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1. INTRODUCTION

The piezoelectric materials are characterized by the combination of mechanical and electrical
proprieties. The mechanical stress is generated when the electrical potential is applied and
conversely the electric potential is created when the mechanical stress is present. We consider
here an electro viscoelastic material. A general models for electro elastic problems can be found
in [5,/9]. The contact problem for the electro viscoelastic material was considefed in[3] 10, 11].
For all these references the formulation was assumed to be electrically insulated.

In this paper we study a contact between electro viscoelastic body and a deformable conduc-
tive foundation. Our interest is to describe the evolution of the deformation of the body and
of the electric potential on the time interval 7']. This contact is modelled with normal com-
pliance, we suppose that the acceleration of the system is not negligible so that the process is
dynamic. Dynamic contact problems with normal compliance were considered ir |1, 6, 7] and
in the references therein.

Our aim in this paper is to extend some of the results obtained in paper [8], when the electric
conditions are almost perfect. The study serves two purposes, the first one is to obtain varia-
tional formulation of the problem with regularized condition on the electric field, in a part of
the boundary (se&][8]) and to prove the existence and uniqueness of weak solutions. The second
one is to study the convergence of those solutions to unique solutions of the variational problem
with almost perfect electrical contact. This step answers some questions left open in the preced-
ing paper([8]. In this part we make a passage to the limit in a regularized problem, under some
a priori estimates and some compactness result for evolutionary problems.Therefore, in Section
the piezoelectric problem is stated together with two variational formulations; in S€tion
we state the existence and uniqueness result of the regularized prBhl€fheorenj 3.]1). The
proof is based on the theory of evolution equations with monotone operators and a fixed point
arguments. In Sectidff we state our main existence and uniqueness result of weak solutions
for the piezoelectric problem (Theor¢m}4.1). The proof is based on the a priori estimates of reg-
ularized solutions, followed by a passage to the limit when 0, this is under a consideration
of some compactness results.

2. PROBLEM STATEMENT AND NOTATIONS

We assume that the body occupies the bounded doihand assume that the boundarpf
Q2 is Lipschitz continuous and partitioned into three disjoint measurable openlpatis, I's,
and a partitiod™; LIT'; into open part$’, andl’,. We assume thabeasl's > 0 andmeasl’, > 0.
The body is clamped oh;, therefore the displacement field vanishes there. A volume force of
densityf, acts inQ2 x (0, T') and surface traction of densify acts inl'; x (0, 7). The body may
arrive in contact o’y x (0,7") with an obstacle, we assume that the contact is frictionless and
it is modelled with normal compliance. The electric effects leads to the appearance of charges
of densitygy. The process is to be assumed electrically static.
We denote bys“ the space of second order of symmetric tensor®bdfd = 1,2, 3) and by
(-) and|-| respectively the scalar product and the Euclidean noréf inesp inR%).

UV = U;v; |u| = (uu)% ‘v’u,v c ]Rd’@' =1,-- -d.

O.T = 0;Tij |7 = (7’.7’)% Vo, r€S%i=1,---d,j=1,---d.
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Here and bellow the indices j run betweenl andd and the summation convention over
repeated indices is adopted. K&t R¢, we shall use the notation

H={u=(u)|u € [A(Q)} = (L}(Q))",

W ={D e H|divD € L*(Q)},

H= {0’ = (0)y; | oy = 0ji € LQ(Q)},

Hy ={u = (w) | e (u) € H},

H,={o € H | Dive € H},
withe : H — H andDiv : H — H are respectively operators of deformation and divergence
defined by :

—_

e (u) = (eij (w)) , &y (u) = 5 (uyy + uy) andDive = (045;)

[\]

The tensor€ = (e;5;,) and its transpos&* = (ey;;) satisfy the equality
o-v=0E",
where the index that follows a comma indicates a partial derivative with respect to the corre-
sponding component of the independent variable. We assume that the mass dsatsstfy
p € Ly (2) and there exists, > 0 such thap(x) > p,, a.e. in(,

then the spacél is Hilbert space endowed with a new inner product,

(u,v)H:/puividx.
0

The spacédd, H, H' andH! are Hilbert spaces endowed with the inner products given by

(O’, T)H = / UijTij d.’L‘,
Q

(u>v)H1 = <u> U>H + (6 (u) € (’U))H,

(o, T)m = (o,7)y + (Dive, Divt), .

