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ABSTRACT. Shape diagrams are representations in the Euclidean plane introduced to study 3-
dimensional and 2-dimensional compact convex sets. Such a set is represented by a point within a
shape diagram whose coordinates are morphometrical functionals defined as normalized ratios of
geometrical functionals. Classically, the geometrical functionals are the area, the perimeter, the
radii of the inscribed and circumscribed circles, and the minimum and maximum Feret diameters.
They allow thirty-one shape diagrams to be built. Most of these shape diagrams can also been
applied to more general compact sets than compact convex sets. Starting from these six classical
geometrical functionals, a detailed comparative study has been performed in order to analyze
the representation relevance and discrimination power of these thirty-one shape diagrams. The
purpose of this paper is to present the first part of this study, by focusing on analytic compact
convex sets. A set will be called analytic if its boundary is piecewise defined by explicit functions
in such a way that the six geometrical functionals can be straightforwardly calculated. The
second and third part of the comparative study are published in two following papers [19, 20].
They are focused on analytic simply connected sets and convexity discrimination for analytic
and discretized simply connected sets, respectively.
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1 INTRODUCTION

The Blaschke’s shape diagram [1, 2] allows to represent a 3D compact convex set by a point
in the Euclidean 2D plane from three geometrical functionals: the volume, the surface area
and the integral of mean curvature. The axes of this shape diagram are defined from geometric
inequalities relating these functionals. These geometric inequalities do not provide a complete
system: for any range of numerical values satisfying them, a compact convex set with these
values for the geometrical functionals does not necessarily exist (in other words, a point within
the 2D Blaschke shape diagram does not necessarily describe a 3D compact convex set).

Following the approach of Blaschke, Santalo [21] considered the shape diagrams of 2D
compact convex sets from six geometrical functionals: the area, the perimeter, the radii of
the inscribed and circumscribed circles, and the minimum and maximum Feret diameters [8].
Several studies on these shape diagrams have been performed [5, 9–12, 21], but they were
mainly restricted to the complete systems of inequalities for some triplets of these geometrical
functionals.

This paper focuses on the study of shape diagrams for a wide range of 2D non-empty ana-
lytic compact convex sets. This study is not limited to complete systems of inequalities. The
considered compact convex sets are mapped onto points in these shape diagrams, and through
dispersion and overlapping quantifications, the shape diagrams are classified according to their
ability to discriminate the compact convex sets.

2 SHAPE FUNCTIONALS

In this paper, the non-empty analytic compact convex sets in the Euclidean 2-space E2 are
considered. A set will be called analytic if its boundary is piecewise defined by explicit func-
tions in such a way that the geometrical functionals enumerated below can be calculated. These
geometrical functionals are determinated in order to characterize the sets. They are related by
the so-called geometric inequalities, which allow to define morphometrical functionals.

2.1 Geometrical functionals For a compact convex set in E2, let A, P, r, R, ω, d, de-
note its area, its perimeter, the radii of its inscribed and circumscribed circles, its minimum
and maximum Feret diameters [8], respectively. Figure 1 illustrates some of these geometrical
functionals.

Figure 1: Geometrical functionals of a compact convex set: radii of inscribed (r) and circumscribed (R) circles,
minimum (ω) and maximum (d) Feret diameters.
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SHAPE DIAGRAMS FOR COMPACT CONVEX SETS 3

For a compact convex set, these six geometrical functionals are greater than zero. The line
segments provide null values for A, r and ω, and the points for P, R and d.

2.2 Geometric inequalities For a compact convex set in E2, the relationships between
these geometrical functionals are constrained by the geometric inequalities [4, 13–15, 22–
24, 26] referenced in the second column of Table 2.1. These inequalities link geometrical
functionals by pairs and determine the so-called extremal compact convex sets that satisfy the
corresponding equalities (Table 2.1, fourth column). Futhermore, they allow to determinate
morphometrical functionals.

Geometrical Geometric Morphometrical Extremal
functionals inequalities functionals sets

r,R r ≤ R r /R C
ω,R ω ≤ 2R ω /2R C
A,R A ≤ πR2 A /πR2 C
P,R P ≤ 2πR P /2πR C
d,R d ≤ 2R d /2R X
r, d 2 r ≤ d 2 r / d C
ω, d ω ≤ d ω / d W
A, d 4A ≤ π d2 4A /π d2 C
P, d P ≤ π d P /π d W

R, d
√
3R ≤ d

√
3R / d Z

r,P 2π r ≤ P 2π r /P C
ω,P π ω ≤ P π ω /P W
A,P 4πA ≤ P2 4πA /P2 C
d,P 2d ≤ P 2d /P L
R,P 4R ≤ P 4R /P L
r,A π r2 ≤ A π r2 /A C

ω,A ω2 ≤
√
3A ω2 /

√
3A T

r, ω 2 r ≤ ω 2 r / ω X
ω, r ω ≤ 3 r ω /3 r T

Extremal sets are the sets for which an inequality becomes an equality.
C the disks
T the equilateral triangles
W the constant width compact convex sets
L the line segments
X some compact convex sets
Z every compact convex set of diameter d containing an equilateral triangle of side-length d

Table 2.1: Shape functionals for compact convex sets. A, P, r, R, ω, d, denote the area, perimeter, radii of the
inscribed and circumscribed circles, minimum and maximum Feret diameters [8], respectively.

