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1. I NTRODUCTION

Usually,R andC denote the real and complex numbers, respectively,Hm×n containsm× n
matrices on the quaternion skew fieldH = {v0 + v1i + v2j + v3k | i2 = j2 = k2 = ijk =
−1, v0, v1, v2, v3 ∈ R}. Also, Hm×n

r marks the subset ofHm×n with matrices of rankr. For
v = v0 + v1i + v2j + v3k ∈ H, its conjugate isv = v0 − v1i − v2j − v3k, and its norm is
‖v‖ =

√
vv =

√
vv =

√
v2

0 + v2
1 + v2

2 + v2
3.

The rank, trace and conjugate transpose (Hermitian) ofA ∈ Hm×n, respectively, are denoted
asrank(A), tr(A) andA∗. Due to noncommutativity in the quaternion skew field, the following
notions are used:

- Nl(A) = {n ∈ H1×m : nA = 0} is the left null space (or left kernel) ofA;
- Nr(A) = {n ∈ Hn×1 : An = 0} is the right null space (or right kernel) ofA;
- Rl(A) = {m ∈ H1×n : m = nA, s ∈ H1×m} is the left row space (or left range) of
A;

- Cr(A) = {m ∈ Hm×1 : m = An, s ∈ Hn×1} is the right column space (or right range)
of A.

The rank ofA ∈ Hm×n is determined asrank(A) = dim Cr(A) = dimRl(A
∗).

ForA ∈ Hn×m, its Moore-Penrose (or MP) inverseA† is a cunique solutionX to the system

(1) A = AXA, (2) X = XAX, (3) AX = (AX)∗ , (4) XA = (XA)∗ .

By A(δ) we denote any matrix that satisfies the equations determined byδ ⊆ {1, 2, 3, 4} and it is
called theδ-inverse ofA. In particular,A(1) andA(2) are called theinner inverseand theouter
inverse, respectively. One of the outer inverses is theDrazin (D-)inverseAD of A ∈ Hn×n that
is defined as a unique solution to the system

(2) X = XAX, (5) XA = AX, (6) Ak = XAk+1,

wherek = Ind(A) = min{k ∈ N ∪ {0} | rank(Ak) = rank(Ak+1)} denotes the index ofA.
If Ind(A) ≤ 1, thenAD reduces to thegroup inverseA#.

New generalized inverses can be generated by combining different generalized inverses or
applying them in certain (range or kernel) matrix spaces. In particular, such generalized in-
verses involve the core inverse [3], the core-EP (CEP-)inverse [30], the MPD-inverse [23], the
MPCEP-inverse [7], etc. Some extensions of these generalized inverses were given for tensors
[34, 42], operators [26], and for elements of rings [9, 24, 47]. Their extensions with determi-
nantal representations for quaternion matrices were introduced in [14, 18].

Recently, Mosíc in [25] presented two new classes of square complex matrices that can be
expanded to quaternion matrices.

Lemma 1.1. LetA ∈ Hn×n andk = Ind(A).
(a) The system of equations

X(A†)∗X = X, AkX = AkA∗, andX(A†)∗ = ADA,

is consistent and its unique solution isX = ADAA∗.
(b) The system of equations

X(A†)∗X = X, XAk = A∗Ak, and (A†)∗X = AAD,

is consistent and its unique solution isX = A∗AAD.

Definition 1.1. Let A ∈ Hn×n andk = Ind(A).
(a) The Drazin-star matrix ofA (or the Drazin-star inverse of(A†)∗) is defined as

AD,∗ = ADAA∗.(1.1)
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(b) The star-Drazin matrix ofA (or the star-Drazin inverse of(A†)∗) is defined as

A∗,D = A∗AAD.(1.2)

Notice that if Ind(A) = 0 for A ∈ Hn×n, thenAD = A−1 and in this case it follows
AD,∗ = A∗,D = A∗. ForA ∈ Hn×n with Ind(A) = 1, the Drazin-star and star-Drazin matrices
reduce tothe group-star matrix, A#,∗ = A#AA∗, andthe star-group matrix, A∗,# = A∗AA#,
respectively.

Recently, the topic of the Drazin-star and star-Drazin matrices has found its development in
[46] by the complex rectangularW -weighted Drazin-star matrix, in [28, 27] by operators on
Hilbert spaces, and in [37] by Drazin-theta and theta-Drazin matrices.

Due to the important role of generalized inverses in many application fields, significant ef-
forts have been made toward numerical algorithms for their efficient and accurate computation.
Most existing methods for calculating complex generalized inverses are iterative algorithms for
approximating generalized inverses [1, 35]. There are only several direct methods for finding
generalized inverse. One of the direct methods is constructing its determinantal representa-
tion (D-representation shortly). TheD-representation of the ordinary inverse as the matrix
with cofactors in entries inducts the well-known Cramer rule for solving systems of equations.
However, constructing ofD-representations of generalized inverses is not as obvious and un-
ambiguous, even for matrices with complex or real entries. In the search for more applicable
explicit expressions, there are various widespreadD-representations of generalized inverses of
matrices over complex numbers [6, 22, 36, 39, 31, 40], integral domains [5, 4, 29, 44, 43], and
the Riemannian space [38, 41]. The task ofD-representing quaternion generalized inverses is
more complicated than the complex case, due to the non-commutativity of quaternions. Diffi-
culties arise in defining the determinant with noncommutative entries, known as a noncommuta-
tive determinant (see survey articles [2, 8, 45] for details). In this paper, we utilize the theory of
row-column noncommutative determinants recently developed in [11, 17] to deriveD-represen-
tations of the Drazin-star and star-Drazin matrices. We also rely on representations of quater-
nion Drazin inverses previously obtained using the limit-rank method. This method has also
been used to derive new determinantal representations of various complex generalized inverses
[10, 16]. As a result, we provide new determinantal representations of quaternion Drazin-star
matrices and establish corresponding Cramer’s rules for complex matrix equations. The pri-
mary focus of our research is the study of two-sided quaternion matrix equations (TQME) of
the formAXB = C. This equation, a special case of the Sylvester equation, has wide-ranging
applications in fields such as image and signal processing [33], photogrammetry [32], etc. It
is known that the unique best approximate solution to this equation isX = A†CB†. In this
paper, we will study all possible two-sided quaternion matrix equations with restrictions that
are uniquely determined solutions based on the Drazin-star and star-Drazin matrices. Based on
obtained determinantal representations, these equations are solved by Cramer’s rules in both
cases for quaternion and complex matrix equations. This paper is a continuation of a number of
research studies [20, 18, 19, 21] dedicated to the study of two-sided quaternion matrix equations
with restrictions uniquely determined by various generalized inverses and focused on solving
these equations using Cramer’s rules by row-column determinants.

By bold capital letters we denote quaternion matrices, while capital letters are used for com-
plex matrices. As usual,Cm×n denotes the set ofm× n complex matrices. We use the next
notation

H(m)(k) =
{
A ∈ Hm×m | k = Ind(A)

}
,

AJMAA, Vol. 21 (2024), No. 2, Art. 9, 28 pp. AJMAA

https://ajmaa.org


4 I.I. K YRCHEI AND D. MOSIĆ AND P. STANIMIROVI Ć

and
A ∈ O⊂(B,C) ⇐⇒ Cr(A) ⊂ Cr(B), Rl(A) ⊂ Rl(C),

(A|B) ∈ H(m|n)(k|l) ⇐⇒ A ∈ H(m)(k),B ∈ H(n)(l).

The main research streams of this paper are briefly described as follows.
1. Determinantal representations of the Drazin-star and star-Drazin matrices for quaternion

and complex matrices are presented.
2. WhenC ∈ Hm×n, A ∈ H(m)(k) andB ∈ H(n)(q), we prove solvability of the quaternion

restricted matrix equation (or shortly Q-RME):

(1.3) AkXBq = AkA∗CB∗Bq, X ∈ O⊂(Ak,Bq)

and show that equation (1.3) possesses a uniquely determined solution based on the
Drazin-star matrix ofA and the star-Drazin matrix ofB.

3. Particular kinds of equation (1.3) are studied whenA = Im or B = In or A andB are
partial isometries.

4. WhenC ∈ Hm×n, A ∈ H(m)(k) andB ∈ H(n)(q), we verify solvability of the Q-RME

(1.4) (A†)∗X(B†)∗ = AADCBDB, X ∈ O⊂(A∗,B∗)

and express its unique solution using the star-Drazin matrix ofA and the Drazin-star
matrix ofB.

5. Special types of (1.4) are considered.
6. Several more Q-RMEs are solved based on Drazin-star matrices ofA andB or star-

Drazin matrices ofA andB.
7. Cramer’s rules for obtained solutions to above Q-RMEs are given.
8. An illustrative example illustrates the obtained results.

The remainder of our article is directed as follows.D-representations of the quaternion
Drazin-star and star-Drazin matrices are derived in Section 2. Section 3 investigates the solv-
ability of QRMEs of the form (1.3) and (1.4) and their special cases. Cramer’s rule for consid-
ered solutions is derived in Section 4. A numerical example is given in Section 5 to illustrate
gained results. Concluding comments are stated in Section 6.

