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2 A. BOUDELIOU

1. I NTRODUCTION

The integral inequalities that provide explicit bounds on unknown functions have become ma-
jor tools in the study of qualitative properties of solutions of differential and integral equations.
The generalization of Gronwall-Bellman inequality has earned much consideration of many
mathematicians and scientists (see [1],[3]-[5],[7],[10]-[12]). Bellman [2] proved and made use
of the following variant of the Gronwall inequality given in [6] to study the asymptotic behavior
of the solutions of linear differential-difference equations.

(1.1) u(t) ≤ a(t) +

∫ t

a

f(s)u(s)ds, t ∈ [a, b] ,

wherea(t) is a continuous, positive, and nondecreasing function defined on[a, b], then

u(t) ≤ a(t) exp

(∫ t

a

f(s)ds

)
, t ∈ [a, b] .

Pachpatte in [10] gave a generalization of Gronwall-Bellman inequality as follows

(1.2) u(t) ≤ u0 +

∫ t

0

f(s)u(s)ds+

∫ t

0

g(s)

u(s) +

s∫
0

h(τ)u(τ)dτ

 ds, t ∈ R+,

whereu, f, g, andh are nonnegative continuous functions defined onR+, andu0 be a nonneg-
ative constant, then

u(t) ≤ u0

[
exp

(∫ t

0

f(s)ds

)
+

∫ t

0

g(s) exp

 s∫
0

[f(τ) + g(τ) + h(τ)] dτ

 exp

 t∫
s

f(τ)dτ

 ds

 .
Very recently, some integral inequalities with power have been investigated.

Li and Wang [8] studied the power integral inequality

(1.3) u(t) ≤ a(t) +

∫ α(t)

t0

f(s)

[
um(s) +

∫ s

0

g(τ)un(τ)dτ

]p

ds,

whereu, a, f, g ∈ C(R+, R+), andα(t) be a continuous, differentiable, and increasing function
on [t0,∞] with α(t) ≤ t, α(t0) = t0. p,m, n ∈ (0, 1] are positive constants, then

u(t) ≤ a(t) + A(t) exp

(∫ α(t)

t0

pmf(s)ds+

∫ α(t)

t0

pf(s)

(∫ s

t0

ng(τ)dτ

)
ds

)
, t ∈ R+.

Tian and Fan [13] discussed the following integral inequalities

(1.4) u(t) ≤ a(t) +

∫ α(t)

t0

b(s)

[
um(s) +

∫ s

0

c(τ)un(τ)dτ

]p

ds,

where0 < m,n ≤ 1, p > 1.

(1.5) uq(t) ≤ a(t) +

∫ α(t)

t0

b(s)

[
um(s) +

∫ s

0

c(τ)un(τ)dτ

]p

ds,

whereq ≥ m > 0, q ≥ n > 0, p > 0.
Motivated by the results (1.3),(1.4),(1.5), our main aim is to establish some interesting non-

linear Gronwall-Belleman-Pachpatte type integral inequalities with power. Many authors gave
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NONLINEAR RETARDED INTEGRAL INEQUALITIES WITH POWER 3

generalizations of integral inequalities with power in the casep ∈ (0, 1]. In this paper, we es-
tablish some integral inequalities with power in more general cases wherep > 0 which give
more general nonlinearities. Furthermore, we show that some results of [2, 8, 9, 10, 13] can
be deduced from our results in some special cases. Finally, we give two examples to study
the boundedness of the solution of retarded integral equations of Volterra type and initial value
problem of nonlinear IDE with delay.

2. M AIN RESULTS

Let R denotes the set of real number andR+ = [0,∞) is the given subset ofR, C(A,B) and
C1(A,B) denote the classes of continuous functions and continuously differentiable functions
on setA with a range in the setB respectively. The following lemmas are very useful to prove
the main result of our paper.