2.3 Morphometrical functionals The morphometrical functionals are invariant under
similitude transformations (consequently, they do not depend on the global size of the com-
pact convex set) and are defined as ratios between geometrical functionals. In these ratios, the
units of the numerator and the denominator are dimensionally homogeneous and the result has
therefore no unit. Moreover, a normalization by a constant value (scalar multiplication) allows
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to have a ratio that ranges in [0, 1]. For each morphometrical functional, the scalar value de-
pends directly on the associated geometric inequality. These morphometrical functionals are
referenced in the third column of Table 2.1.

These morphometrical functionals are classified according to their concrete meanings namely:
• roundness: 4πA /P2, 4A /π d2, π r2 /A and A /πR2;
• circularity: 2π r /P, P /2πR, r /R, 2 r / d and ω /2R;
• diameter constancy: π ω /P, P /π d and ω / d;
• thinness: 2 d /P and 4R /P;
• equilateral triangularity: ω /3 r and ω2 /

√
3A.

The morphometrical functional
√
3R / d expresses both the equilateral triangularity and the

diameter constancy. The ratios 2 r / ω and d /2R do not have concrete meaning, they are equal
to one for some different compact convex sets.

For example, the morphometrical functionals values are represented in Figure 2 for some 2D
elementary analytic compact convex sets represented in Figure 3. These elementary compact
convex sets constitute the family F c1 :

• line segments;
• equilateral triangles;
• Reuleaux triangles [7, 18]: curves of constant diameter constructed by taking the three

points at the corners of an equilateral triangle and connecting each pair of points by a
circular arc centered at the remaining point;
• squares;
• “Reuleaux” squares: curves by taking the four edge middles of a square and connecting

each pair of opposite points by a circular arc centered at the remaining edge middle;
• disks;
• semi-disks;
• isosceles rectangle triangles;
• “1/2” diamonds: diamonds with π/3 and π/6 angles;
• “1/2” rectangles: rectangles with length/width=1/2;
• “1/2” ellipses: ellipses with major axis length/minor axis length=1/2;
• regular pentagons;
• regular hexagons.

For instance, let be a Reuleaux triangle constructed from an equilateral triangle of edge length
denoted l. The Reuleaux triangle has a constant Feret diameter: d = ω. Futhermore,

ω = l, d = l, r = l

(
1− 1√

3

)
, R =

l√
3
, P = πl, A = l2

(
π −
√
3

2

)
.

All these geometrical functionals are expressed in function of l, term which disappears in the
computation of the morphometrical functionals. For example,

A

πR2 = 3

(
π −
√
3

2π

)
,

P

π d
= 1,

2 d

P
= 2/π,

ω2

√
3A

=
2√

3(π −
√
3)
.

The line segments are particular compact convex sets in the sense that some morphometrical
functionals are zero-valued and some other ones are undefined because A, r, ω are equal to
zero. Figure 2 does not differenciate the roundness of the line segments which is null, and their
equilateral triangularity which is undefined.

Table 2.1 synthesizes the geometrical and morphometrical functionals, the geometric in-
equalities and the extremal 2D analytic compact convex sets.

AJMAA, Vol. 7, No. 2, Art. 3, pp. 1-27, 2010 AJMAA

http://ajmaa.org


SHAPE DIAGRAMS FOR COMPACT CONVEX SETS 5

roundness diameter thinness equilateral
constancy triangularity

Figure 2: Values of several morphometrical functionals for elementary 2D compact convex sets.

Figure 3: Family Fc
1 of 2D analytic compact convex sets.

3 SHAPE DIAGRAMS

From these morphometrical functionals, 2D shape diagrams can be defined. They enable to
represent the morphology of any analytic compact convex sets in the Euclidean 2D plane from
two morphometrical functionals (that is to say from three geometrical functionals because the
two denominators use the same geometrical functionals).

3.1 Definition Let be any triplet of the considered six geometrical functionals (A, P,
r, R, ω, d) and (M1,M2) be some particular morphometrical functionals valued in [0, 1]2

(Table 3.1). A shape diagram D is represented in the plane domain [0, 1]2 where any 2D
compact set S is mapped onto a point (x, y) (except for line segments if M1 or M2 is in
{ω /
√
3A, π r2 /A, 2 r / ω, ω /3 r}). In other terms, a shape diagram D is obtained from the
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following mapping:

D :

{
K(E2) → [0, 1]2

S 7→ (x, y)

where K(E2) denotes the compact sets of the Euclidean 2D plane. Using the morphometrical
functionals listed in Table 2.1, thirty-one shape diagrams are defined, denoted (Dk)k∈J1,31K,
respectively.

Shape diagrams Axes coordinates
D1 : (ω, r,R) x = ω /2R y = r /R
D2 : (ω,A,R) x = ω /2R y = A /πR2

D3 : (r,A,R) x = r /R y = A /πR2

D4 : (A, d,R) x = A /πR2 y = d /2R
D5 : (ω, d,R) x = ω /2R y = d /2R
D6 : (r, d,R) x = r /R y = d /2R
D7 : (A,P,R) x = A /πR2 y = P /2πR
D8 : (ω,P,R) x = ω /2R y = P /2πR
D9 : (r,P,R) x = r /R y = P /2πR
D10 : (P, d,R) x = P /2πR y = d /2R