2. DETERMINANTAL REPRESENTATIONS OF THE QUATERNION DRAZIN -STAR AND

STAR-DRAZIN MATRICES

By the theory of row-column determinants, forA = (aij) ∈ Hn×n there is a method to
producen row (R-)determinants andn column (C-)determinants by stating a certain order of
factors in each term.

• Theith R-determinantof A, for an arbitrary row indexi ∈ In = {1, . . . , n}, is given
by

rdetiA :=
∑
σ∈Sn

(−1)n−r (ai ik1
aik1

ik1+1
. . . aik1+l1

i) . . . (aikr ikr+1
. . . aikr+lr ikr

),

whereatSn denotes the symmetric group onIn, while the permutationσ is defined as a
product of mutually disjunct subsets ordered from the left to right by the rules

σ = (i ik1ik1+1 . . . ik1+l1) (ik2ik2+1 . . . ik2+l2) . . . (ikrikr+1 . . . ikr+lr) ,

ikt < ikt+s, ik2 < ik3 < · · · < ikr , ∀ t = 2, . . . , r, s = 1, . . . , lt.

• For an arbitrary column indexj ∈ In, thejth C-determinantof A is defined as the sum

cdetjA =
∑
τ∈Sn

(−1)n−r(ajkr jkr+lr
· · · ajkr+1jkr

) · · · (ajjk1+l1
· · · ajk1+1jk1

ajk1
j),
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in which a permutationτ is ordered from the right to left in the following way:

τ = (jkr+lr · · · jkr+1jkr) · · · (jk2+l2 · · · jk2+1jk2) (jk1+l1 · · · jk1+1jk1j) ,

jkt < jkt+s, jk2 < jk3 < · · · < jkr .

Due to the non-commutativity of quaternions, allR- andC-determinants are generally different.
However, the following equalities are verified for a Hermitian matrixA in [11]:

rdet1A = · · · = rdetnA = cdet1A = · · · = cdetnA = α ∈ R.
It allows us to define the unique determinant of a Hermitian matrixA by puttingdetA = α.
We also will use the denotation|A| := detA. For more details on quaternion column-row
determinants see [17].

The next symbols related toD-representations will be used. Theith row andjth column
of A are marked withai. anda. j, respectively. LetA.j (c) (resp. Ai. (b)) mean the matrices
formed by replacingjth column (resp.ith row) ofA by the column vectorc (resp. by the row
vectorb). Supposeα := {α1, . . . , αk} ⊆ {1, . . . ,m} andβ := {β1, . . . , βk} ⊆ {1, . . . , n} are
subsets with1 ≤ k ≤ min {m,n}. ForA ∈ Hm×n, the notationAα

β stands for a submatrix with
rows and columns indexed byα andβ, respectively. Further,Aα

α and|A|αα denote a principal
submatrix and a principal minor of HermitianA ∈ Hn×n , respectively. The standard notation

Lk,n := {α : α = (α1, . . . , αk) , 1 ≤ α1 < · · · < αk ≤ n}
will mean the set of strictly increasing sequences ofk ∈ {1, . . . , n} integers elected from
{1, . . . , n}. In this respect, we put

Ir,m{i} := {α : α ∈ Lr,m, i ∈ α}, Jr,n{j} := {β : β ∈ Lr,n, j ∈ β}
for some fixedi ∈ α andj ∈ β.

Denote bya(m)
.j anda

(m)
i. the jth column and theith row of Am, and byâ.s and ǎt. the sth

column of(A2k+1)∗Ak =: Â = (âij) ∈ Hn×n and thetth row ofAk(A2k+1)∗ =: Ǎ = (ǎij) ∈
Hn×n, respectively, for alls, t = 1, . . . .n. The next lemmas giveD-representations of the
Drazin inverse over the quaternion skew field.

Lemma 2.1. [13] If A ∈ H(n)(k) with rank(Ak) = r, then the Drazin inverseAD possesses the
determinantal representations

aD
ij =

φ̂ij∑
β∈Jr, n

|(A2k+1)∗ A2k+1|ββ
(2.1)

=
ψ̂ij∑

α∈Ir, n

|A2k+1 (A2k+1)∗|αα
,(2.2)

whereΦ̂ =
(
φ̂ij

)
= AkΦ andΨ̂ =

(
ψ̂ij

)
= ΨAk. The matricesΦ =

(
φtj

)
andΨ = (ψis)

are determined by

φtj =
∑

β∈Jr, n{t}

cdett

((
A2k+1

)∗ (
A2k+1

)
.t

(â.j)
)β

β
,(2.3)

ψis =
∑

α∈Ir, n{s}

rdets

((
A2k+1

(
A2k+1

)∗)
s.

(ǎi.)
)α

α
.(2.4)

In the special case whenA ∈ Hn×n is Hermitian, we can obtain simpler determinantal
representations of the Drazin inverse.
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6 I.I. K YRCHEI AND D. MOSIĆ AND P. STANIMIROVI Ć

Lemma 2.2. [13] If A ∈ H(n)(k) is Hermitian withrank(Ak) = r, then the Drazin inverse
AD =

(
aD

ij

)
is represented as follows

aD
ij =

∑
β∈Jr,n{i}

cdeti

((
Ak+1

)
.i

(
a

(k)
.j

))β

β∑
β∈Jr,n

|Ak+1|ββ
(2.5)

=

∑
α∈Ir,n{j}

rdetj

(
(Ak+1)j.(a

(k)
i. )

)α

α∑
α∈Ir,n

|Ak+1|αα
.(2.6)

The corresponding statement is valid in the case of complex matrices.

Lemma 2.3. [10] If A ∈ C(n)(k) with rank(Ak) = r, then the Drazin inverseAD =
(
aD

ij

)
by

componentwise can be represented as follows

aD
ij =

∑
β∈Jr,n{i}

∣∣∣(Ak+1
)

.i

(
a

(k)
.j

)∣∣∣β
β∑

β∈Jr,n

|Ak+1|ββ
(2.7)

=

∑
α∈Ir,n{j}

∣∣∣(Ak+1)j.(a
(k)
i. )

∣∣∣α
α∑

α∈Ir,n

|Ak+1|αα
.(2.8)

Now, we derive determinantal representations of the Drazin-star and star-Drazin matrices for
quaternion and complex matrices.D-representations of various generalized inverses expressed
in terms of theR- andC-determinants can be found in [12, 15, 14].

Theorem 2.4. If A ∈ H(n)(k) with rank(Ak) = r, then the Drazin-star matrixAD,∗ =
(
aD,∗

ij

)
possesses the determinantal representation

aD,∗
ij =

n∑
t=1

a
(k)
it

∑
β∈Jr, n{t}

cdett

(((
A2k+1

)∗
A2k+1

)
.t

(ã.j)
)β

β∑
β∈Jr, n

|(A2k+1)∗ A2k+1|ββ
,(2.9)

whereã.j is thejth column ofÃ = (A2k+1)∗Ak+1A∗.

Proof. By (1.1),

aD,∗
ij =

n∑
l=1

n∑
m=1

aD
ilalma

∗
mj.

Suppose thatA is not Hermitian. ThenAD = (aD
ij) is D-presentable by (2.1). Therefore,

aD,∗
ij =

n∑
l=1

n∑
m=1

φ̂ilalma
∗
mj∑

β∈Jr, n

|(A2k+1)∗ A2k+1|ββ
,
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where by (2.3)
n∑

l=1

n∑
m=1

φ̂ilalma
∗
mj =

n∑
t=1

n∑
l=1

n∑
m=1

a
(k)
it

∑
β∈Jr, n{t}

cdett

(((
A2k+1

)∗
A2k+1

)
.t

(â.l)
)β

β
alma

∗
mj.

with â.l standing for thelth column ofÂ = (A2k+1)∗Ak. DenoteÃ = (A2k+1)∗Ak+1A∗.
Since

n∑
l=1

n∑
m=1

â.lalma
∗
mj = ã.j,

then (2.9) follows.

Corollary 1. If A ∈ H(n)(k) with rank(Ak) = 1, then the Drazin-star matrixAD,∗ =
(
aD,∗

ij

)
can be componentwise expressed by

aD,∗
ij =

φ̃ij

tr ((A2k+1)∗ A2k+1)
,(2.10)

whereΦ̃ =
(
φ̃ij

)
= Ak(A2k+1)∗Ak+1A∗.

Proof. If rank(Ak+1) = rank(Ak) = 1, then

φtl =
∑

β∈Jr, n{t}

cdett

(((
A2k+1

)∗
A2k+1

)
.t

(â.l)
)β

β
= âtl =

n∑
s=1

(
a

(2k+1)
ts

)∗
a

(k)
sl

and

φ̃ij :=
∑

l

∑
m

φ̂ilalma
∗
mj =

∑
l

∑
m

∑
t

a
(k)
it φtlalma

∗
mj =

=
∑

l

∑
m

∑
t

∑
s

a
(k)
it

(
a

(2k+1)
ts

)∗
a

(k)
sl alma

∗
mj =

∑
m

∑
t

∑
s

a
(k)
it

(
a

(2k+1)
ts

)∗
a(k+1)

sm a∗mj.