Lemma 2.1. ([8]) Leta ≥ 0, p ≥ q ≥ 0 andp 6= 0. Then

a
q
p ≤ q

p
a+

p− q

p
.

Lemma 2.2. ([13]) Assume thatu, v ≥ 0 andp > 0. Then

(u+ v)p ≤ Kp (up + vp) ,

whereKp = 1, 0 ≤ p ≤ 1, andKp = 2p−1, p > 1.

Theorem 2.3. Let u, a, b, c, f, g ∈ C(R+,R+), and letα ∈ C1(R+,R+) be a nondecreasing
function withα(t) ≤ t, α(0) = 0. p > 0 is a constant. Ifu(t) satisfies

(2.1) u(t) ≤ a(t) +

α(t)∫
0

f(s)u(s)ds+

α(t)∫
0

g(s) [b(s)u(s) + c(s)]p ds,

then

(2.2) u(t) ≤



a(t) + k(t) +

α(t)∫
0

h(s)k(s) exp

 α(t)∫
s

h(τ)dτ

 ds, 0 < p ≤ 1

a(t) +

j1−p(t) exp

(1− p)

α(t)∫
0

f(s)ds

+

(1− p)2p−1

α(t)∫
0

g(s)bp(s) exp

(1− p)

α(t)∫
s

f(τ)dτ

 ds


1

1−p

, p > 1,

with
(2.3)

j1−p(t) exp

(1− p)

α(t)∫
0

f(s)ds

 > (p− 1)2p−1

α(t)∫
0

g(s)bp(s) exp

(1− p)

α(t)∫
s

f(τ)dτ

 ds,

where

(2.4) k(t) =

α(t)∫
0

f(s)a(s)ds+

α(t)∫
0

g(s)
[
p
(
a(s)b(s) + c(s)

)
+ 1− p

]
ds,
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4 A. BOUDELIOU

(2.5) h(s) = f(s) + p g(s)b(s),

(2.6) j(t) =

α(t)∫
0

f(s)a(s)ds+ 2p−1

α(t)∫
0

g(s)
[
a(s)b(s) + c(s)

]p
ds.

Proof. Denote

z(t) =

α(t)∫
0

f(s)u(s)ds+

α(t)∫
0

g(s)
[
b(s)u(s) + c(s)

]p
ds,

thenz(0) = 0, andz(t) is nondecreasing function, and

(2.7) u(t) ≤ a(t) + z(t).

Therefore, using (2.7), we have

z(t) ≤
α(t)∫
0

f(s)
(
a(s) + z(s)

)
ds+

α(t)∫
0

g(s)
[
b(s) (a(s) + z(s)) + c(s)

]p
ds

≤
α(t)∫
0

f(s)a(s)ds+

α(t)∫
0

f(s)z(s)ds+

α(t)∫
0

g(s)
[
b(s)z(s) + a(s)b(s) + c(s)

]p
ds.

(2.8)

Case 1:0 < p ≤ 1. Applying Lemma 2.1 to (2.8), we get

z(t) ≤
α(t)∫
0

f(s)a(s)ds+

α(t)∫
0

f(s)z(s)ds+

α(t)∫
0

g(s)
[
p
(
b(s)z(s) + a(s)b(s) + c(s)

)
+ 1− p

]
ds

≤ k(t) +

α(t)∫
0

h(s)z(s)ds,

wherek(t), h(t) are defined by (2.4), (2.5) respectively. Define

v(t) =

α(t)∫
0

h(s)z(s)ds,

thenv(0) = 0, v(t) is nondecreasing and

(2.9) z(t) ≤ k(t) + v(t).

