L) M . ,
Z |(A2k+1) A2k+1|ﬁ Z |Bq+1|g
ﬁGJ»,-ym Oée[s,n

where® = ®A*CB?2 and ® is determined by4.7)
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Proof. (i) According to [3.7) and®-representation$ (2.]12) arjd (2.9) for the star-Drazin matrix
A*D = (a;}D) and the Drazin-star matriBP* = (b?j’*), respectively, we have

§:§:zg Capbp;

g=1 p=1

- z > | et (A% (AZ1)7), () aty’
- * | QU gp

=1 p=1 aggm | A2k (A1)

n

S bz(;f) S cdets <((B2q+1)* Bxt) (BJ))

% =1 BEJTs, n{l}
2¢+1\* R2g+11(8
> [(Brrt)T Bty

BE€JTs, n

wherea; is theith row of A = A*A**1(A%+1)* andb ; is thejth column ofB = (B*+1)*B+!B*,
To obtain an expressive formula, we make the following denotations

Ctl = E § atg cgp pl )

B
B

Y

t=1 [=1
Bip = Z rdet, <(A2k+1 (A1) ) )O‘
aely, m{t} “
3
wlj _ Z Cdetl (((B2q+1) B2q+1 < J))ﬁ
Beds, nfl}
and construct the matricd8 = A*CB? = (¢y) € H™", ® = (¢;,) € H™™, and¥ =
(¢;) € H™™. Then from puttingC = ®C¥ = ®A*CBW = (¢;;) € H™", it follows

@.20).
(i) Using D-representation$ (2.]15) arid (2.9) for the Drazin-star matfix = (ag’*) and the
star-Drazin matrixB*P = (b;;tD), respectively, it is derived

" oo X et (A (7))
% Yy fedntd |
— aigDCgpbpj = Z |Ak+1’g Cyp

g=1 p=1 g=1 p=1

BEJr,m
n - B
3 bl()fg S cdety <<(B2q+1)* B2q+1) l (b_j>>
" I=1 = Bed, {l} ' B
* B ’
S |(B2et) B2q+1‘ﬁ

ﬁer,n
whereb ; is thejth column of B = (B%+1)*Be+1B*,

By c, = lez a. k+2)cg,,bl(j) denote theth column of C = A¥*2CB? and determine the
1

matrix ¥ = (1) by (4.8). Then[(4.23) follows from putting = A*2CBW.
(iif) The proof is similar to the proof of the item (i

Representations in the next corollaries follows as consequences of THeofem 4.3-fby,
orB=1,.
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Corollary 11. Let C € H™™ and arbitrary A € H™®)_ Then the unique solutioX =
(x;;) € H™ from (3.9)is represented as

«
Z |A2k+1 (A2k+1)*|a’

OzE]r, m

whereg¢;; is the(ij)th element o = PA*C and® = (¢y;) is determined by4.21)

Corollary 12. LetC € H™ " and arbitrary (B) € H™(@, Then the unique solutioX =
(xi;) € H™™ from (3.10)is

Cis
4.26 = 4
( ) I] Z |(B2q+1>*B2q+1|27
BEJTs,n

whereg;; is the(ij)th element of = CB¥, and ¥ = (1;;) is determined by4.22)

Theorem 4.4.LetC € C™", (A|B) € C™M*4) with rank(A*) = r andrank(B?) = s. The
unique solutionX = (z;;) € C™*" can be expressed componentwise as follows.

(i) For equation(3.7),
_ Cij

ZL‘Z‘]‘— P 3
> ARG XD (BT

OLEIT, m ﬁejs,n

whereg;; is the (ij)th element of = ®C'V. Hered = (¢;;) and ¥ = (v,;) are determined,
respectively, by

o

(4.27) by = > [(A), (@)
aclr,m{g}

(4.28) b= > | B, (8) 2
BeJsn{p}

whereg;,. is theith row of A = A* A¥+! andb, is the jth column ofB = B! B*,

(ii) For 3.9)

&

2 ARG

OéEIT', m

Wherec%) is the(ij)th element o, = ®C and® = (¢,;) is determined by4.27)
(iiiy For (3-10)

(4.30) zi; =

(2)
ij

> Bt

BEJTs, n

Wherecgf) is the(ij)th element of; = C'V and ¥ = (v;;) is determined by4.28)

c

Theorem 4.5.LetC € H™", (A|B) € H™M*I2) with rank(A*) = r andrank(B?) = s. The
unique solutiorX = (z;;) € H™ ™ from (3.11)can be expressed componentwise as follows.
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(i) If the matricesA andB are arbitrary, then