Hence,Φ̃ =
(
φ̃ij

)
= Ak(A2k+1)∗Ak+1A∗. Since∑

β∈Jr, n

∣∣∣(A2k+1
)∗

A2k+1
∣∣∣β
β

= tr
((

A2k+1
)∗

A2k+1
)
,

which implies (2.10).

TheD-representation of the complex Drazin-star matrix have its own features.

Theorem 2.5. If A ∈ C(n)(k) with rank(Ak) = r, then the Drazin-star matrixAD,∗ =
(
aD,∗

ij

)
possess the determinantal representation

aD,∗
ij =

∑
β∈Jr,n{i}

∣∣(Ak+1
)

.i
(ã.j)

∣∣β
β∑

β∈Jr,n

|Ak+1|ββ
,(2.11)

whereã.j is thejth column ofÃ = Ak+1A∗.
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Proof. By (1.1),

aD,∗
ij =

n∑
l=1

n∑
m=1

aD
ilalma

∗
mj.

TheD-representation of the Drazin inverseAD = (aD
ij) is obtained by Lemma 2.3. We use the

D-representation (2.7) ofAD. Then,

aD,∗
ij =

n∑
l=1

n∑
m=1

∑
β∈Jr,n{i}

∣∣∣(Ak+1
)

.i

(
a

(k)
.l

)∣∣∣β
β
alma

∗
mj∑

β∈Jr, n

|Ak+1|ββ
.

DenoteÃ = Ak+1A∗. Since
n∑

l=1

n∑
m=1

a
(k)
.l alma

∗
mj = ã.j, then we have (2.11).

Now, we derive determinantal representations of the star-Drazin matrix.

Theorem 2.6. If A ∈ H(n)(k) with rank(Ak) = r, then the star-Drazin matrixA∗,D =
(
a∗,Dij

)
possesses the determinantal representation

a∗,Dij =

n∑
t=1

∑
α∈Ir, n{t}

rdett

((
A2k+1

(
A2k+1

)∗)
t.

(āi.)
)α

α
a

(k)
tj∑

α∈Ir, n

|A2k+1 (A2k+1)∗|αα
,(2.12)

whereāi. is theith row ofĀ = A∗Ak+1(A2k+1)∗.

Proof. By (1.2),

a∗,Dij =
n∑

l=1

n∑
m=1

a∗ilalma
D
mj.

Suppose that the matrixA is not Hermitian. Then theD-representation of the Drazin inverse
AD = (aD

ij) is obtained by Lemma 2.1. We use theD-representation (2.2) ofAD. Then,

a∗,Dij =

n∑
l=1

n∑
m=1

a∗ilalmψ̂mj∑
α∈Ir, n

|A2k+1 (A2k+1)∗|αα
,

where by (2.4)
n∑

l=1

n∑
m=1

a∗ilalmψ̂mj =
n∑

t=1

n∑
l=1

n∑
m=1

a∗ilalm

∑
α∈Ir, n{t}

rdett

((
A2k+1

(
A2k+1

)∗)
t.

(ǎm.)
)α

α
a

(k)
tj .

with ǎm. standing for themth row of Ǎ = Ak(A2k+1)∗. DenoteĀ = A∗Ak+1(A2k+1)∗. Since

n∑
l=1

n∑
m=1

a∗ilalmǎm. = āi.,

then it follows (2.12).

The following corollary can be proven similarly to Corollary 1.

AJMAA, Vol. 21 (2024), No. 2, Art. 9, 28 pp. AJMAA

https://ajmaa.org


DRAZIN-STAR SOLUTIONS TO QUATERNION MATRIX EQUATIONS 9

Corollary 2. If A ∈ H(n)(k) and rank(Ak) = 1, then the star-Drazin matrixA∗,D =
(
a∗,Dij

)
can be componentwise expressed as

a∗,Dij =
ψ̃ij

tr (A2k+1 (A2k+1)∗)
,(2.13)

whereΨ̃ =
(
ψ̃ij

)
= A∗Ak+1(A2k+1)∗Ak.

If A ∈ Hn×n is Hermitian, then

AD,∗ = ADAA∗ = ADA2 = A2AD = A∗,D, whenIndA = k ≥ 2,(2.14)

A∗,# = A#,∗ = A#AA∗ = A#A2 = A, whenIndA = k < 2.

Corollary 3. If A ∈ H(n)(k) is Hermitian withk ≥ 2 andrank(Ak) = r, then its corresponding
Drazin-star and star-Drazin matrices coincide and

aD,∗
ij = a∗,Dij =

∑
β∈Jr,n{i}

cdeti

((
Ak+1

)
.i

(
a

(k+2)
.j

))β

β∑
β∈Jr,n

|Ak+1|ββ
(2.15)

=

∑
α∈Ir,n{j}

rdetj

(
(Ak+1)j.(a

(k+2)
i. )

)α

α∑
α∈Ir,n

|Ak+1|αα
.(2.16)

Proof. By (2.14),

aD,∗
ij = a∗,Dij =

n∑
l=1

aD
ila

(2)
lj .

Using (2.5) for theD-representation ofAD =
(
aD

il

)
, it can be derived

aD,∗
ij = a∗,Dij =

n∑
l=1

∑
β∈Jr,n{i}

cdeti

((
Ak+1

)
.i

(
a

(k)
.l

))β

β
a

(2)
lj∑

β∈Jr,n

|Ak+1|ββ
.

From
n∑

l=1

a
(k)
.l a

(2)
lj = a

(k+2)
.l , it follows (2.15).

Using (2.6) for theD-representation ofAD =
(
aD

il

)
,

aD,∗
ij = a∗,Dij =

n∑
l=1

a
(2)
il

∑
α∈Ir,n{j}

rdetj

(
(Ak+1)j.(a

(k)
l. )

)α

α∑
α∈Ir,n

|Ak+1|αα
.

Because of
n∑

l=1

a
(2)
il a

(k)
l. = a

(k+2)
i. , from this it follows (2.16).

TheD-representation of the complex star-Drazin matrix can derived with a similar procedure
as in Theorem 2.5.
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Theorem 2.7. If A ∈ C(n)(k) and rank(Ak) = r, then the star-Drazin matrixA∗,D =
(
a∗,Dij

)
componentwise can be expressed as

a∗,Dij =

∑
α∈Ir,n{j}

∣∣∣(Ak+1
)

j.
(āi.)

∣∣∣α
α∑

α∈Ir,n

|Ak+1|αα
,(2.17)

whereāi. is theith row ofĀ = A∗Ak+1.

3. DRAZIN -STAR–STAR-DRAZIN SOLUTIONS TO Q-RME S

This section is devoted to the solvability of Q-RMEs (1.3)-(1.4) as well as their special types.

Theorem 3.1.The Q-RME(1.3) is uniquely solvable by

(3.1) X = AD,∗CB∗,D.

Proof. Recall thatCr(A
D) = Cr(A

k) andRl(B
D) = Rl(B

q). SinceX = AD,∗CB∗,D satisfies

X = ADAA∗CB∗BBD ∈ O⊂(AD,BD) = O⊂(Ak,Bq)

and

AkXBq = (AkADA)A∗CB∗(BBDBq)

= AkA∗CB∗Bq,

we conclude that (1.3) has uniquely determined solutionX = AD,∗CB∗,D.
For two solutionsX1 andX of (1.3), notice thatAk(X1−X)Bq = 0, Cr(X1) ⊂ Cr(A

k) and
Cr(X) ⊂ Cr(A

k) give

(X1 −X)Bq ∈ Nr(A
k) ∩ Cr(A

k) = {0}.
ThenRl(X1) ⊂ Rl(B

q),Rl(X) ⊂ Rl(B
q) and(X1 −X)Bq = 0 yield

X1 −X ∈ Nl(B
q) ∩Rl(B

q) = {0}.
So, (3.1) represents the unique solution to (1.3).

Theorem 3.1 implies the next result in the case thatA = Im or B = In.

Corollary 4. LetC ∈ Hm×n.

(a) If A ∈ H(m)(k), then

(3.2) X = AD,∗C

is unique solution to

(3.3) AkX = AkA∗C, Cr(X) ⊂ Cr(A
k).

(b) If B ∈ H(n)(q), then

(3.4) X = CB∗,D

is unique solution to

(3.5) XBq = CB∗Bq, Rl(X) ⊂ Rl(B
q).

Under additional assumptions onC, we solve the following Q-RMEs whenA andB are
partial isometries.

Corollary 5. Let (A|B) ∈ H(m|n)(k|q) andC ∈ Hm×n.
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(a) If A andB are partial isometries, then

(3.6) X = ADCBD

is unique solution to

AkXBq = AkA∗CB∗Bq, X ∈ O⊂(Ak,Bq), C ∈ O⊂(A,B).

(b) If A is a partial isometry, thenX = ADC is unique solution to

AkX = AkA∗C, Cr(X) ⊂ Cr(A
k), Cr(C) ⊂ Cr(A).

(c) If B is a partial isometry, thenX = CBD is unique solution to

XBq = CB∗Bq, Rl(X) ⊂ Rl(B
q), Rl(C) ⊂ Rl(B).

The Q-RME (1.4) is solvable in terms of the star-Drazin matrix ofA and the Drazin-star
matrix ofB.