D11 : (ω, r, d) x = ω / d y = 2 r / d
D12 : (ω,A, d) x = ω / d y = 4A /π d2

D13 : (r,A, d) x = 2 r / d y = 4A /π d2

D14 : (A,R, d) x = 4A /π d2 y =
√
3R / d

D15 : (ω,R, d) x = ω / d y =
√
3R / d

D16 : (r,R, d) x = 2 r / d y =
√
3R / d

D17 : (A,P, d) x = 4A /π d2 y = P /π d
D18 : (ω,P, d) x = ω / d y = P /π d
D19 : (r,P, d) x = 2 r / d y = P /π d

D20 : (P,R, d) x = P /π d y =
√
3R / d

D21 : (ω, r,P) x = π ω /P y = 2π r /P
D22 : (ω,A,P) x = π ω /P y = 4πA /P2

D23 : (r,A,P) x = 2π r /P y = 4πA /P2

D24 : (A,R,P) x = 4πA /P2 y = 4R /P
D25 : (ω,R,P) x = π ω /P y = 4R /P
D26 : (r,R,P) x = 2π r /P y = 4R /P
D27 : (A, d,P) x = 4πA /P2 y = 2d /P
D28 : (ω, d,P) x = π ω /P y = 2d /P
D29 : (r, d,P) x = 2π r /P y = 2d /P
D30 : (d,R,P) x = 2d /P y = 4R /P

D31 : (ω, r,A) x = ω2 /
√
3A y = π r2 /A

Table 3.1: Axis coordinates of the thirty-one shape diagrams for 2D compact convex sets.

Property: The mapping which associates a 2D analytic compact convex set in E2 to a point
in a shape diagram (Dk)k∈J1,31K is neither injective neither surjective.

Proof:
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Non-injectivity: in each shape diagram, there exists points on which several 2D compact
convex sets are mapped.

• Let be an ellipse with major and minor axes of length equal to 2 and 1 respectively,
and a semi-disk of radius value equal to 1. These two sets have five similar geometrical
functionals values: A = π/2, ω = 1, d = 2, r = 0.5, R = 1. Thus, this ellipse and the
semi-disk are mapped onto the same point in the shape diagrams D1, D2, D3, D4, D5,
D6, D11, D12, D13, D14, D15, D16, D31.
• The diamond and ellipse perimeters are expressed in function of r and R by 4

√
R2+ r2 R2

R2− r2

and π
(
3(R+ r)−

√
(R+3 r)(3R+ r)

)
(Ramanujan), respectively. Notice that other

approximations of the ellipse perimeter exist [17, 25]. When R = 1, the equation

4

√
R2+

r2R2

R2− r2
= π

(
3(R+ r)−

√
(R+3 r)(3R+ r)

)
has a unique solution r in R+. Thus, an ellipse and a diamond with the same perimeter
values, and the same inscribed and circumscribed radii values are found. Futhermore,
for these two sets, ω = 2 r and d = 2R. Therefore, these two sets have five similar ge-
ometrical functionals values: R, d, r, ω, P. Consequently, this ellipse and this diamond
are mapped onto the same point in the shape diagrams D1, D5, D6, D8, D9, D10, D11,
D15, D16, D18, D19, D20, D21, D25, D26, D28, D29, D30.

• The diamond and ellipse areas are expressed in function of P and d by d2
√

P2−4 d2
2P

and
d
12

(
3P−2π d−

√
3P2+6π Pd−5π2 d2

)
(Ramanujan), respectively. When d = 2, the

equation

d2
√

P2−4 d2

2P
=

d

12

(
3P−2π d−

√
3P2+6π Pd−5π2 d2

)
has a unique solution P in R+. Thus, an ellipse and a diamond with the same area and
perimeter values, and the same maximum Feret diameter values are found. Futhermore,
for these two sets, d = 2R. Therefore, these two sets have four similar geometrical
functionals values: R, d, P, A. Consequently, this ellipse and this diamond are mapped
onto the same point in the shape diagrams D4, D7, D10, D14, D17, D20, D24, D27, D30.
• The rectangle and ellipse areas are expressed in function of P and ω by ω (P /2− ω) and

ω
12

(
3P−2π ω+

√
3P2+6π Pω−5π2 ω2

)
(Ramanujan), respectively. When ω = 2,

the equation

ω (P /2− ω) = ω

12

(
3P−2π ω+

√
3P2+6π Pω−5π2 ω2

)
has a unique solution P in R+. Thus, an ellipse and a rectangle with the same area and
perimeter values, and the same minimum Feret diameter values are found. Futhermore,
for these two sets, ω = 2 r. Therefore, these two sets have four similar geometrical
functionals values: r, ω, P, A. Consequently, this ellipse and this rectangle are mapped
onto the same point in the shape diagrams D21, D22, D23, D31.

Non-surjectivity: in each shape diagram, there exists points on which none 2D compact con-
vex set are mapped.
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• 4R ≤ P and P ≤ 2πR imply 2
π
≤ 4R

P
and 2

π
≤ P

2πR
.

2 d ≤ P and P ≤ π d imply 2
π
≤ 2 d

P
and 2

π
≤ P

π d
.

In the shape diagrams D7, D8, D9, D17, D18, D19, D24, D25, D26, D27, D28, D29, D30,
on all points below the line of equation y = 2/π, none compact convex set are mapped.
In the shape diagrams D10, D20, D30, on all points at the left of the line of equation
x = 2/π, none compact convex set are mapped.
•
√
3R ≤ d and d ≤ 2R imply

√
3
2
≤
√
3R
d

and
√
3
2
≤ d

2R
.

In the shape diagrams D4, D5, D6, D14, D15, D16, D10, D20, on all points below the line
of equation y =

√
3/2, none compact convex set are mapped.