- (F) det A2K+H1)* A 2k+1 0
Yol & cen (A7) 4%, (8,)),
D |<A2k+1)*A2k+1’g S [B+! (B2+1)*|® ’

«
ﬁet]r,m ae[s,n

B

where{ﬁj is thejth column of = (A2F1)* AR A*W and ¥ = (1;) by (3.22)
(ii) If the matrix A is Hermitian withk > 2, andB is arbitrary, then

~ B
S cdet; ((Ak“)'i <¢.j>)
BETr,m {i} B
(432) Tij = 1 (B 20+1\* 2041 R
> [AFHG >0 [(Brat) Bty

BETr, m B€Js,n
where® = AF2CB¢® and ¥ is determined by4.22)

(iii) If the matrixB is Hermitian withg > 2, and A is arbitrary, then

> rdet; <(Bq+1)j.((~b.j)>

«

(4.33) PP - > -,
> [(AZFT AR ST [BetD
,Beerm aEIs,n

Wherefﬁj is the jth column of® = ®CB?2 and ® is determined by4.3).

Proof. According to [[3-11l) and-representationg (3.9) for the Drazin-star matridgd* =
(a*) andBP* = (b)), it follows

a3 e (A1) A1), 8,)]

m.n m n it
D, D, t=1 BETr, m{t}
R I) WA 359 o
=1 p=1 o ST |(AZH) A2k+1’ﬂ
ﬁejr,m
- } 8
S b}(;li) T cdety (((quH) B2+1) (b.]>)
% =1 peJs,n{l} : 8
> |(B2q+1)*qu+1|g ’
ﬁe']s,n

wherea,, is the gth column of A = (A?+1)*A*+1A* andb is the jth column of B =
(B2q+1)*Bq+1B*.

Construct the matri® = (¢,;) defined by[[4:22) an@® = ACB¥ = (A1) AFM1IA*CBI®.
Then, from

m n

Z Z Z agcgpb;(;?)wlj = {p.ja

g=1 p=1 [=1

it follows (4.31).
(ii) Using D-representations (2.115) and (2.9) for the Drazin-star matuces = (a?j’*) and
BD* = (b)), we have
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. w et (a0, (o))
% * BEIr,m{} .
Lij = Z Z ngCngz?J Z Z S Ak Cop
B

g=1 p=1 g=1 p=1
/BEJT,m

i b](j T cedety <<(B2q+1)* B2q+1>.z (f)]>>

I=1 = Beds o {l} B

S |(B2at)* B2q+1|g
BEJS, n

B

9

whereb ; is the jth column ofB = (B%+1)*B¢+'B*,

By ¢, = Z Z a. k”)cgp @) denote theth column ofC = A**2CB¢? and determine the
t=11[=1

matrix ¥ = (v;;) defined in[(4.2P). Then from putting = A*"2CBY W, it follows (4.32).

(i) Using D-representation$ (2.9) an[d (2.16) for the Drazin-star matuces = (ag’*) and
BD+ = (b)), itis derived

v W al) S cdet (M%) A% (&)
_ oo pP* — t=1 peJr,m{t} ' BC
- i ap¥p; T % [E; gp

22 et = 2 S| AR

g=1 p=1 g=1 p=1
BETr, m

> xdet; ((B7), (b))

a€lsn{j} @

> B ’

aclsn

wherea , is thegth column of A = (A2F+1)* AR+1A*,
Determine the matri® = (¢,,) by (4.3). Then fromthe denotathm Z Z BigCop@p al

g=11=1

by thejth column of® = ®CB4*2 | it follows (@.33) 1

Corollary 13. Let C € H™*™ and arbitrary A € H"™®), Then the unique solution¥ =
(x;;) € H™ from (3.17)and (3.19)are represented bf#.12)and (4.25) respectively.

Corollary 14. LetC € H™™ and arbitrary B € H™(@, Then the unique solution§ =
(xi;) € H™™ from (3.18)and (3.20)are represented bf4.26)and (4.14) respectively.

Theorem 4.6.LetC € H™", (A|B) € H™M®*I2) with rank(A*) = r andrank(B?) = s. The
unique solutiorX = (z;;) € H™*" from (3.14)can be expressed componentwise as follows.