Differentiatingv(t), and using (2.9), we get

v′(t) = α′(t)h (α(t)) z(α(t))

≤ α′(t)h (α(t)) (k(α(t)) + v(α(t)))

≤ α′(t)h (α(t)) (k(α(t)) + v(t)) ,

or

(2.10) v′(t)− α′(t)h (α(t)) v(t) ≤ α′(t)h (α(t)) k(α(t)).
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Multiplying both sides of (2.10) byexp

(
−

α(t)∫
0

h(s)ds

)
, then it will be restated as follows

d

dt

v(t) exp

− α(t)∫
0

h(s)ds

 ≤ α′(t)h (α(t)) k(α(t)) exp

− α(t)∫
0

h(s)ds

 .

Integrating the above inequality from0 to t, we get

(2.11) v(t) ≤
α(t)∫
0

h(s)k(s) exp

 α(t)∫
s

h(τ)dτ

 ds.

From (2.11), (2.9) and (2.7) we obtain the estimate ofu(t) given in (2.2).
Case 2:p > 1. Applying Lemma 2.2 to (2.8), we have

z(t) ≤
α(t)∫
0

f(s)a(s)ds+

α(t)∫
0

f(s)z(s)ds

+

α(t)∫
0

g(s)2p−1
[(
b(s)z(s)

)p
+
(
a(s)b(s) + c(s)

)p]
ds

≤ j(t) +

α(t)∫
0

f(s)z(s)ds+ 2p−1

α(t)∫
0

g(s)bp(s)zp(s)ds,

wherej(t) is defined by (2.6) which is nondecreasing function, then for fixedT , we have

z(t) ≤ j(T ) +

α(t)∫
0

f(s)z(s)ds+ 2p−1

α(t)∫
0

g(s)bp(s)zp(s)ds,∀t ∈ [0, T ].

Define

ϕ(t) = j(T ) +

α(t)∫
0

f(s)z(s)ds+ 2p−1

α(t)∫
0

g(s)bp(s)zp(s)ds,

thenϕ(0) = j(T ), and

(2.12) z(t) ≤ ϕ(t), z (α(t)) ≤ z(t) ≤ ϕ(t).

Differentiatingϕ(t) and using (2.12), we get

ϕ′(t) ≤ α′(t)f (α(t)) z (α(t)) + 2p−1α′(t)g (α(t)) bp(α(t))zp(α(t))

≤ α′(t)f (α(t))ϕ(t) + 2p−1α′(t)g (α(t)) bp(α(t))ϕp(t).

Dividing both sides of the above inequality byϕp(t), we get

(2.13) ϕ−p(t)ϕ′(t) ≤ α′(t)f (α(t))ϕ1−p(t) + 2p−1α′(t)g (α(t)) bp(α(t)).

Let ψ(t) = ϕ1−p(t), thenψ(0) = j1−p(T ), andϕ−p(t)ϕ′(t) = 1
1−p

ψ′(t). (2.13) will be restated
as follows

(2.14) ψ′(t)− (1− p)α′(t)f (α(t))ψ(t) ≥ (1− p)2p−1α′(t)g (α(t)) bp(α(t)).

AJMAA, Vol. 21 (2024), No. 1, Art. 10, 15 pp. AJMAA

https://ajmaa.org


6 A. BOUDELIOU

Multiplying (2.14) byexp

(
−(1− p)

α(t)∫
0

f(s)ds

)
, then we have

d

dt

ψ(t) exp

−(1− p)

α(t)∫
0

f(s)ds

 ≥ (1− p)2p−1α′(t)g (α(t)) bp(α(t))×

exp

−(1− p)

α(t)∫
0

f(s)ds


Integrating the above inequality from0 to t, we have

ψ(t) ≥ j1−p(T ) exp

(1− p)

α(t)∫
0

f(s)ds

+

(1− p)2p−1

α(t)∫
0

g (s) bp(s) exp

(1− p)

α(t)∫
s

f(τ)dτ

 ds,

from the hypothesis (2.3) andψ(t) = ϕ1−p(t), we get

ϕ(t) ≤

j1−p(T ) exp

(1− p)

α(t)∫
0

f(s)ds

+

(1− p)2p−1

α(t)∫
0

g (s) bp(s) exp

(1− p)

α(t)∫
s

f(τ)dτ

 ds


1

1−p

.