• 2 r ≤ ω implies r
R
≤ ω

2R
and 2 r

d
≤ ω

d
and 2π r

P
≤ π ω

P
and π r2

A
≤ π ω2

4A
.

ω ≤ 3 r implies ω
2R
≤ 3 r

2R
and ω

d
≤ 3 r

d
and π ω

P
≤ 3π r

P
and ω2

√
3A
≤ 9 r2√

3A
.

In the shape diagrams D1, D11, D21, on all points above the line of equation y = x or
below the line of equation y = 2

3
x, none compact convex set are mapped. In the shape

diagram D31, on all points above the line of equation y = π
√
3

4
x or below the line of

equation y = π
√
3

9
x, none compact convex sest are mapped.

• ω2 ≤
√
3A implies

(
ω
2R

)2 ≤ √
3A

4R2 and
(
ω
d

)2 ≤ √
3A
d2

and
(
π ω
P

)2 ≤ π2
√
3A

P2 .
In the shape diagrams D2, D12, D22, on all points below the line curve of equation
y = 4

π
√
3
x2, none compact convex set are mapped.

• π r2 ≤ A implies
(

r
R

)2 ≤ A
πR2 and

(
2 r
d

)2 ≤ 4A
π d2

and
(
2π r
P

)2 ≤ 4πA
P2 .

In the shape diagrams D3, D13, D23, on all points below the line curve of equation
y = x2, none compact convex set are mapped. �

3.2 Complete systems of inequalities A system of (two) geometric inequalities associ-
ated to a shape diagram is complete if and only if for any range of geometrical functionals values
satisfying those conditions, a 2D compact convex set with these geometrical functionals values
exists [10, 21]. In other words, such a system is complete if and only if the mapping which
associates a 2D analytic compact convex set in E2 to a point in a shape diagram (Dk)k∈J1,31K
can be surjective by restricting the arrival set. For a shape diagram, each of the two associated
inequalities determines a part of the convex domain boundary (the domain in which all compact
convex sets are mapped). These two inequalities determine the whole boundary of the convex
domain if and only if they form a complete system. The compact convex sets mapped onto the
boundary points are the extremal compact convex sets of each considered inequality.

For twenty-one among the thirty-one shape diagrams (D1, D3, D4, D5, D6, D7, D9, D10,
D11, D12, D14, D15, D16, D18, D20, D22, D23, D24, D26, D28, D30), the completness of systems
of inequalities has been proved [5, 9–12, 21]. Figure 4 illustrates the convex domain boundary
for ten of them.

4 SHAPE DIAGRAMS DISPERSION QUANTIFICATION

4.1 Shape diagrams for compact convex sets For the family F c1 of thirteen compact
convex sets (Figure 3), the morphometrical functionals are straightforwardly computed. Each
compact convex set i ∈ J1, 13K is represented by one point denoted Pi,k, in each shape diagram
Dk, for k ∈ J1, 31K.
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Figure 4: Convex domains of ten shape diagrams for which complete systems of inequalities have been established.
For a given shape diagram, the bordered region represents the convex domain in which all compact convex sets
lay.
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Figure 5: Family Fc
1 of analytic compact convex sets mapped into eleven shape diagrams (chosen according to the

results synthetized in section 6).
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Figure 5 illustrates several of these thirty-one shape diagrams, chosen according to the results
synthetized in section 6. Remember that the shape diagrams are included in [0, 1]2. For a
better visualization of the shapes drawn on a point of abscissa or ordinate equal to 0 or 1, the
shape diagrams are illustrated in [−0.06, 1.04]2. Whatever the morphometrical functional, the
extremal value 1 is reached for extremal compact convex sets. Thus, in each shape diagram,
there is at least one compact convex set mapped to a point of abscissa or ordinate equal to 1.
Moreover, the extremal value 0 is not always reached.

The dispersion of compact convex set locations within each shape diagram will be studied
after the analysis of similarities between shape diagrams.

4.2 Similarity The fact that ω = 2 r for some compact convex sets implies that shape
diagrams (ω, x1, x2) are similar to shape diagrams (r, x1, x2) where x1 ∈ {d,R,P,A} and
x2 ∈ {d,R,P}, that is to say D2 ∼ D3, D5 ∼ D6, D8 ∼ D9, D12 ∼ D13, D15 ∼ D16,
D18 ∼ D19, D22 ∼ D23, D25 ∼ D26, D28 ∼ D29 where ∼ denotes a strong similarity between
shape diagrams.

In the same way, the fact that d = 2R for some compact convex sets implies that:
• shape diagrams (x1, x2,R) are similar to shape diagrams (x1, x2, d) where x1 ∈ {ω, r,A}

and x2 ∈ {r,A,P} (D1 ∼ D11, D2 ∼ D12, D3 ∼ D13, D7 ∼ D17, D8 ∼ D18,
D9 ∼ D19);
• shape diagrams (x1,R,P) are similar to shape diagrams (x1, d,P) where x1 ∈ {ω, r,A}

(D24 ∼ D27, D25 ∼ D28, D26 ∼ D29).
An algorithm of hierarchical classification [6] based on distances between shape diagrams

allows to justify many of these similarities and to find other ones. Let k1, k2 ∈ J1, 31K, the
distance between shape diagrams Dk1 and Dk2 , based on the Euclidean distance dE , is defined
by Equation 4.1.

dE(Dk1 ,Dk2) =
1

13

∑
i∈J1,13K

dE (Pi,k1 ,Pi,k2)(4.1)

For all k1 ∈ J1, 30K and k2 ∈ Jk1 + 1, 31K, the distances dE(Dk1 ,Dk2) are computed. Among
them, the minimum distance value gives the best similarity between two shape diagrams. From
these two shape diagrams, a mean shape diagram is built. To each step of the algorithm, two
shape diagrams are similar up to the distance computed and they are gathered to build a mean
shape diagram. The algorithm can be run until all the shape diagrams are gathered. Figure 6
shows the first twenty-three steps of the hierarchical tree resulting from this algorithm. The
remaining steps are not shown because the distance values are too high and do not present an
interest in the study of similarities.