the associated norms on these spaces respectively| aré-|,,, |-|;;; and|-|,,,. Sincel is
assumed be Lipschitz continuous then the unit outward normal vec®mdefined a.e., for
every vectorve H;, we use the notatiom for the trace ofv onI" and we denote by, and
v, the normal and tangential componentsvwodn I', given byv, =v-v andv, =v—uv,v. For
regular stress field (sayC'), the application of its trace to is the Cauchy stress vectow .
We define the normal and tangential components bl 0, = (ov) - v ando, =ov — o, v,
and recall that the Green'’s formula holds

(2.1) (0,€(v))y + (Dive,v), = /0'1/ -v, Yv € H;.
I
Let the Hilbert spaces?(0,T; H) andW?(0,T;V) 1 < p < +o0,
(2.2) LP0,T;H) = {u|w:]0,T[— HY,
(2.3) W0, T;V) = {u € LP(0,T;V), 1= dult) 1°(0,T; V)} .

Here and every where in this paper the dot above the derivative is with respect to the time
variable. The spaces(0, T; X) andC* (0, T; X ) are respectively continuous and differentiable
continuous functions fron®, 7'] into X with a respective norms :

Flewrx = 1e0.1] s and|flerorx = 1e0.7] Il T Mx'
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The physical model for the process is as follows :
Problem P. Find a displacement field : Q x [0,7] — R9, an electric potentiap :
21 x [0,7] — R, an electric displacement field, such that

(2.4) o = Ae(u) + Ge(u) — EVpinQ x (0,7T),
(2.5) D =¢&e(u)—~vVy inQx(0,7),
(2.6) pu=Diveo+ f, inQx(0,7),

(2.7) divD=gq, inQxx(0,T),

(2.8) v =0, onlyx(07),

(2.9) ov =f, onl'y x (0,7),

(2.10) o,=—plu,—g),u, =0 onls x(0,7),
(2.11) =0 onl, x(0,7),

(2.12) Dv=g¢g onl',x(0,T),

(2.13) D-v = kX o) (1, — 9) 61, (¢ — ¢p) ONTs x (0,T),
(2.14) u(0) =uy, u(0) =wvy, NS
X[o,+o0) IS the characteristic function of the interyal +oc) defined by

] 0 if r <0,
X[0,+00) (1) = 1 if > 0.

In the equations (214)-(2.7) and below and in order to simplify the notation, we do not indi-
cate explicitly the dependence of various functions on the variables? U I" andt € [0, 7).

The general viscoelastic constitutive law with electric effects is giverj by (2.4), whéesea
non-linear viscosity function depending on the strain tersat), G is a non-linear elasticity
depends (u). The stress is depends on electric fiel¥¢. The relation|[(25) is the elec-

tric displacement it is a linear function of strain and electric field. The equations (2.6) and
(2.7) are the equilibrium equations, in equation}(2.6) we suppose the process is dynamic with a
mass density. Here the condition$ (2.8) and (2.9) are the displacement and traction boundary
conditions, respectively conditiop (2]10) represents frictionless contact condition with normal
compliance. Here is prescribed function such that{r) = 0 whenr < 0, g is the initial gap

and the condition:, — g > 0 represents the penetration of body in the foundation, which is
assumed to be conductive. The expressipns|2.11)and (2.12) are boundary conditions on elec-
tric potentialy and displacement fiel® onI', andl’,. On part of the boundarly;, and during

the process of contact the normal of electric displacement field is assumed to be proportional
to the difference between the potential of foundatigrand the body’s surface potential, given

by condition [2.1B). The function, is introduced to control the boundednesspof ¢, see

[8]. Finally, (2.14) is the initial condition on displacement and the velocity field. To present
variational formulation of the above problem, we need additional notations. Let us consider the
subspaces off; and 4! defined by