SinceT is chosen arbitrarily, then we have

ϕ(t) ≤

j1−p(t) exp

(1− p)

α(t)∫
0

f(s)ds

+

(1− p)2p−1

α(t)∫
0

g (s) bp(s) exp

(1− p)

α(t)∫
s

f(τ)dτ

 ds


1

1−p

.

(2.15)

From (2.15), (2.12) and (2.7), we obtain the estimate ofu(t) given in (2.2).

Remark 2.1. We deduce the following inequalities by changing the given assumptions in The-
orem 2.3:
1. If α(t) = t, g(s) = 0, anda(t) be a nondecreasing function, then (2.1) in Theorem 2.3
reduces to the well known Gronwall-Bellman inequality (1.1).
2. If g(s) = 0, Theorem 2.3 reduces to Lemma 2 in [8].
3. If f(t) = 0, Theorem 2.3 reduces to Lemma 2.3 in [13].

Theorem 2.4. Let u, a, f, g, h ∈ C(R+,R+), and letα ∈ C1(R+,R+) be a nondecreasing
function withα(t) ≤ t, α(0) = 0. Suppose thatm,n ∈ (0, 1], p > 0 are constants. Ifu(t)
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satisfies

(2.16) u(t) ≤ a(t) +

α(t)∫
0

f(s)u(s)ds+

α(t)∫
0

g(s)

um(s) +

s∫
0

h(τ)un(τ)dτ

p

ds,

then

(2.17) u(t) ≤



a(t) + a1(t) + k1(t) +

α(t)∫
0

h(s)k1(s) exp

 α(t)∫
s

h(τ)dτ

 ds, 0 < p ≤ 1

a(t) + a1(t) +

j1−p
1 (t) exp

(1− p)

α(t)∫
0

f(s)ds

+

(1− p)2p−1

α(t)∫
0

g(s)bp1(s) exp

(1− p)

α(t)∫
s

f(τ)dτ

 ds


1

1−p

, p > 1,

with
(2.18)

j1−p
1 (t) exp

(1− p)

α(t)∫
0

f(s)ds

 > (p− 1)2p−1

α(t)∫
0

g(s)bp1(s) exp

(1− p)

α(t)∫
s

f(τ)dτ

 ds,

where

(2.19) k1(t) =

α(t)∫
0

f(s)a1(s)ds+

α(t)∫
0

g(s) [p (a1(s)b1(s) + c1(s)) + 1− p] ds,

(2.20) j1(t) =

α(t)∫
0

f(s)a1(s)ds+ 2p−1

α(t)∫
0

g(s) (a1(s)b1(s) + c1(s))
p ds,

(2.21) a1(t) =

α(t)∫
0

f(s)a(s)ds, b1(s) = m+ n

s∫
0

h(τ)dτ ,

(2.22) c1(s) = ma(s) + 1−m+

s∫
0

h(τ) [na(τ) + 1− n] dτ .

Proof. Define a nonnegative and nondecreasing functionz(t) by

z(t) =

α(t)∫
0

f(s)u(s)ds+

α(t)∫
0

g(s)

um(s) +

s∫
0

h(τ)un(τ)dτ

p

ds,

then,z(0) = 0 and

(2.23) u(t) ≤ a(t) + z(t),
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using (2.23), we have

z(t) ≤
α(t)∫
0

f(s) (a(s) + z(s)) ds+

α(t)∫
0

g(s)

(a(s) + z(s))m +

s∫
0

h(τ) (a(τ) + z(τ))n dτ

p

ds.