Figure 6: The firsts twenty-three steps of an algorithm of hierarchical classification based on distances between
the shape diagrams. To each step, two shape diagrams are similar up to the distance values, whose the scale is
indicated on the right.
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12 S. RIVOLLIER, J. DEBAYLE AND J.-C. PINOLI

For instance, if the algorithm is stopped before the distance value reaches 0.2, the following
classification of shape diagrams is obtained:
• D1, D11, D2, D12 • D21, D22, D23 • D3, D13

• D7, D17, D9, D19 • D4, D5, D6 • D8, D18

• D24, D27, D26D29 • D14, D15, D16 • D25, D28

• D10, D20 • D30 • D31

4.3 Dispersion quantification For each shape diagram, the dispersion of the locations of
2D analytic compact convex sets of the family F c1 is studied.

The spatial distribution of compact convex sets locations in each shape diagram is charac-
terized and quantified from algorithmic geometry using Delaunay’s graph (DG) and minimum
spanning tree (MST) [3]. Some useful information about the disorder and the neighborhood
relationships between sets can be deduced. From each geometrical model, it is possible to com-
pute two values from the edge lengths, denoted µ (average) and σ (standard deviation) for DG or
MST. The simple reading of the coordinates in the (µ, σ)-plane enables to determine the type of
spatial distribution of the compact convex set (regular, random, cluster, . . . ) [16]. The decrease
of µ and the increase of σ characterize the shift from a regular distribution toward random and
cluster distributions, respectively.

Figure 7 represents both values of parameters of the thirty-one shape diagrams for each
model, DG and MST.

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.05

0.1

0.15

0.2

0.25

1

23

4

5

6

7

8

9

10

11

12
13

14

15

16

17

18

19

20

21

22

23

24

25

26
27

28
29

30

31

average µ

s
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 σ

DG

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.05

0.1

0.15

0.2

0.25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
26

27

28

29

30

31

average µ

s
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 σ

MST

Figure 7: Two dispersion quantifications for all shape diagrams applied on the family Fc
1 . For each representation

(according to the models DG and MST, respectively), indices k ∈ J1, 31K of the shape diagrams Dk are located
according to their µ and σ values.

MST enables to visually distinguish five groups of shape diagrams, according to their dis-
persion measurements (µ,σ):

• D22

• D1, D11, D2, D12, D21, D23

• D10, D20, D30

• D4, D14, D7, D17, D31

• the sixteen others.
DG also extracts the shape diagramsD10,D20,D30, that have both low µ and σ values. These

three shape diagrams have a weak dispersion. Visually, the compact convex sets locations form
a cluster (see Figure 5 forD20 andD30). The shape diagramsD21 andD22 have both high µ and
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σ values, that is to say a strong dispersion. Visually, the compact convex sets are located within
a large domain within [0, 1]2 and are well spaced from each other.

Finally, these statements are in agreement with those obtained for the similarities between
shape diagrams.

A shape diagram with a strong dispersion (both high µ and σ values), for both DG and MST,
guarantees a strong discrimination of shapes: the compact convex sets are located within a large
domain in [0, 1]2 and are well spaced from each other. However, remember that d = 2R and
ω = 2 r for some compact convex sets. This explains that the compact convex sets of the family
F c1 - except for equilateral triangles, Reuleaux triangles, pentagons where d 6= 2R and ω 6= 2 r
and isosceles rectangle triangles where ω 6= 2 r - are mapped onto a point on a line for some
shape diagrams, namely:

• diagonal line from (0, 0) to (1, 1) on shape diagrams (x1, x2, x3) where (x1, x2) ∈
{(ω, r), (d,R)} and x3 ∈ {A,R, d,P} (D1, D11, D21, D30, D31)
• horizontal line from (0, 1) to (1, 1) on shape diagrams (x1, d,R) where x1 ∈ {ω, r,P,A}

(D4, D5, D6, D10)
• horizontal line from (0,

√
(3)/2) to (1,

√
(3)/2) on shape diagrams (x1,R, d) where

x1 ∈ {ω, r,P,A} (D14, D15, D16, D20)
For a shape diagram, the fact that some compact convex sets are mapped onto a point on a line
does not yield to allow a strong discrimination of the compact convex sets as quantified and
illustrated in Figure 7.

5 SHAPE DIAGRAMS OVERLAPPING QUANTIFICATION

5.1 Shape diagrams for compact convex sets with one degree of freedom Let two 2D
analytic compact convex sets of the family F c1 , and the compact convex set class allowing to
switch from one to the other using one degree of freedom. For example, the line segment goes to
the square through rectangles whose elongation decreases (or through diamonds, . . . ). There-
fore, several classes of "compact convex sets with one degree of freedom" could be defined.
Thus, a curve denoted Ci,k from each compact convex set class Ci is created in each shape dia-
gram Dk, k ∈ J1, 31K. This process is used for some pairs of compact convex sets of the family
F c1 . The tendency of various curves are observed.