(i) If the matricesA and B are arbitrary, then

Z S rdet; ((B2q+1 (B2q+1)*)z. (;ﬁl)ibg})

=1 CMGIs n{l}
(434) Tij = Z A2k+1 (A2k+1)*|g Z |B2q+1 (B2q+1)*|gy
Oéelr,m OCEIs,n

whereg, is theith row of ® = ®A*CB*B+(B2+1)* and® = (¢,,) by @.21)
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(i1) If the matrixA is Hermitian withk > 2 and B is arbitrary, then
~ \\A
S cdet; (A1), (9,))
BETrm{i} ' B
* B8’
> ‘Ak+1|g S |(B2t1) B2q+1‘ﬁ
BEJT,’ITL ﬁer,n
where® = A**2CW and ¥ is determined by#.4).
(iii) If the matrixB is Hermitian withg > 2 and A is arbitrary, then

> rdet; ((BqH)j-((}.j))

a€lsn{j}
(436) xij = " 3 o
> (AT AR S0 [Bet[]

BETr,m a€ls n

(4.35)

«

(07

Where&j is the jth column of® = ®CB?2 and ® is determined by4.3).
Proof. According to [3:I]L) and-representation$ (2.]12) for the star-Drazin matrides’ =
(a;;”) andB*P = (b;:"), we have
" o 2o X det ((APT(A)), (@) ol
«D_ xD t=1 acl, m{t} '
Lij = Z Z g Copby;~ = Z Z S |AZEHT (A Cap

g=1 p=1 g=1 p=1

aEIr, m

i Z rdetl ((B2q+1 (B2q+1)*)l. (Bp))zbl(j)

=1 acls n{l}

Z ‘B2q+1 (B2q+1)*‘a ’
a€ls n “
wherea; istheith row of A = A*A**1(A%+1)* andb, is thepth row of B = B*B¢+(B2+1)*,
Construct the matrix® = (¢,,) by 4.21) and® = ®A*CB = ®AF*CB*B"! (B )",

Then, from
Z Z Z (bitag];)cngp. = éw
g=1 p=1 [=1
it follows (4.34).
(ii) Using D©-representation$ (2.115) arfd (2.12) for the star-Drazin matAces = (aZ}D) and
B*P = (b7:"), we derive

T cdets <(Ak+1)j (a,(erQ)))B

mon m n
- *,D *D BEJrm{i} B
Tij = Z Z Uig Copby;” = Z Z S Ak |g Cop

g=1 p=1 g=1 p=1
IBGJr,m

S rdet; (B2 (B2+1)"), (b,.)) b7

=1 acl, n{l}

> Bt (Bt ’

«
a€ls n

whereb, is thepth row of B = B*B?™!(B**!)*. Determine the matrix = (v,,) by (4.3).
Then from puttingl = A**2CW, it follows (4.35)
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(iii) Using D-representation$ (2.112) arfd (2.16) for the star-Drazin matAces = (a;’}D) and
B*P = (b;:"), we have

" W X T der (AT (A%H)), (a,)) 0l
*, *, tzl ae}'r,m{t} ’
Tig = Z Z aigchpme - Z Z ST |AZETL (AZRET)T|Y Cgp

g=1 p=1 g=1 p=1 @

S rdet; (B, (b))

aEIS,n{j} «

> B ’

aEIs,n
wherea; is theith row of A = A*AFH1(A?*1)* Determine the matri® = (¢,,) by (4:21).
Then [4.3p) follows from the denotatiop, = > 3 3 gbitag';)cgpb}(,‘?“) by the ith row of

t=1g=11[=1

aEIr, n
«

b = PAFCBI2. g

Theorem 4.7.LetC € C™", (A|B) € CmM(*la) with rank(A*) = r, andrank(B?) = s. The
unique solutionX = (z;;) € C™*" can be expressed componentwise as follows.

(i) For 3.11)

~ \ |8
e m (7)),

Lij )
> AR S [ Betg

BGJT',’"L /GEJS,H

where¥ = A* A¥1C'W and ¥ is determined b{4.28)
(ii) For (3.14)

> @, 6,[
acls n{j} @

20 ARG X (B

acly m a€ls n

IL‘ij =

Wherefﬁj is thejth column ofd = ®C' B B* and® is determined by4.27)

Corollary 15. LetC € C™™ and A € C"™®), Then the unique solutions = (z;;) € C™*"
from (3.17)and (3.19)are represented bf4.18)and (4.29) respectively.

Corollary 16. LetC € C™" and B € C™(@. Then the unique solutions§ = (z;;) € C™*"
from (3.18)and (3.20)are represented bf4.30)and (4.19) respectively.