Theorem 3.2.The Q-RME(1.4)has the unique solution presented by

(3.7) X = A∗,DCBD,∗.

Proof. We observe thatX = A∗,DCBD,∗ = A∗AADCBDBB∗ ∈ O⊂(A∗,B∗) and

(A†)∗X(B†)∗ = (A†)∗A∗AADCBDBB∗(B†)∗ = AADCBDB,

i.e. the Q-RME (1.4) has a solution of the form (3.7).
In the case if (1.4) has two solutionsX1 andX, from (A†)∗(X1 −X)(B†)∗ = 0, Cr(X1) ⊂

Cr(A
∗) andCr(X) ⊂ Cr(A

∗), we deduce that

(X1 −X)(B†)∗ ∈ Nr((A
†)∗) ∩ Cr(A

∗) = Nr(A) ∩ Cr(A
∗) = {0}.

BecauseRl(X1) ⊂ Rl(B
∗),Rl(X) ⊂ Rl(B

∗) and(X1 −X)(B†)∗ = 0, then

X1 −X ∈ Nl((B
†)∗) ∩Rl(B

∗) = Nl(B) ∩Rl(B
∗) = {0}

implies that (1.4) has the unique solution given by (3.7).

Under additional restrictionC ∈ O⊂(Ak,Bq) for the equation (3.7), we obtain the following
consequence of Theorem 3.2.

Corollary 6. Let (A|B) ∈ H(m|n)(k|q) andC ∈ Hm×n. Then the Q-RME

(A†)∗X(B†)∗ = C, X ∈ O⊂(A∗,B∗), C ∈ O⊂(Ak,Bq)

has unique solution presented by
X = A∗CB∗.

Proof. The hypothesisC ∈ O⊂(Ak,Bq) yieldsC = ADAC = CBBD. The rest follows by
Theorem 3.2.

Remark that, ifA andB are partial isometries in Corollary 6, then

AXB = C, X ∈ O⊂(A∗,B∗), C ∈ O⊂(Ak,Bq)

has unique solution presented byX = A∗CB∗ = A†CB†.
The solution of one more Q-RME can be represented by (3.7).

Theorem 3.3.Let (A|B) ∈ H(m|n)(k|q) andC ∈ Hm×n. Then the Q-RME

(3.8) Ak(A†)∗X(B†)∗Bq = AkCBq, X ∈ O⊂(A∗Ak,BqB∗),

has unique solution presented by(3.7).
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Proof. By Theorem 3.2, (3.7) is a solution to (1.4), which leads to the conclusion that it is a
solution to (3.8):

Ak(A†)∗X(B†)∗Bq = AkAADCBDBBq = AkCBq.

Let X1 andX be two solutions of (3.8). Now, byAk(A†)∗(X1 −X)(B†)∗Bq = 0,

(X1 −X)(B†)∗Bq ∈ Nr(A
k(A†)∗) ∩ Cr(A

∗Ak) = Nr(A
∗,D(A†)∗) ∩ Cr(A

∗,D(A†)∗) = {0}.
Further,

X1 −X ∈ Nl((B
†)∗Bq) ∩Rl(B

qB∗) = Nl(B
qBD,∗) ∩Rl(B

qBD,∗) = {0},
that is, (3.7) is uniquely determined solution to (3.8).

As a consequence of Theorem 3.2 and Theorem 3.3 forA = Im orB = In, we get solvability
of the next Q-RMEs.

Corollary 7. LetC ∈ Hm×n.

(a) If A ∈ H(m)(k), then

(3.9) X = A∗,DC

is unique solution to

(i) (A†)∗X = AADC, Cr(X) ⊂ Cr(A
∗);

(ii) Ak(A†)∗X = AkC, Cr(X) ⊂ Cr(A
∗Ak).

(b) If (B) ∈ H(n)(q), then

(3.10) X = CBD,∗

is unique solution to

(i) X(B†)∗ = CBDB, Rl(X) ⊂ Rl(B
∗);

(ii) X(B†)∗Bq = CBq, Rl(X) ⊂ Rl(B
qB∗).

Similarly, we solve the following Q-RMEs utilizing Drazin-star matrices ofA andB or by
star-Drazin matrices ofA andB.

Theorem 3.4.Let (A|B) ∈ H(m|n)(k|q) andC ∈ Hm×n.

(a) Then

(3.11) X = AD,∗CBD,∗

is unique solution to

(i) AkX(B†)∗ = AkA∗CBDB, X ∈ O⊂(Ak,B∗);(3.12)

(ii) AkX(B†)∗Bq = AkA∗CBq, X ∈ O⊂(Ak,BqB∗).(3.13)

(b) Then

(3.14) X = A∗,DCB∗,D

is unique solution to

(i) (A†)∗XBq = AADCB∗Bq, X ∈ O⊂(A∗,Bq);(3.15)

(ii) Ak(A†)∗XBq = AkCB∗Bq, X ∈ O⊂(A∗Ak,Bq).(3.16)

Consequently, by Theorem 3.4, we obtain solvability of several Q-RMEs as follows.

Corollary 8. Let (A|B) ∈ H(m|n)(k|q) andC ∈ Hm×n.
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(a) Then

(3.17) X = AD,∗C

is unique solution for

(i) AkX = AkA∗C, Cr(X) ⊂ Cr(A
k);

(ii) AkX = AkA∗C, Cr(X) ⊂ Cr(A
k).

(b) Then

(3.18) X = CBD,∗

is unique solution for

(i) X(B†)∗ = CBDB, Rl(X) ⊂ Rl(B
∗);

(ii) X(B†)∗Bq = CBq, Rl(X) ⊂ Rl(B
qB∗).

(c) Then

(3.19) X = A∗,DC

is unique solution for

(i) (A†)∗X = AADC, Cr(X) ⊂ Cr(A
∗);

(ii) Ak(A†)∗X = AkC, Cr(X) ⊂ Cr(A
∗Ak).

(d) Then

(3.20) X = CB∗,D

is unique solution for

(i) XBq = CB∗Bq, Rl(X) ⊂ Rl(B
q);

(ii) XBq = CB∗Bq, Rl(X) ⊂ Rl(B
q).

4. CRAMER ’ S RULES TO OBTAINED SOLUTIONS

In this section, we establish Cramer’s rules for QRMEs considered in Section 3.

Theorem 4.1. Let C ∈ Hm×n, (A|B) ∈ H(m|n)(k|q) with rank(Ak) = r, andrank(Bq) = s.
The unique solutionX = (xij) ∈ Hm×n from (3.1)can be expressed componentwise as follows.
(i) If the matricesA andB are arbitrary, then

xij =

n∑
t=1

∑
α∈Is, n{t}

rdett

((
B2q+1 (B2q+1)

∗)
t.

(φ̃i.)
)α

α
b
(q)
tj∑

β∈Jr, m

|(A2k+1)∗ A2k+1|ββ
∑

α∈Is, n

|B2q+1 (B2q+1)∗|αα
(4.1)

=

m∑
l=1

a
(k)
il

∑
β∈Jr, m{l}

cdetl

(((
A2k+1

)∗
A2k+1

)
.l

(
ψ̃.j

))β

β∑
β∈Jr, m

|(A2k+1)∗ A2k+1|ββ
∑

α∈Is, n

|B2q+1 (B2q+1)∗|αα
,(4.2)

AJMAA, Vol. 21 (2024), No. 2, Art. 9, 28 pp. AJMAA

https://ajmaa.org


14 I.I. K YRCHEI AND D. MOSIĆ AND P. STANIMIROVI Ć

where φ̃i. is the ith row of Φ̃ = ΦB∗Bq+1(B2q+1)∗ and ψ̃.j is the jth column ofΨ̃ =

(A2k+1)∗Ak+1A∗Ψ. HereΦ = (φij) andΨ = (ψij) are determined, respectively, by

φip =
m∑

l=1

a
(k)
il

∑
β∈Jr, m{l}

cdetl

(((
A2k+1

)∗
A2k+1

)
.l
(c̃.p)

)β

β
,(4.3)

ψgj =
n∑

t=1

∑
α∈Is, n{t}

rdett

((
B2q+1

(
B2q+1

)∗)
t.

(c̄g.)
)α

α
b
(q)
tj ,(4.4)

where c̃.p is the pth column ofC̃ = (A2k+1)∗Ak+1A∗C and c̄g. is the gth row of C̄ =
CB∗Bq+1(B2q+1)∗.
(ii) If both matricesA andB are Hermitian,k ≥ 2 andq ≥ 2, then

xij =

∑
α∈Is,n{j}

rdetj

(
(Bq+1)j.(φ̃i.)

)α

α∑
β∈Jr, m

|Ak+1|ββ
∑

α∈Is, n

|Bq+1|αα
(4.5)

=

∑
β∈Jr,m{i}

cdeti

((
Ak+1

)
.i

(
ψ̃.j

))β

β∑
β∈Jr, m

|Ak+1|ββ
∑

α∈Is, n

|Bq+1|αα
,(4.6)

whereΦ̃ = ΦBq+1 and Ψ̃ = Ak+1Ψ. Here Φ = (φij) and Ψ = (ψij) are determined,
respectively, by

φip =
∑

β∈Jr,m{i}

cdeti

((
Ak+1

)
.i
(c̃.p)

)β

β
,(4.7)

ψgj =
∑

α∈Is,n{j}

rdetj

(
(Bq+1)j.(c̄g.)