By Lemma 2.1, we have

z(t) ≤
α(t)∫
0

f(s)
(
a(s) + z(s)

)
ds+

α(t)∫
0

g(s)
[
m
(
a(s) + z(s)

)

+1−m+

s∫
0

h(τ)
[
n
(
a(τ) + z(τ)

)
+ 1− n

]
dτ

p

ds,

then above inequality can restated as follows

(2.24) z(t) ≤ a1(t) +

α(t)∫
0

f(s)z(s)ds+

α(t)∫
0

g(s) [b1(s)z(s) + c1(s)]
p ds,

wherea1(t), b1(s) andc1(s) are defined in (2.21) and (2.22) respectively. Now applying Theo-
rem 2.3 to (2.24), we get

(2.25) z(t) ≤



a1(t) + k1(t) +

α(t)∫
0

h(s)k1(s) exp

 α(t)∫
s

h(τ)dτ

 ds, 0 < p ≤ 1

a1(t) +

j1−p
1 (t) exp

(1− p)

α(t)∫
0

f(s)ds

+

(1− p)2p−1

α(t)∫
0

g(s)bp1(s) exp

(1− p)

α(t)∫
s

f(τ)dτ

 ds


1

1−p

, p > 1,

wherek1(t) andj1(t) are defined by (2.19) and (2.20) respectively. Then, from (2.25) and (2.23)
yields the estimate ofu(t) in (2.17). This completes the proof.

Remark 2.2. Theorem 2.4 generalizes some famous results obtained in [9, 13] as follows:
1. If f(t) = 0, andp > 1, Theorem 2.4 reduces to Theorem 2.1 in [13].
2. If f(t) = 0, and0 < p ≤ 1, Theorem 2.4 reduces to Theorem 2.1 in [9].

Theorem 2.5. Let u, a, f, g, h ∈ C(R+,R+), and letα ∈ C1(R+,R+) be a nondecreasing
function withα(t) ≤ t, α(0) = 0. Suppose thatm,n, q, r, p are constants satisfyingr ≥ q > 0,
r ≥ m > 0, r ≥ n > 0, p > 0. If u(t) satisfies

(2.26) ur(t) ≤ a(t) +

α(t)∫
0

f(s)uq(s)ds+

α(t)∫
0

g(s)

um(s) +

s∫
0

h(τ)un(τ)dτ

p

ds,

AJMAA, Vol. 21 (2024), No. 1, Art. 10, 15 pp. AJMAA

https://ajmaa.org


NONLINEAR RETARDED INTEGRAL INEQUALITIES WITH POWER 9

and
(2.27)

j1−p
2 (t) exp

(1− p)

α(t)∫
0

f2(s)ds

 > (p−1)2p−1

α(t)∫
0

g2(s)b
p
2(s) exp

(1− p)

α(t)∫
s

f2(τ)dτ

 ds,

then
(2.28)

u(t) ≤



a(t) + a2(t) + k2(t) +

α(t)∫
0

h2(s)k2(s) exp

 α(t)∫
s

h2(τ)dτ

 ds


1
r

, 0 < p ≤ 1

a(t) + a2(t) +

j1−p
2 (t) exp

(1− p)

α(t)∫
0

f2(s)ds

+

(1− p)2p−1

α(t)∫
0

g(s)bp2(s) exp

(1− p)

α(t)∫
s

f2(τ)dτ

 ds


1

1−p


1
r

, p > 1

where

(2.29) j2(t) =

α(t)∫
0

f2(s)a2(s)ds+ 2p−1

α(t)∫
0

g(s) (a2(s)b2(s) + c2(s))
p ds,

(2.30)



f2(t) =
q

r
f(t), a2(t) =

α(t)∫
0

f(s)

(
q

r
a(s) +

r − q

r

)
ds,

b2(t) =
m

r
+
n

r

t∫
0

h(s)ds,

c2(t) =
m

r
a(t) +

r −m

r
+

t∫
0

h(τ)

(
n

r
a(τ) +

r − n

r

)
dτ ,

(2.31) k2(t) =

α(t)∫
0

f2(s)a2(s)ds+

α(t)∫
0

g(s) [p (a2(s)b2(s) + c2(s)) + (1− p)] ds,

(2.32) h2(t) = f2(t) + p.g(t)b2(t).