These analytic compact convex sets verify shape properties which are preserved only under
similitude transformations and under the variation of one parameter t ∈ R. These are, for
example, isosceles triangles (the "isosceles" property is preserved when the top angle varies
between 0 and π), rectangles (the ratio width/length varies between 0 and 1), . . . In other
terms, the degree of freedom is the parameter t ∈ R.

Twenty-three analytic compact convex set classes, gathered in four families, are considered:
• family F c2.1 ⊇ {Ci}i∈J1,4K: four classes of compact convex sets with one symmetrical

axis (Figure 8),
• family F c2.2 ⊇ {Ci}i∈J5,13K: nine classes of compact convex sets with two symmetrical

axes (Figure 9),
• family F c2.3 ⊇ {Ci}i∈J14,18K: five classes of compact convex sets with an odd number

strictly greater to 1 of symmetrical axes (Figure 10),
• family F c2.4 ⊇ {Ci}i∈J19,23K: five classes of compact convex sets with an even number

strictly greater to 2 of symmetrical axes (Figure 11).
There are:
• Family F c2.1:
C1 - Isosceles triangles: The top angle varies in [0, π]. When it reaches the bounds, the
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isosceles triangle becomes a line segment.
C2 - Angular sectors: The angle varies in [0, π]. When it reaches the lower and upper
bounds, the angular sector becomes a line segment and a semi-disk, respectively.
C3 - Ungula: They are based on angular sectors whose angle varies in [0, π]. The
extremal compact convex sets are the point (null angle) and the semi-disk (angle equals
to π).
C4 - Semi-symmetrical disks with two peaks: They are the convex hulls of a semi-disk
and two symmetrically placed points. The disk radius value varies between 0 and the
half of the line segment length. The extremal compact convex sets are the line segment
and the semi-disk, respectively.
• Family F c2.2:
C5 - Rectangles: The ratio between the width and the length varies in [0, 1]. When it
reaches the lower and upper bounds, the rectangle becomes a line segment and a square,
respectively.
C6 - Symmetrical disk segments: They are the intersection of a disk and a symmetrically
placed strip. The extremal compact convex sets are the line segment and the disk.
C7 - Rectangles terminated by semi-disks: The ratio between the width and the length
of the rectangle varies in [0, 1]. Semi-disks are placed on two opposite edges. When the
ratio reaches the lower and upper bounds, the resulting compact convex set becomes a
line segment and a disk, respectively.
C8 - Ellipses: The ratio between the minor and major axes lengths varies in [0, 1]. When
it reaches the lower and upper bounds, the ellipse becomes a line segment and a disk,
respectively.
C9 - Symmetrical lens: They are the intersection of two congruent circular disks. The
extremal compact convex sets are the point and the disk.
C10 - Symmetrical disks with two peaks: They are the convex hulls of a disk and two
symmetrically placed points. The disk radius value varies between 0 and the half of the
line segment length. The extremal compact convex sets are the line segment and the
disk, respectively.
C11 - Diamonds: The ratio between the top angles varies in [0, 1]. When it reaches the
lower and upper bounds, the diamond becomes a line segment and a square, respectively.
C12 - Rectangles terminated by equilateral triangles: The ratio between the width and the
length of the rectangle varies in [0, 1]. Equilateral triangles are placed on two opposite
edges. When the ratio reaches the lower and upper bounds, the resulting compact convex
set becomes a line segment and a "1/2" diamond, respectively.
C13 - Rectangles terminated by isosceles rectangle triangles: The ratio between the
width and the length of the rectangle varies in [0, 1]. Isosceles rectangle triangles are
placed on two opposite edges. When the ratio reaches the lower and upper bounds, the
resulting compact convex set becomes a line segment and a square, respectively.
• Family F c2.3:
C14 - Yamanouti triangles [27]: The radius value varies between the height and the edge
length of an equilateral triangle. The extremal compact convex sets are the equilateral
triangle and the Reuleaux triangle, respectively.
C15 - Disk-equilateral triangle intersections: They are the intersections of an equilateral
triangle and a disk centered on the center of mass with a radius varying between the
radii of inscribed and circumscribed circles. The extremal compact convex sets are the
disk and the equilateral triangle, respectively.
C16 - Dilated (disk) equilateral triangles: They are obtained by the dilation of an equilat-
eral triangle with a disk of radius included in [0,+∞[. When the radius value reaches the
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lower bound, the resulting compact convex set becomes an equilateral triangle. When
the radius tends to infinity, the resulting compact convex set tends to the disk.
C17 - Regular odd polygons: They are regular polygons with a positive odd edge num-
ber. In the shape diagrams, the real positions of these compact convex sets do not
describe a curve because it is not continuous (the edge number is necessarily an integer)
but they are along a curve. Theorically, the extremal compact convex sets are the point
and the disk. In the following shape diagrams, only the curve from the equilateral trian-
gle to the disk is drawn.
C18 - Reuleaux odd polygons: They are Reuleaux polygons with a positive odd edge
number. In the shape diagrams, the real positions of these compact convex sets do not
describe a curve because it is not continuous (the edge number is necessarily an inte-
ger) but they are along a curve. Theorically, the extremal compact convex sets are the
point and the disk. In the following shape diagrams, only the curve from the Reuleaux
triangle to the disk is drawn.
• Family F c2.4:
C19 - "Yamanouti" squares: They are defined in a similar way as the Yamanouti trian-
gles, but from the middle of the opposite edges. The extremal compact convex sets are
the square and the "Reuleaux" square.
C20 - Disk-square intersections: They are the intersections of a square and a disk cen-
tered on the center of mass with a radius varying between the radii of inscribed and
circumscribed circles. The extremal compact convex sets are the disk and the square,
respectively.
C21 - Dilated (disk) squares: They are obtained by the dilation of a square with a disk
of radius included in [0,+∞[. When the radius value reaches the lower bound, the re-
sulting compact convex set becomes a square. When the radius tends to infinity, the
resulting compact convex set tends to the disk.
C22 - Regular even polygons: They are regular polygons with a positive even edge
number. In the shape diagrams, the real positions of these compact convex sets do not
describe a curve because it is not continuous (the edge number is necessarily an integer)
but they are along a curve. Theorically, the extremal compact convex sets are the line
segment and the disk. In the following shape diagrams, only the curve from the square
to the disk is drawn.
C23 - "Reuleaux" even polygons: They are defined in a similar way as the Reuleaux odd
polygons, but from the middle of the opposite edges. In the shape diagrams, the real po-
sitions of these compact convex sets do not describe a curve because it is not continuous
(the edge number is necessarily an integer) but they are along a curve. Theorically, the
extremal compact convex sets are the line segment and the disk. In the following shape
diagrams, only the curve from the "Reuleaux" square to the disk is drawn.