)α

α
,(4.8)

wherec̃.p is thepth column ofC̃ = Ak+2C and c̄g. is thegth row ofC̄ = CBq+2.
(iii) If the matrixA is Hermitian withk ≥ 2, andB is arbitrary, then

xij =

∑
β∈Jr,m{i}

cdeti

((
Ak+1

)
.i

(
ψ̃.j

))β

β∑
β∈Jr, m

|Ak+1|ββ
∑

α∈Is, n

|B2q+1 (B2q+1)∗|αα
,(4.9)

whereΨ̃ = Ak+1Ψ andΨ is determined by(4.4).
(iv) If the matrixB is Hermitian andq ≥ 2, andA is arbitrary, then

xij =

∑
α∈Is,n{j}

rdetj

(
(Bq+1)j.(φ̃i.)

)α

α∑
β∈Jr, m

|(A2k+1)∗ A2k+1|ββ
∑

α∈Is, n

|Bq+1|αα
(4.10)

whereΦ̃ = ΦBq+1 andΦ is determined by(4.3).

Proof. (i) According to (3.1) andD-representations (2.9) and (2.12) for the Drazin-star matrix
AD,∗ = (aD,∗

ij ) and the star-Drazin matrixB∗,D = (b∗,Dij ), respectively, it is derived
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(4.11)

xij =
m∑

g=1

n∑
p=1

aD,∗
ig cgpb

∗,D
pj

=
m∑

g=1

n∑
p=1

m∑
l=1

a
(k)
il

∑
β∈Jr, m{l}

cdetl

(((
A2k+1

)∗
A2k+1

)
.l
(ã.g)

)β

β∑
β∈Jr, m

|(A2k+1)∗ A2k+1|ββ
cgp

×

n∑
t=1

∑
α∈Ir, n{t}

rdett

((
B2q+1 (B2q+1)

∗)
t.

(b̄p.)
)α

α
b
(q)
tj∑

α∈Ir, n

|B2q+1 (B2q+1)∗|αα
,

whereã.g is thegth column ofÃ = (A2k+1)∗Ak+1A∗ andb̄p. is thepth row ofB̄ = B∗Bq+1(B2q+1)∗.
To obtain expressive formulas, we make some convolutions of (4.11).
DenoteC̃ = (A2k+1)∗Ak+1A∗C andC̄ = CB∗Bq+1(B2q+1)∗. Then,

m∑
g=1

ã.gcgp = c̃.p,
n∑

p=1

cgpb̄p. = c̄g.

If we denote by

φip =
m∑

l=1

a
(k)
il

∑
β∈Jr, m{l}

cdetl

(((
A2k+1

)∗
A2k+1

)
.l
(c̃.p)

)β

β

the(ip)th element ofΦ ∈ H and putΦ̃ = ΦB̄, then from

n∑
p=1

φip

n∑
t=1

∑
α∈Ir, n{t}

rdett

((
B2q+1

(
B2q+1

)∗)
t.

(b̄p.)
)α

α
b
(q)
tj

=
n∑

t=1

∑
α∈Ir, n{t}

rdett

((
B2q+1

(
B2q+1

)∗)
t.

(φ̃i.)
)α

α
b
(q)
tj

it follows (4.1). If we denote by

ψgj =
n∑

t=1

∑
α∈Ir, n{t}

rdett

((
B2q+1

(
B2q+1

)∗)
t.

(c̄g.)
)α

α
b
(q)
tj

the(gj)th element ofΨ ∈ H and putΨ̃ = ÃΨ, then the equality

m∑
g=1

m∑
l=1

a
(k)
il

∑
β∈Jr, m{l}

cdetl

(((
A2k+1

)∗
A2k+1

)
.l
(ã.g)

)β

β
ψgj

=
m∑

l=1

a
(k)
il

∑
β∈Jr, m{l}

cdetl

(((
A2k+1

)∗
A2k+1

)
.l

(
ψ̃.j

))β

β

gives (4.2)
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(ii) Using D-representations (2.15) and (2.16) for the Drazin-star matrixAD,∗ = (aD,∗
ij ) and the

star-Drazin matrixB∗,D = (b∗,Dij ), respectively, one derives

xij =
m∑

g=1

n∑
p=1

aD,∗
ig cgpb

∗,D
pj =

m∑
g=1

n∑
p=1

∑
β∈Jr,m{i}

cdeti

((
Ak+1

)
.i

(
a

(k+2)
.g

))β

β∑
β∈Jr,m

|Ak+1|ββ
cgp

×

∑
α∈Is,n{j}

rdetj

(
(Bq+1)j.(b

(q+2)
p. )

)α

α∑
α∈Is,n

|Bq+1|αα
.

Let us do the following designations

c̃.p :=
m∑

g=1

a(k+2)
.g cgp, φip =

∑
β∈Jr,m{i}

cdeti

((
Ak+1

)
.i
(c̃.p)

)β

β
,

and construct the matrixΦ = (φip) ∈ Hm×n. Then from putting̃Φ = ΦBq+2, and
n∑

p=1

φip

∑
α∈Is,n{j}

rdetj

(
(Bq+1)j.(b

(q+2)
p. )

)α

α
=

∑
α∈Is,n{j}

rdetj

(
(Bq+1)j.(φ̃i.)

)α

α
,

whereφ̃i. is theith row of Φ̃, it follows (4.5).
By denoting

c̄g. :=
n∑

p=1

cgpb̄p., ψgj =
∑

α∈Is,n{j}

rdetj

(
(Bq+1)j.(c̄g.)

)α

α

as the(gj)th element ofΨ ∈ Hm×n andΨ̃ = Ak+2Ψ, then the equality
m∑

g=1

∑
β∈Jr,m{i}

cdeti

((
Ak+1

)
.i

(
a(k+2)

.g

))β

β
ψgj =

∑
β∈Jr,m{i}

cdeti

((
Ak+1

)
.i

(
ψ̃.j

))β

β

gives (4.6).
The proofs of the cases (iii) and (iv) are similar to above by using correspondingD-representations

of the Drazin-star and star-Drazin inverses.

Remark 1. Since for a Hermitian matrix their corresponding Drazin-star and star-Drazin ma-
trices coincide, then forward the case of both Hermitian matrix could be represented only by
Cramer’s rules(4.5)-(4.6)as the most optimal.

The proofs of the next corollaries evidently follow from Theorem 4.1 by puttingA = Im or
B = In, respectively.

Corollary 9. If A ∈ H(m)(k) andrank(Ak) = r. The unique solutionX = (xij) ∈ Hm×n from
(3.2)can be expressed componentwise as follows.
(i) If the matrixA is arbitrary, then

xij =

m∑
l=1

a
(k)
il

∑
β∈Jr, m{l}

cdetl

(((
A2k+1

)∗
A2k+1

)
.l
(c̃.j)

)β

β∑
β∈Jr, m

|(A2k+1)∗ A2k+1|ββ
,(4.12)
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wherec̃.j is thejth column ofC̃ = (A2k+1)∗Ak+1A∗C.
(ii) If the matrixA is Hermitian andk ≥ 2, then

xij =

∑
β∈Jr,m{i}

cdeti

((
Ak+1

)
.i
(c̃.j)

)β

β∑
β∈Jr, m

|Ak+1|ββ
,(4.13)

wherec̃.j is thejth column ofC̃ = Ak+2C.

Corollary 10. If B ∈ H(n)(q) andrank(Bq) = s. The unique solutionX = (xij) ∈ Hm×n from
(3.4)can be expressed componentwise as follows.
(i) If the matrixB is arbitrary, then

xij =

n∑
t=1

∑
α∈Is, n{t}

rdett

((
B2q+1 (B2q+1)

∗)
t.

(c̄i.)
)α

α
b
(q)
tj∑

α∈Is, n

|B2q+1 (B2q+1)∗|αα
,(4.14)

wherec̄i. is theith row ofC̄ = CB∗Bq+1(B2q+1)∗.
(ii) If the matrixB is Hermitian andq ≥ 2, then

xij =

∑
α∈Is,n{j}

rdetj ((Bq+1)j.(c̄i.))
α

α∑
α∈Is, n

|Bq+1|αα
,(4.15)

wherec̄i. is theith row ofC̄ = CBq+2.

Remark 2. Note that Cramer’s rules for one-side right and left equations with Drazin-star
and star-Drazin matrices of Hermitian matricesA andB, respectively, are optimally described
by Eqs. (4.13)-(4.15). So, we will consider henceforth one-side right and left equations with
Drazin-star and Star-Drazin matrices only for arbitrary matricesA andB.

The case of complex matrices can be proven similarly using theD-representations (2.11) of
the Drazin-star matrixAD,∗ and (2.17) of the star-Drazin matrixB∗,D.