Proof. Define

z(t) =

α(t)∫
0

f(s)uq(s)ds+

α(t)∫
0

g(s)

um(s) +

s∫
0

h(τ)un(τ)dτ

p

ds,

then,z(0) = 0, z(t) is nondecreasing function and

(2.33) u(t) ≤ (a(t) + z(t))
1
r .
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Using (2.33) and applying Lemma 2.1, we get

z(t) ≤
α(t)∫
0

f(s)
(
a(s) + z(s)

) q
r ds+

α(t)∫
0

g(s)

(a(s) + z(s)
)m

r +

s∫
0

h(τ)
(
a(τ) + z(τ)

)n
r dτ

p

ds

≤
α(t)∫
0

f(s)

[
q

r

(
a(s) + z(s)

)
+
r − q

r

]
ds+

α(t)∫
0

g(s)

m
r

(
a(s) + z(s)

)
+
r −m

r
+

s∫
0

h(τ)

[
n

r

(
a(τ) + z(τ)

)
+
r − n

r

]
dτ

p

ds,

then

(2.34) z(t) ≤ a2(t) +

α(t)∫
0

f2(s)z(s)ds+

α(t)∫
0

g(s)
[
b2(s)z(s) + c2(s)

]p
ds,

wherea2(t), f2(s), b2(s), c2(s) are defined by (2.30). Applying Theorem 2.3 to (2.34), we obtain

(2.35) z(t) ≤



a2(t) + k2(t) +

α(t)∫
0

h2(s)k2(s) exp

 α(t)∫
s

h2(τ)dτ

 ds, 0 < p ≤ 1

a2(t) +

j1−p
2 (t) exp

(1− p)

α(t)∫
0

f2(s)ds

+

(1− p)2p−1

α(t)∫
0

g(s)bp2(s) exp

(1− p)

α(t)∫
s

f2(τ)dτ

 ds


1

1−p

, p > 1,

wherek2(t), h2(t) are defined by (2.31) and (2.32) respectively. Then (2.35) with (2.33) gives
(2.28). The proof is completed.

Remark 2.3. If f(t) = 0, then Theorem 2.5 reduces to Theorem 2.2 in [13].

3. APPLICATIONS

In this section, we apply our results to study the boundedness of the solution of retarded
integral equation of Volterra type and initial value problem of nonlinear integro-differential
equations with delay.

Example 3.1Consider the following retarded integral equation of Volterra type

(3.1) x3(t)−H1(t, x (α(t)))−M

t, x (α(t)) ,

t∫
0

H2 (τ , x(τ)) dτ

 = a(t),
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wherex, a ∈ C(R+,R), H1, H2 ∈ C(R+×R,R),M ∈ C(R+×R×R,R) andα ∈ C1(R+,R+)
be a nondecreasing function withα(t) ≤ t, α(0) = 0.

Corollary 3.1. If H1, H2,M satisfy the following conditions

(3.2) |H1(t, x (α(t)))| ≤
t∫

0

f(s) |x(α(s))| ds,

(3.3) |H2(τ , x)| ≤ h(τ) |x(τ)| ,

(3.4)∣∣∣∣∣∣M
t, x (α(t)) ,

t∫
0

H2 (τ , x(τ)) dτ

∣∣∣∣∣∣ ≤
t∫

0

g(s)

x2(α(s)) +

s∫
0

|H2(τ , x(τ))| dτ

2

ds,

wheref, g, h ∈ are as in Theorem 2.5. Then all solutions of(3.1)are bounded onR+ and

|x(t)| ≤
(
|a(t)|+ a2(t) +

j2(t)

exp

(
−

α(t)∫
0

f2(s)ds

)
− 2j2(t)