For the compact convex sets of each class, the morphometrical functionals are computed. In
each shape diagram Dk, k ∈ J1, 31K, a compact convex set class i ∈ J1, 23K is represented by a
parametric curve Ci,k(t) since the class is infinite and bounded by the two extremal sets. For the
considered compact convex set classes, the extremal compact convex set are in the family F c1
(Figure 3). For example, up to a similitude transformation, an infinite class of rectangles exists,
from the line segment to the square.

Figures 12, 13, 14 and 15 illustrate some of these shape diagrams, chosen according to the
results synthetized in section 6.
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Figure 8: Family Fc
2.1 of 2D analytic compact convex sets with one degree of freedom and one symmetrical axis.

Figure 9: Family Fc
2.2 of 2D analytic compact convex sets with one degree of freedom and two symmetrical axes.

Figure 10: FamilyFc
2.3 of 2D analytic compact convex sets with one degree of freedom and an odd number (strictly

greater to 1) of symmetrical axes.

Figure 11: Family Fc
2.4 of 2D analytic compact convex sets with one degree of freedom and an even number

(strictly greater to 2) of symmetrical axes.
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Figure 12: Family Fc
2.1 of analytic compact convex sets with one degree of freedom and one symmetrical axis

mapped into eleven shape diagrams (chosen according to the results synthetized in section 6).
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Figure 13: Family Fc
2.2 of analytic compact convex sets with one degree of freedom and two symmetrical axes

mapped into eleven shape diagrams (chosen according to the results synthetized in section 6).
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Figure 14: Family Fc
2.3 of analytic compact convex sets with one degree of freedom and an odd number strictly

greater to 1 of symmetrical axes mapped into eleven shape diagrams (chosen according to the results synthetized
in section 6).
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Figure 15: Family Fc
2.4 of analytic compact convex sets with one degree of freedom and an even number strictly

greater to 2 of symmetrical axes mapped into eleven shape diagrams (chosen according to the results synthetized
in section 6).
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5.2 Overlapping quantification An overlapping of curves is visible in some shape dia-
grams. Its quantification is based on a discretization of the spatial domain [0, 1]2 of the shape
diagrams. Let n ∈ N∗, the discretization of a curve Ci,k, i ∈ J1, 23K, k ∈ J1, 31K, is denoted
Ci,k : J0, nK2 → {0, 1} and defined as following, ∀(x, y) ∈ J0, nK2:

Ci,k(x, y) =

 1 if ∃t0 ∈ R |
(
x− 1

2

)
1
n
≤ Ci,k(t0)

→
u≤

(
x+ 1

2

)
1
n(

y − 1
2

)
1
n
≤ Ci,k(t0)

→
v≤

(
y + 1

2

)
1
n

0 elsewhere

where
→
u and

→
v are the unit vectors along the abscissa and ordinate axes, respectively.

When all curves of a shape diagram are considered, two discretized shape diagrams are built
(Figure 16):

• the "binary" discretized shape diagram, indicating where the curves are located (Fig-
ure 16.(a)).
It is denoted Dmax

k : J0, nK2 → {0, 1} and defined ∀(x, y) ∈ J0, nK2 by:

Dmax
k (x, y) = max

i∈J1,23K
Ci,k(x, y)

• the "intensity" discretized shape diagram, indicating the intensities of curves overlap-
ping, i.e. the counts of curve overlaps (Figure 16.(b)).
It is denoted Dsum

k : J0, nK2 → N and defined ∀(x, y) ∈ J0, nK2 by:

Dsum
k (x, y) =

∑
i∈J1,23K

Ci,k(x, y)
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Overlapping intensities

Figure 16: "Intensity" discretized shape diagram D1 : (ω, r,R) (n = 100) with the twenty-three curves represent-
ing the compact convex set classes with one degree of freedom.

Finally, Equation 5.1 quantifies (by a measurement ranging between 0 and 1) the overlapping
of all curves for each shape diagram Dk, k ∈ J1, 31K. A high (resp. low) value for this ratio
means a strong (resp. weak) overlapping. This quantification depends on the discretization level
n. Thus, when the computation is done for various n values, not only the curves overlapping is
considered but also the curves proximity (small n value).