Theorem 4.2.LetC ∈ Cm×n, (A|B) ∈ C(m|n)(k|q) with rank(Ak) = r andrank(Bq) = s. The
unique solutionX = (xij) ∈ Cm×n can be expressed componentwise as follows.
(i) For Eq. (3.1),

xij =

∑
α∈Is,n{j}

∣∣∣(Bq+1)j.(φ̃i.)
∣∣∣α
α∑

β∈Jr, m

|Ak+1|ββ
∑

α∈Is, n

|Bq+1|αα
=

∑
β∈Jr,m{i}

∣∣∣(Ak+1
)

.i

(
ψ̃.j

)∣∣∣β
β∑

β∈Jr, m

|Ak+1|ββ
∑

α∈Is, n

|Bq+1|αα

whereΦ̃ = ΦB∗Bq+1 andΨ̃ = Ak+1A∗Ψ. HereΦ = (φij) andΨ = (ψij) are determined by

φip =
∑

β∈Jr,m{i}

∣∣(Ak+1
)

.i
(c̃.p)

∣∣β
β
,(4.16)

ψgj =
∑

α∈Is,n{j}

∣∣(Bq+1)j.(c̄g.)
∣∣α
α
,(4.17)

wherec̃.p is thepth column ofC̃ = Ak+1A∗C and c̄g. is thegth row ofC̄ = CB∗Bq+1.
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(ii) For Eq. (3.2),

xij =

∑
β∈Jr,m{i}

∣∣(Ak+1
)

.i
(c̃.j)

∣∣β
β∑

β∈Jr, m

|Ak+1|ββ
.(4.18)

(iii) For Eq. (3.4),

xij =

∑
α∈Is,n{j}

|(Bq+1)j.(c̄i.)|αα∑
α∈Is, n

|Bq+1|αα
.(4.19)

Remark 3. Cramer’s rules in the framework of the theory of row-column determinants for Eq.
(3.6)and its one-side consequences have been derived in[13].

Theorem 4.3. Let C ∈ Hm×n, (A|B) ∈ H(m|n)(k|q) with rank(Ak) = r and rank(Bq) = s.
The unique solutionX = (xij) ∈ Hm×n from (3.7)can be expressed componentwise as follows.
(i) If the matricesA andB are arbitrary, then

xij =
c̃ij∑

α∈Ir, m

|A2k+1 (A2k+1)∗|αα
∑

β∈Js, n

|(B2q+1)∗ B2q+1|ββ
,(4.20)

where c̃ij is the (ij)th element of̃C = ΦAkCBqΨ. Here Φ = (φij) and Ψ = (ψij) are
determined, respectively, by

φip =
∑

α∈Ir, m{t}

rdett

((
A2k+1

(
A2k+1

)∗)
t.

(āi.)
)α

α
,(4.21)

ψlj =
∑

β∈Js, n{l}

cdetl

(((
B2q+1

)∗
B2q+1

)
.l

(
b̃.j

))β

β
,(4.22)

whereāi. is theith row ofĀ = A∗Ak+1(A2k+1)∗ andb̃.j is thejth column of̃B = (B2q+1)∗Bq+1B∗.
(ii) If the matrixA is Hermitian withk ≥ 2, andB is arbitrary, then

xij =

∑
β∈Jr,m{i}

cdeti

((
Ak+1

)
.i

(
ψ̃.j

))β

β∑
β∈Jr, m

|Ak+1|ββ
∑

α∈Is, n

|B2q+1 (B2q+1)∗|αα
,(4.23)

whereΨ̃ = Ak+2CBqΨ andΨ is determined by (4.8).

(iii) If the matrixB is Hermitian withq ≥ 2, andA is arbitrary, then

xij =

∑
α∈Is,n{j}

rdetj

(
(Bq+1)j.(φ̃i.)

)α

α∑
β∈Jr, m

|(A2k+1)∗ A2k+1|ββ
∑

α∈Is, n

|Bq+1|αα
,(4.24)

whereΦ̃ = ΦAkCBq+2 andΦ is determined by(4.7).

AJMAA, Vol. 21 (2024), No. 2, Art. 9, 28 pp. AJMAA

https://ajmaa.org


DRAZIN-STAR SOLUTIONS TO QUATERNION MATRIX EQUATIONS 19

Proof. (i) According to (3.7) andD-representations (2.12) and (2.9) for the star-Drazin matrix
A∗,D = (a∗,Dij ) and the Drazin-star matrixBD,∗ = (bD,∗

ij ), respectively, we have

xij =
m∑

g=1

n∑
p=1

a∗,Dig cgpbpj

=
m∑

g=1

n∑
p=1

m∑
t=1

∑
α∈Ir, m{t}

rdett

((
A2k+1

(
A2k+1

)∗)
t.

(āi.)
)α

α
a

(k)
tg∑

α∈Ir, m

|A2k+1 (A2k+1)∗|αα
cgp

×

n∑
l=1

b
(q)
pl

∑
β∈Js, n{l}

cdetl

((
(B2q+1)

∗
B2q+1

)
.l

(
b̃.j

))β

β∑
β∈Js, n

|(B2q+1)∗ B2q+1|ββ
,

whereāi. is theith row ofĀ = A∗Ak+1(A2k+1)∗ andb̃.j is thejth column ofB̃ = (B2q+1)∗Bq+1B∗.
To obtain an expressive formula, we make the following denotations

c̄tl =
m∑

t=1

n∑
l=1

a
(k)
tg cgpb

(q)
pl ,

φip =
∑

α∈Ir, m{t}

rdett

((
A2k+1

(
A2k+1

)∗)
t.

(āi.)
)α

α
,

ψlj =
∑

β∈Js, n{l}

cdetl

(((
B2q+1

)∗
B2q+1

)
.l

(
b̃.j

))β

β
,

and construct the matrices̄C = AkCBq = (c̄tl) ∈ Hm×n, Φ = (φip) ∈ Hm×m, andΨ =

(ψlj) ∈ Hn×n. Then from puttingC̃ = ΦC̄Ψ = ΦAkCBqΨ = (c̃ij) ∈ Hm×n, it follows
(4.20).

(ii) Using D-representations (2.15) and (2.9) for the Drazin-star matrixAD,∗ = (aD,∗
ij ) and the

star-Drazin matrixB∗,D = (b∗,Dij ), respectively, it is derived

xij =
m∑

g=1

n∑
p=1

a∗,Dig cgpbpj =
m∑

g=1

n∑
p=1

∑
β∈Jr,m{i}

cdeti

((
Ak+1

)
.i

(
a

(k+2)
.g

))β

β∑
β∈Jr,m

|Ak+1|ββ
cgp

×

n∑
l=1

b
(q)
pl

∑
β∈Js, n{l}

cdetl

((
(B2q+1)

∗
B2q+1

)
.l

(
b̃.j

))β

β∑
β∈Js, n

|(B2q+1)∗ B2q+1|ββ
,

whereb̃.j is thejth column ofB̃ = (B2q+1)∗Bq+1B∗.

By c̄.l =
m∑

t=1

n∑
l=1

a
(k+2)
.g cgpb

(q)
pl denote thelth column ofC̄ = Ak+2CBq and determine the

matrixΨ = (ψlj) by (4.8). Then (4.23) follows from putting̃Ψ = Ak+2CBqΨ.

(iii) The proof is similar to the proof of the item (ii).

Representations in the next corollaries follows as consequences of Theorem 4.3 forA = Im

or B = In.
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Corollary 11. Let C ∈ Hm×n and arbitrary A ∈ H(m)(k). Then the unique solutionX =
(xij) ∈ Hm×n from (3.9) is represented as

xij =
c̃ij∑

α∈Ir, m

|A2k+1 (A2k+1)∗|αα
,(4.25)

wherec̃ij is the(ij)th element of̃C = ΦAkC andΦ = (φij) is determined by(4.21).

Corollary 12. Let C ∈ Hm×n and arbitrary (B) ∈ H(n)(q). Then the unique solutionX =
(xij) ∈ Hm×n from (3.10)is

xij =
c̃ij∑

β∈Js, n

|(B2q+1)∗ B2q+1|ββ
,(4.26)

wherec̃ij is the(ij)th element of̃C = CBqΨ, andΨ = (ψij) is determined by(4.22).

Theorem 4.4.LetC ∈ Cm×n, (A|B) ∈ C(m|n)(k|q) with rank(Ak) = r andrank(Bq) = s. The
unique solutionX = (xij) ∈ Cm×n can be expressed componentwise as follows.

(i) For equation(3.7),

xij =
c̃ij∑

α∈Ir, m

|Ak+1|αα
∑

β∈Js, n

|Bq+1|ββ

wherec̃ij is the(ij)th element of̃C = ΦCΨ. HereΦ = (φij) andΨ = (ψij) are determined,
respectively, by

φig =
∑

α∈Ir,m{g}

∣∣∣(Ak+1
)

g.
(āi.)

∣∣∣α
α
,(4.27)

ψpj =
∑

β∈Js,n{p}

∣∣∣(Bq+1
)

.p

(
b̃.j

)∣∣∣β
β
,(4.28)

whereāi. is theith row ofĀ = A∗Ak+1 and b̃.j is thejth column ofB̃ = Bq+1B∗.

(ii) For (3.9),

xij =
c
(1)
ij∑

α∈Ir, m

|Ak+1|αα
(4.29)

wherec(1)
ij is the(ij)th element ofC1 = ΦC andΦ = (φij) is determined by(4.27).