α(t)∫
0

g(α−1(s))
α′(α−1(s))

bp2(s) exp

(
−

α(t)∫
s

f2(τ)dτ

)
ds


1
3

,

(3.5)

with

exp

− α(t)∫
0

f2(s)ds

 > 2j2(t)

α(t)∫
0

g(α−1(s))

α′ (α−1(s))
bp2(s) exp

− α(t)∫
s

f2(τ)dτ

 ds,

where

j2(t) =

α(t)∫
0

f2(s)a2(s)ds+ 2

α(t)∫
0

g(α−1(s))

α′ (α−1(s))

(
a2(s)b2(s) + c2(s)

)2

ds,

f2(t) =
1

3

f(α−1(t))

α′ (α−1(t))
, a2(t) =

α(t)∫
0

f(α−1(s))

α′ (α−1(s))

(
1

3
|a(s)|+ 2

3

)
ds,

b2(t) =
2

3
+

1

3

t∫
0

h(s)ds, c2(t) =
2

3
|a(t)|+ 1

3
+

t∫
0

h(τ)

(
1

3
|a(τ)|+ 2

3

)
dτ .

AJMAA, Vol. 21 (2024), No. 1, Art. 10, 15 pp. AJMAA

https://ajmaa.org


12 A. BOUDELIOU

Proof. Using the conditions (3.2)-(3.4) in (3.1), we obtain

|x(t)|3 ≤ |a(t)|+ |H1(t, x)|+

∣∣∣∣∣∣M
t, x (α(t)) ,

t∫
0

H2 (τ , x(τ)) dτ

∣∣∣∣∣∣
≤ |a(t)|+

t∫
0

f(s)x |x(α(s))| ds+

t∫
0

g(s)

x2(α(s)) +

s∫
0

|H2(τ , x(τ))| dτ

2

ds

≤ |a(t)|+
t∫

0

f(s) |x(α(s))| ds+

t∫
0

g(s)

x2(α(s)) +

s∫
0

h(τ) |x(τ)| dτ

2

ds

≤ |a(t)|+
α(t)∫
0

f(α−1(s))

α′ (α−1(s))
|x(s)| ds+

α(t)∫
0

g(α−1(s))

α′ (α−1(s))

x2(s) +

s∫
0

h(τ) |x(τ)| dτ

2

ds.

(3.6)

An application of Theorem 2.5 to (3.6) withu(t) = |x(t)| , r = 3, q = 1,m = 2, n = 1, p = 2,
yields the desired inequality (3.5). This completes the proof.

Example 3.2Consider the following initial value problem for the delay IDE.

(3.7)


x′(t) = a′(t) +H1(t, x (α(t))) +M

t, x (α(t)) ,

t∫
0

H2 (τ , x(τ)) dτ


x(0) = a(0),

wherea(0) 6= 0 is a constant,x, a ∈ C1(R+,R), H1, H2 ∈ C(R+ × R,R), M ∈ C(R+ × R×
R,R) andα ∈ C1(R+,R+) be a nondecreasing function withα(t) ≤ t, α(0) = 0.

Corollary 3.2. Consider the initial value problem(3.7)and suppose thatH1, H2 andM satisfy
the conditions

(3.8) |H1(t, x (α(t)))| ≤ f(t) |x(α(t))| ,

(3.9) |H2 (τ , x(τ))| ≤ h(τ) |x(τ)|n ,

(3.10) M

t, x (α(t)) ,

t∫
0

H2 (τ , x(τ)) dτ

 ≤ g(t)

|x(α(t))|m +

t∫
0

|H2 (τ , x(τ))| dτ

p

,
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wherem,n ∈ (0, 1], p > 0 are constants, andf, g, h ∈ C(R+, R+). Then all solutions of(3.7)
exist and
(3.11)

|x(t)| ≤



|a(t)|+ a1(t) + k1(t) +

α(t)∫
0

h(s)k1(s) exp

 α(t)∫
s

h(τ)dτ

 ds, 0 < p ≤ 1

|a(t)|+ a1(t) +

j1−p
1 (t) exp

(1− p)