5. AN ILLUSTRATIVE EXAMPLE

To explain derived results and representations, subsequent examples are conducted.
Let’s derive Cramer’s rule for the solution (B.1) to Elg. {1.3) with input matrices

k- 0 i L i 0 -1

.. . 4k 41 -bi
(5.1) A— _1k_J ‘Jngi 133 B=|-2 2k 3|, . C= 12 _Ok ?
itk 1-j i i-k -k 0 —j 0
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One can find
[ 3 6i+4k —4-—3j —4—6j
3 a3 | —61—4k 19 4i+13k 19k
AN (AT) = —443j —4i—13k 10 134+4j |’
| —4+ 6] —19k 13 —4j 19
[ 11 111 11
(B¥)"B*=|-11i 11 -11k
—11j 11k 11

Sincerank(A) = rank(A*A) = 3, rank(A?) = rank(A?) = 2, rank(B) = rank(B*B) = 2,
rank(B?) = rank(B?) = 1, it follows & = Ind(A) = 2, ¢ = Ind(B) = 2.

Based on Theorefm 4.1 in the case|4.1), the Cramer’s rule to the so[utibn (3.1) is expressed
in the subsequent way.

1. Compute the matrices = (A®)*A3A*C, ® by (4.3), and® = ®B*B3(B?)*,

—20—72j 111i+97k —29i+ 72k 1+3j —2i-4k i-3k
G |35i455k 76498 354555 | o L, |2~k —3+j 2]
174+6j —i—35k  17i—6k |’ 24+j  5i+k 2i-k |’
—55+35j —98i+ 76k —55i — 35k ~1+2j i+3k —i—2k
171 + 9451 + 513j — 135k 315 — 45i 4 45§ 4 171k 171 — 45i — 57j — 315k
& _os | 3421 135j — 171k —114 + 57j — 45k —45 — 57i + 114k
342 + 171j + 945k —114i — 315j + 57k 57 + 3151 — 114j
—171 — 1351 + 342 —45 + 57i + 114k 114 + 57j + 45k

2. Taking into account

> (A A =25 3 (B (B)

BEJT2, 4 o€l 3

from (4.1) it follows that
—19 — 105i — 57j 4+ 15k 105 — 19i 4 15§ + 57k 57 — 15i — 19§ — 105k

[0}

tr (B® (B®)") = 33,

[0}

X 381 + 15j + 19k —38 +19j — 15k —15 — 19i + 38k
N —38 — 19j — 105k —38i — 105j + 19k 19 + 1051 — 38j
19 + 151 — 38j —15+4 19i + 38k 38 +19j + 15k
is the solution to the Q-RME (1.3).
Similarly:
13— 391+ 13j — 65k —21 —7i+35j+ 7k 3 — 15i + 3j + 9k
<_ | —52-13j—13k 281 + 7j — 7k —3 — 3i + 12j
| —B2i4+13j — 13k —284+T7j+ 7k 3—3i+ 12k
13+ 13i — 52k 7—Ti+28j —12i — 3j — 3k

is the solution to the Q-RMES§ (1.4)-(3.8);

13 — 65i + 39§ — 65k  —35 — 7i+35j + 21k 9 — 15i — 3j + 15k
—52 — 26— 117j — 13k —14+28i+ 7j — 63k —27 — 3i + 12j + 6k
26— 521+ 13j — 13k 28— 14i+7j+7k 3 —3i—6j+ 12k
—13 — 117i + 26j + 52k —63 +7i — 28j + 14k 6+ 12i + 3j + 27k

is the solution to the Q-RME§ (3112)-(3]13);

X:
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—19 — 151 — 19j + 15k 15— 191+ 15j + 19k 19 — 15i — 19j — 15k

X _ 15j + 19k 19j — 15k ~15 —19i
- —19j + 15k 15j + 19k 19 — 15i
—19 — 15 15 — 19i —19j — 15k

is the solution to the Q-RMES (3.]15)-(3]16).

6. CONCLUSION

Our principal outcomes are related with solving the quaternion restricted two-sided matrix
equationAXB = C. The study encompasses all possible two-sided quaternion matrix equa-
tions with restrictions on matrix spaces, such as ranges and kernels, wherein their solutions are
uniquely determined by the Drazin-star and star-Drazin matrices. The obtained determinantal
representations of these matrices are then utilized to solve the equations using Cramer’s rules
with noncommutative row-column determinants in the case of quaternion matrix equations. A
numerical example is provided to illustrate the obtained results.
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