(iii) For (3.10),

xij =
c
(2)
ij∑

β∈Js, n

|Bq+1|ββ
(4.30)

wherec(2)
ij is the(ij)th element ofC2 = CΨ andΨ = (ψij) is determined by(4.28).

Theorem 4.5.LetC ∈ Hm×n, (A|B) ∈ H(m|n)(k|q) with rank(Ak) = r andrank(Bq) = s. The
unique solutionX = (xij) ∈ Hm×n from (3.11)can be expressed componentwise as follows.
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(i) If the matricesA andB are arbitrary, then

xij =

m∑
l=1

a
(k)
il

∑
β∈Jr, m{l}

cdetl

(((
A2k+1

)∗
A2k+1

)
.l

(
ψ̃.j

))β

β∑
β∈Jr, m

|(A2k+1)∗ A2k+1|ββ
∑

α∈Is, n

|B2q+1 (B2q+1)∗|αα
,(4.31)

whereψ̃.j is thejth column ofΨ̃ = (A2k+1)∗Ak+1A∗Ψ andΨ = (ψlj) by (4.22).

(ii) If the matrixA is Hermitian withk ≥ 2, andB is arbitrary, then

xij =

∑
β∈Jr,m{i}

cdeti

((
Ak+1

)
.i

(
ψ̃.j

))β

β∑
β∈Jr, m

|Ak+1|ββ
∑

β∈Js, n

|(B2q+1)∗ B2q+1|ββ
,(4.32)

whereΨ̃ = Ak+2CBqΨ andΨ is determined by(4.22).

(iii) If the matrixB is Hermitian withq ≥ 2, andA is arbitrary, then

xij =

∑
α∈Is,n{j}

rdetj

(
(Bq+1)j.(φ̃.j)

)α

α∑
β∈Jr, m

|(A2k+1)∗ A2k+1|ββ
∑

α∈Is, n

|Bq+1|αα
,(4.33)

whereφ̃.j is thejth column ofΦ̃ = ΦCBq+2 andΦ is determined by(4.3).

Proof. According to (3.11) andD-representations (2.9) for the Drazin-star matricesAD,∗ =
(aD,∗

ij ) andBD,∗ = (bD,∗
ij ), it follows

xij =
m∑

g=1

n∑
p=1

aD,∗
ig cgpb

D,∗
pj =

m∑
g=1

n∑
p=1

m∑
t=1

a
(k)
it

∑
β∈Jr, m{t}

cdett

(((
A2k+1

)∗
A2k+1

)
.t

(ã.g)
)β

β∑
β∈Jr, m

|(A2k+1)∗ A2k+1|ββ
cgp

×

n∑
l=1

b
(q)
pl

∑
β∈Js, n{l}

cdetl

((
(B2q+1)

∗
B2q+1

)
.l

(
b̃.j

))β

β∑
β∈Js, n

|(B2q+1)∗ B2q+1|ββ
,

where ã.g is the gth column ofÃ = (A2k+1)∗Ak+1A∗ and b̃.j is the jth column ofB̃ =
(B2q+1)∗Bq+1B∗.

Construct the matrixΨ = (ψlj) defined by (4.22) and̃Ψ = ÃCBqΨ = (A2k+1)∗Ak+1A∗CBqΨ.
Then, from

m∑
g=1

n∑
p=1

n∑
l=1

ã.gcgpb
(q)
pl ψlj = ψ̃.j,

it follows (4.31).

(ii) Using D-representations (2.15) and (2.9) for the Drazin-star matricesAD,∗ = (aD,∗
ij ) and

BD,∗ = (bD,∗
ij ), we have
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xij =
m∑

g=1

n∑
p=1

a∗,Dig cgpb
D,∗
pj =

m∑
g=1

n∑
p=1

∑
β∈Jr,m{i}

cdeti

((
Ak+1

)
.i

(
a

(k+2)
.g

))β

β∑
β∈Jr,m

|Ak+1|ββ
cgp

×

n∑
l=1

b
(q)
pl

∑
β∈Js, n{l}

cdetl

((
(B2q+1)

∗
B2q+1

)
.l

(
b̃.j

))β

β∑
β∈Js, n

|(B2q+1)∗ B2q+1|ββ
,

whereb̃.j is thejth column ofB̃ = (B2q+1)∗Bq+1B∗.

By c̄.l =
m∑

t=1

n∑
l=1

a
(k+2)
.g cgpb

(q)
pl denote thelth column ofC̄ = Ak+2CBq and determine the

matrixΨ = (ψlj) defined in (4.22). Then from putting̃Ψ = Ak+2CBqΨ, it follows (4.32).

(iii) Using D-representations (2.9) and (2.16) for the Drazin-star matricesAD,∗ = (aD,∗
ij ) and

BD,∗ = (bD,∗
ij ), it is derived

xij =
m∑

g=1

n∑
p=1

a∗,Dig cgpb
D,∗
pj =

m∑
g=1

n∑
p=1

m∑
t=1

a
(k)
it

∑
β∈Jr, m{t}

cdett

(((
A2k+1

)∗
A2k+1

)
.t

(ã.g)
)β

β∑
β∈Jr, m

|(A2k+1)∗ A2k+1|ββ
cgp

×

∑
α∈Is,n{j}

rdetj

(
(Bq+1)j.(b

(q+2)
p. )

)α

α∑
α∈Is,n

|Bq+1|αα
,

whereã.g is thegth column ofÃ = (A2k+1)∗Ak+1A∗.

Determine the matrixΦ = (φig) by (4.3). Then from the denotatioñφ.j =
m∑

g=1

n∑
l=1

φigcgpa
(k+2)
p.

by thejth column ofΦ̃ = ΦCBq+2 , it follows (4.33)

Corollary 13. Let C ∈ Hm×n and arbitrary A ∈ H(m)(k). Then the unique solutionsX =
(xij) ∈ Hm×n from (3.17)and (3.19)are represented by(4.12)and (4.25), respectively.

Corollary 14. Let C ∈ Hm×n and arbitrary B ∈ H(n)(q). Then the unique solutionsX =
(xij) ∈ Hm×n from (3.18)and (3.20)are represented by(4.26)and (4.14), respectively.

Theorem 4.6.LetC ∈ Hm×n, (A|B) ∈ H(m|n)(k|q) with rank(Ak) = r andrank(Bq) = s. The
unique solutionX = (xij) ∈ Hm×n from (3.14)can be expressed componentwise as follows.

(i) If the matricesA andB are arbitrary, then

xij =

n∑
l=1

∑
α∈Is, n{l}

rdetl

((
B2q+1 (B2q+1)

∗)
l.
(φ̃i.)

)α

α
b
(q)
lj∑

α∈Ir, m

|A2k+1 (A2k+1)∗|αα
∑

α∈Is, n

|B2q+1 (B2q+1)∗|αα
,(4.34)

whereφ̃i. is theith row ofΦ̃ = ΦAkCB∗Bq+1(B2q+1)∗ andΦ = (φit) by (4.21).

AJMAA, Vol. 21 (2024), No. 2, Art. 9, 28 pp. AJMAA

https://ajmaa.org


DRAZIN-STAR SOLUTIONS TO QUATERNION MATRIX EQUATIONS 23

(ii) If the matrixA is Hermitian withk ≥ 2 andB is arbitrary, then

xij =

∑
β∈Jr,m{i}

cdeti

((
Ak+1

)
.i

(
ψ̃.j

))β

β∑
β∈Jr, m

|Ak+1|ββ
∑

β∈Js, n

|(B2q+1)∗ B2q+1|ββ
,(4.35)

whereΨ̃ = Ak+2CΨ andΨ is determined by(4.4).

(iii) If the matrixB is Hermitian withq ≥ 2 andA is arbitrary, then

xij =

∑
α∈Is,n{j}

rdetj

(
(Bq+1)j.(φ̃.j)

)α

α∑
β∈Jr, m

|(A2k+1)∗ A2k+1|ββ
∑

α∈Is, n

|Bq+1|αα
(4.36)

whereφ̃.j is thejth column ofΦ̃ = ΦCBq+2 andΦ is determined by(4.3).

Proof. According to (3.11) andD-representations (2.12) for the star-Drazin matricesA∗,D =
(a∗,Dij ) andB∗,D = (b∗,Dij ), we have

xij =
m∑

g=1

n∑
p=1

a∗,Dig cgpb
∗,D
pj =

m∑
g=1

n∑
p=1

m∑
t=1

∑
α∈Ir, m{t}

rdett

((
A2k+1

(
A2k+1

)∗)
t.

(āi.)
)α

α
a

(k)
tg∑

α∈Ir, m

|A2k+1 (A2k+1)∗|αα
cgp

×

n∑
l=1

∑
α∈Is, n{l}

rdetl

((
B2q+1 (B2q+1)

∗)
l.
(b̄p.)

)α

α
b
(q)
lj∑

α∈Is, n

|B2q+1 (B2q+1)∗|αα
,

whereāi. is theith row ofĀ = A∗Ak+1(A2k+1)∗ andb̄p. is thepth row ofB̄ = B∗Bq+1(B2q+1)∗.
Construct the matrixΦ = (φit) by (4.21) andΦ̃ = ΦAkCB̄ = ΦAkCB∗Bq+1(B2q+1)∗.