Overlappingn(Dk) = 1−
∑

(x,y)∈J0,nK2 D
max
k (x, y)∑

(x,y)∈J0,nK2 D
sum
k (x, y)

(5.1)
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Figure 17 illustrates the discretized shape diagrams (n = 100) with overlapping intensities,
and Figure 18 shows the quantification of curves overlapping (representing the compact convex
set classes) for some shape diagrams, according to the n values 100 and 1000.

Several informations can be extracted from these graphs:
• The graphs representing the 2D analytic compact convex set classes of the families F c2.2

and F c2.4 show a strong overlap (from n = 1000) for the shape diagrams D1, D4, D5,
D6, D10, D11, D14, D15, D16, D20, D21, D30 and D31.
• The graphs representing the 2D analytic compact convex set classes of the family F c2.3

show a strong overlap (from n = 1000) for the shape diagram D1. They are close to
each other (strong overlap from n = 100) in the shape diagrams D17, D18, D19, D27,
D28 and D29.

6 SYNTHESIS

To obtain a strong discrimination of 2D analytic compact convex sets, it is necessary to have
both a strong dispersion and a weak overlapping.

• The shape diagrams D10, D20 and D30 are excluded due to their weak dispersion and
overlapping results, whatever the considered compact convex sets.
• In the shape diagrams D4, D5, D6, D14, D15 and D16, only the family F c2.3 shows a

weak overlapping. Futhermore, their dispersion quantification is moderate and even
somewhat below.
• In the shape diagram D31, the families of F c2.1 and F c2.3 show a weak overlapping.

Futhermore, its dispersion quantification is moderate.
• In the shape diagrams D7, D8, D9, D17, D18, D19, D24, D25, D26, D27, D28 and D29, all

the families considered in this paper show a weak overlapping. But in D17, D18, D19,
D27, D28 and D29, the compact convex set classes of F c2.3 are located close together.
However, the dispersion quantification of all these shape diagrams are moderate.
• The dispersion quantification of the shape diagrams D1, D2, D3, D11, D12, D13, D21,
D22 and D23 gives strong values, particularly for D22. In the shape diagram D1, only
the family F c2.1 shows a weak overlapping, and in the shape diagramsD11 andD21, only
the families of F c2.1 and F c2.3 show a weak overlapping. It remains the shape diagrams
D2, D3, D12, D13, D22, D23 that, in addition to their strong dispersion, provide a weak
overlapping of the compact convex set classes considered in this paper.

Futhermore, among the shape diagrams D2, D3, D12, D13, D22 and D23 that obtain the best
results for dispersion and overlapping quantifications, only D3, D12, D22 and D23 are based on
known complete systems of inequalities. Observing in details the representation of quantifica-
tions for these four shape diagrams,D12 is retained for shape discrimination of analytic compact
convex sets.

This analysis is summarized in Table 6.1.
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Figure 17: "Intensity" discretized shape diagram Dsum
k (n = 100) with the twenty-three curves representing the

compact convex set classes with one degree of freedom.
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Figure 18: Overlapping quantification for the thirty-one shape diagrams Dk, k ∈ J1, 31K, with n = 100 in red,
and n = 1000 in blue.
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Complete system Non-complete system
of inequalities of inequalities

Strong D3, D12 , D22, D23 D2, D13discrimination

Moderate D1 , D7, D9 , D11, D18,
D24, D26, D28

D8, D17, D19, D21 , D25 ,
D27, D29

discrimination

Weak D4 , D5, D6, D10, D14, D15,
D16 , D20 , D30

D31discrimination

Table 6.1: Shape diagrams classification according to their quality of shape discrimination of analytic compact
convex sets and according to the completness of associated systems of inequalities.

In this paper, only some shape diagrams have been illustrated. The choice was based on
the results of shape discrimination (dispersion and overlapping studies) and on the results of
similarities between shape diagrams (subsection 4.2). The aim was to illustrate dissimilar shape
diagrams with different qualities of shape discrimination, and shape diagrams with different
completness of associated systems of inequalities. The framed shape diagrams of Table 6.1 are
those illustrated throughout this paper.

7 CONCLUSION

This paper has dealed with shape diagrams of 2D non-empty analytic compact convex sets
built from six geometrical functionals: the area, the perimeter, the radii of the inscribed and
circumscribed circles, and the minimum and maximum Feret diameters. Each such a set is rep-
resented by a point within a shape diagram whose coordinates are morphometrical functionals
defined as normalized ratios of geometrical functionals. From existing morphometrical func-
tionals for these sets, thirty-one shape diagrams can be built. A detailed comparative study
has been performed in order to analyze the representation relevance and discrimination power
of these shape diagrams. It is based on the dispersion and overlapping quantifications from
compact convex set locations in diagrams. Among all the shape diagrams, six present a strong
shape discrimination of sets, four are based on complete system of inequalities. Among these
four diagrams, the shape diagramD12 : (ω,A, d) is retained for its representation relevance and
discrimination power.

This paper reports the first part of a general comparative study of shape diagrams. The
focus was placed on analytic compact convex sets. However, most of these shape diagrams
can also been applied to more general compact sets than compact convex sets. The second and
third parts of the comparative study are published in two following papers [19, 20]. They are
focused on analytic simply connected compact sets and convexity discrimination for analytic
and discretized simply connected compact sets, respectively.
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