α(t)∫
0

f(α−1(s))

α′ (α−1(s))
ds

+ (1− p)2p−1×

α(t)∫
0

g(α−1(s))

α′ (α−1(s))
bp1(s) exp

(1− p)

α(t)∫
s

f(α−1(τ))

α′ (α−1(τ))
dτ

 ds


1

1−p

, p > 1,

with

j1−p
1 (t) exp

(1− p)

α(t)∫
0

f(α−1(s))

α′ (α−1(s))
ds

 > (p− 1)2p−1

α(t)∫
0

g(α−1(s))

α′ (α−1(s))
bp1(s)×

exp

(1− p)

α(t)∫
s

f(α−1(τ))

α′ (α−1(τ))
dτ

 ds,

where

k1(t) =

α(t)∫
0

f(α−1(s))

α′ (α−1(s))
a1(s)ds+

α(t)∫
0

g(α−1(s))

α′ (α−1(s))
[p (a1(s)b1(s) + c1(s)) + 1− p] ds,

j1(t) =

α(t)∫
0

f(α−1(s))

α′ (α−1(s))
a1(s)ds+ 2p−1

α(t)∫
0

g(α−1(s))

α′ (α−1(s))
(a1(s)b1(s) + c1(s))

p ds,

a1(t) =

α(t)∫
0

f(α−1(s))

α′ (α−1(s))
a(s)ds, b1(s) = m+ n

s∫
0

h(τ)dτ ,

c1(s) = m |a(s)|+ 1−m+

s∫
0

h(τ) [n |a(τ)|+ 1− n] dτ .

Proof. Integrating both sides of (3.7) from0 to t, we obtain

(3.12) x(t) = a(t) +

t∫
0

H1(s, x (α(s)))ds+

t∫
0

M

s, x (α(s)) ,

s∫
0

H2 (τ , x(τ)) dτ

 ds.
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Using conditions (3.8), (3.7) and (3.10) in (3.12), we get

|x(t)| ≤ |a(t)|+
t∫

0

|H1(s, x (α(s)))| ds+

t∫
0

∣∣∣∣∣∣M
s, x (α(s)) ,

s∫
0

H2 (τ , x(τ)) dτ

∣∣∣∣∣∣ ds
≤ |a(t)|+

t∫
0

f(s) |x(α(s))| ds+

t∫
0

g(s)

|x(α(s))|m +

s∫
0

|H2 (τ , x(τ))| dτ

p

ds

≤ |a(t)|+
t∫

0

f(s) |x(α(s))| ds+

t∫
0

g(s)

|x(α(s))|m +

s∫
0

h(τ) |x(τ)|n dτ

p

ds

≤ |a(t)|+
α(t)∫
0

f(α−1(s))

α′ (α−1(s))
|x(s)| ds+

α(t)∫
0

g(α−1(s))

α′ (α−1(s))

|x(s)|m +

s∫
0

h(τ) |x(τ)|n dτ

p

ds.

(3.13)

An application of Theorem 2.4 to (3.13) gives the estimate of|x(t)| given in (3.11). The proof
is completed.

4. CONCLUSION

In this paper, we established new retarded nonlinear Gronwall-Bellman-Pachpatte type in-
tegral inequalities with power in more general cases (wherep > 0) involving retarded term and
more general nonlinearities. The inequalities of our main results can be used as a handy tool to
study the qualitative properties to solutions of differential equations and integral equations. We
show that some results of [2, 8, 9, 10, 13] can be deduced from our results in some special cases.
In the last section, as an application, we give two examples to ullustrate how our inequalities
can be used to give the boundedness of solution of retarded integral equations of Volterra type
and initial value problem of nonlinear IDE with delay.

AcknowledgmentThe author is very grateful to the editor and the anonymous referees for
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