Then, from
m∑

g=1

n∑
p=1

n∑
l=1

φita
(k)
tg cgpb̄p. = φ̃i.,

it follows (4.34).

(ii) Using D-representations (2.15) and (2.12) for the star-Drazin matricesA∗,D = (a∗,Dij ) and

B∗,D = (b∗,Dij ), we derive

xij =
m∑

g=1

n∑
p=1

a∗,Dig cgpb
∗,D
pj =

m∑
g=1

n∑
p=1

∑
β∈Jr,m{i}

cdeti

((
Ak+1

)
.i

(
a

(k+2)
.g

))β

β∑
β∈Jr,m

|Ak+1|ββ
cgp

×

n∑
l=1

∑
α∈Is, n{l}

rdetl

((
B2q+1 (B2q+1)

∗)
l.
(b̄p.)

)α

α
b
(q)
lj∑

α∈Is, n

|B2q+1 (B2q+1)∗|αα
,

whereb̄p. is thepth row of B̄ = B∗Bq+1(B2q+1)∗. Determine the matrixΨ = (ψlj) by (4.4).

Then from puttingΨ̃ = Ak+2CΨ, it follows (4.35)
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(iii) Using D-representations (2.12) and (2.16) for the star-Drazin matricesA∗,D = (a∗,Dij ) and

B∗,D = (b∗,Dij ), we have

xij =
m∑

g=1

n∑
p=1

a∗,Dig cgpb
∗,D
pj =

m∑
g=1

n∑
p=1

m∑
t=1

∑
α∈Ir, m{t}

rdett

((
A2k+1

(
A2k+1

)∗)
t.

(āi.)
)α

α
a

(k)
tg∑

α∈Ir, n

|A2k+1 (A2k+1)∗|αα
cgp

×

∑
α∈Is,n{j}

rdetj

(
(Bq+1)j.(b

(q+2)
p. )

)α

α∑
α∈Is,n

|Bq+1|αα
,

whereāi. is theith row of Ā = A∗Ak+1(A2k+1)∗. Determine the matrixΦ = (φig) by (4.21).

Then (4.36) follows from the denotatioñφi. =
m∑

t=1

m∑
g=1

n∑
l=1

φita
(k)
tg cgpb

(q+2)
p. by the ith row of

Φ̃ = ΦAkCBq+2.

Theorem 4.7.LetC ∈ Cm×n, (A|B) ∈ C(m|n)(k|q) with rank(Ak) = r, andrank(Bq) = s. The
unique solutionX = (xij) ∈ Cm×n can be expressed componentwise as follows.

(i) For (3.11),

xij =

∑
β∈Jr,m{i}

∣∣∣(Ak+1
)

.i

(
ψ̃.j

)∣∣∣β
β∑

β∈Jr, m

|Ak+1|ββ
∑

β∈Js, n

|Bq+1|ββ
,

whereΨ̃ = A∗Ak+1CΨ andΨ is determined by(4.28).

(ii) For (3.14),

xij =

∑
α∈Is,n{j}

∣∣∣(Bq+1)j.(φ̃.j)
∣∣∣α
α∑

α∈Ir, m

|Ak+1|αα
∑

α∈Is, n

|Bq+1|αα
,

whereφ̃.j is thejth column of̃Φ = ΦCBq+1B∗ andΦ is determined by(4.27).

Corollary 15. LetC ∈ Cm×n andA ∈ C(m)(k). Then the unique solutionsX = (xij) ∈ Cm×n

from (3.17)and (3.19)are represented by(4.18)and (4.29), respectively.

Corollary 16. LetC ∈ Cm×n andB ∈ C(n)(q). Then the unique solutionsX = (xij) ∈ Cm×n

from (3.18)and (3.20)are represented by(4.30)and (4.19), respectively.

5. AN ILLUSTRATIVE EXAMPLE

To explain derived results and representations, subsequent examples are conducted.
Let’s derive Cramer’s rule for the solution (3.1) to Eq. (1.3) with input matrices

A =


−k −j 0 i

−1− j i + k j 1 + j
k 0 i 0

−i + k 1− j i i− k

 ,B =

 4k 4i −5i
−2j 2k 3
i −1 k

 , C =


−i 0 −1
0 −k 0
k 0 j
0 −j 0

 .(5.1)
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One can find

A3(A3)∗ =


3 6i + 4k −4− 3j −4− 6j

−6i− 4k 19 4i + 13k 19k
−4 + 3j −4i− 13k 10 13 + 4j
−4 + 6j −19k 13− 4j 19

 ,
(
B3

)∗
B3 =

 11 11i 11j
−11i 11 −11k
−11j 11k 11

 .
Sincerank(A) = rank(A∗A) = 3, rank(A3) = rank(A2) = 2, rank(B) = rank(B∗B) = 2,
rank(B3) = rank(B2) = 1, it follows k = Ind(A) = 2, q = Ind(B) = 2.

Based on Theorem 4.1 in the case (4.1), the Cramer’s rule to the solution (3.1) is expressed
in the subsequent way.

1. Compute the matrices̃C = (A5)∗A3A∗C, Φ by (4.3), andΦ̃ = ΦB∗B3(B5)∗,

C̃ =


−29− 72j 111i + 97k −29i + 72k
35i + 55k 76 + 98j −35 + 55j
17 + 6j −i− 35k 17i− 6k
−55 + 35j −98i + 76k −55i− 35k

 , Φ = 25


1 + 3j −2i− 4k i− 3k
−2i− k −3 + j 2− j

2 + j 5i + k 2i− k
−1 + 2j i + 3k −i− 2k

 ,

Φ̃ =25


171 + 945i + 513j− 135k 315− 45i + 45j + 171k 171− 45i− 57j− 315k
−342i− 135j− 171k −114 + 57j− 45k −45− 57i + 114k
342 + 171j + 945k −114i− 315j + 57k 57 + 315i− 114j
−171− 135i + 342j −45 + 57i + 114k 114 + 57j + 45k

 .

2. Taking into account∑
β∈J2, 4

∣∣(A5
)∗

A5
∣∣β
β

= 25,
∑

α∈I1, 3

∣∣B5
(
B5

)∗∣∣α
α

= tr
(
B5

(
B5

)∗)
= 33,

from (4.1) it follows that

X =


−19− 105i− 57j + 15k 105− 19i + 15j + 57k 57− 15i− 19j− 105k

38i + 15j + 19k −38 + 19j− 15k −15− 19i + 38k
−38− 19j− 105k −38i− 105j + 19k 19 + 105i− 38j

19 + 15i− 38j −15 + 19i + 38k 38 + 19j + 15k


is the solution to the Q-RME (1.3).

Similarly:

X =


13− 39i + 13j− 65k −21− 7i + 35j + 7k 3− 15i + 3j + 9k
−52− 13j− 13k 28i + 7j− 7k −3− 3i + 12j
−52i + 13j− 13k −28 + 7j + 7k 3− 3i + 12k
13 + 13i− 52k 7− 7i + 28j −12i− 3j− 3k


is the solution to the Q-RMEs (1.4)-(3.8);

X =


13− 65i + 39j− 65k −35− 7i + 35j + 21k 9− 15i− 3j + 15k
−52− 26i− 117j− 13k −14 + 28i + 7j− 63k −27− 3i + 12j + 6k
26− 52i + 13j− 13k −28− 14i + 7j + 7k 3− 3i− 6j + 12k
−13− 117i + 26j + 52k −63 + 7i− 28j + 14k 6 + 12i + 3j + 27k


is the solution to the Q-RMEs (3.12)-(3.13);
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X =


−19− 15i− 19j + 15k 15− 19i + 15j + 19k 19− 15i− 19j− 15k

15j + 19k 19j− 15k −15− 19i
−19j + 15k 15j + 19k 19− 15i
−19− 15i 15− 19i −19j− 15k


is the solution to the Q-RMEs (3.15)-(3.16).

6. CONCLUSION

Our principal outcomes are related with solving the quaternion restricted two-sided matrix
equationAXB = C. The study encompasses all possible two-sided quaternion matrix equa-
tions with restrictions on matrix spaces, such as ranges and kernels, wherein their solutions are
uniquely determined by the Drazin-star and star-Drazin matrices. The obtained determinantal
representations of these matrices are then utilized to solve the equations using Cramer’s rules
with noncommutative row-column determinants in the case of quaternion matrix equations. A
numerical example is provided to illustrate the obtained results.
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[27] D. MOSIĆ, D. ZHANG, and J. HU, Wg-Drazin-star operator and its dual,Math. Slovaca,
73(1)(2023), pp. 159–176.

[28] F. PABLOS ROMO, Drazin-star and star-Drazin inverses of bounded finite potent operators on
Hilbert spaces,Results Math., 77 (2022), Article 4.

[29] K.M. PRASAD, K.P.S.B. RAO, and R.B. BAPAT, Generalized inverses over integral domains. II.
Group inverses and Drazin inverses,Linear Algebra Appl., 146(1991), pp. 31–47.

AJMAA, Vol. 21 (2024), No. 2, Art. 9, 28 pp. AJMAA

https://ajmaa.org


28 I.I. K YRCHEI AND D. MOSIĆ AND P. STANIMIROVI Ć
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