V = {’UEH1|'v:0,inF1},
W = {£€eH'[£=0,inT,},

AJMAA Vol. 11, No. 1, Art. 9, pp. 1-15, 2014 AIJMAA


http://ajmaa.org

A DYNAMIC CONTACT PROBLEM FOR AN ELECTRO VISCOELASTICBODY 5

we recall sincencasl’y > 0 andmeasl’, > 0, Korn’s and Friederichs-Poincare inequalities
hold, thus there exist respectively a consta@gt > 0 andcr > 0 which depends respectively
only onT'y, I', and2 such that

e (), = cxlvly, YveV,
‘Vng 2 Cr |£‘H1> V€€W,

for u, v € V we have(u, v),, = (e (u), € (v)),, andvp,§ € W, (¢,&)y,, = (Vp, VE),, and
we havelu|, = (uw,u)l/*, ||, = (¢, 0’ therefore(V, |-|,,) and (W, |-|,,,) are real Hilbert
spaces. Moreover, by Sobolev trace theorem, there exist a constaigtdepending only o

andI';, I', such that

(2.15) €l 2,
(2.16) 0o e

colély,  VEeW,

<
S 6Cl |v|V y V’U € V.

Let noteV’ and W’ the dual spaces df andWW/, so we have continuous and dense embed-
dingsV ¢ H c V'rep W C L*(2) c W’). To study problenf> we must make some
assumptions.The viscosity operatband the elasticity ong satisfy the conditions

( a)A: QxS — s,

b) there existd. 4 > 0 such that

A (x,e1) — A(x,e2)| < Lales — €3 Vei, 60 € 84,0862 € Q,
c) there existsn 4 > 0 such that

(2.17) (A(z,e1) — Am, &) - (61 — €2) > muler — &3],
Ve, e, € S% aex €9,
d) the mapping— A (x, ) is Lebesgue measurable on
| ) the mapping: — A (z,0) belongs ta.
(a)G: QxS xR — S,
b) there existd.g > 0 such that
(218) |g (il?,é'l) _g(m>€2>| < Lg‘&'l _€2|7

Ve, e, € S, a.e.x € Q, such that
c) the mappinge — G (x, €) is Lebesgue measurable finve € S¢,
d) the mappinge — G (x,0,0) belongs toH.

\

The permeability tensoy satisfy

a)€: QxS — RY,
(2.19) b) € (x,() = (eijk(a:)(’jk) , V(= (Cij) cSlaexc,
C) €ijk = Cikj € L*® (Q)

a)y: QxR — RY

b)y (z,E) = (v;,(x)E;), VE=(E)cRaexecq,
(2.20) C) Vi = Vji € L= (Q),

d) there existsn, > 0 such thaty,;(z) E; E; > m, ||E|

VE = (E;) € Rla.e.x € Q.

2
1
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We also assume that the normal compliance fungtieatisfies

a)p:I's xR —- Ry,

b) there existd, > such that|p(x, ) — p(x, r2)| < L, |r1 — rof,
(2.21) Vri,ro € Riaex el

c) the mappinge — p(x, r) is Lebesgue mesurablein, vr € R,

dr <0, p(xz,r) =0 aexcls.

As example of normal compliance functions which satisfy (2.21), we may consiger) =
cry, wherec > 0 andr;, = max{0,r}. This condition ) means that the reaction of the
obstacle is proportional to the penetratian ), . The gap functiory and the initial potentiap,
satisfy

(2.22) g€ L*(Iy), g > 0a.e.onl,

(2.23) o € L*(T3),

We suppose that there exist a large positive congtdrigher than any peak voltage in system
such thatp — ¢, is bounded byL. This condition do not pose any practical problem for the
applicability of system, and allows us to introduced a functigrdefined by

—L ifs<—L,
(2.24) or(s)s s f—L<s<lL,
L ifs>L.

This truncation is necessary for the solvability of the variational formulation of the problem.
Note thatp, is Lipshitz and monotone. We have the following assumptions
(225) Ug € V, Vg € H.

The body forces and surfaces traction and free charges densities have the regularity<with
p <

(2.26) foe 12 (0,75 12 ()7,
(2.27) foe 2 (0,712 (1,)"),
(2.28) @ € W (0,T; L% (),
(2.29) g € WP (0,T; L (') .

We define the elemerft(t) € V' by

(2.30) (F(8),0)yry = (Folt),v) g + (Fo(1),0) 2,0, Vo€V, aete(0,T),
and by using Riesz’s representation theorem we define un eleit¢rt 1 by

(2.31) ((t), Ow = — (90(t), &) 21y — (@(8), &) 2,y » VEE W, L € (0,T),

we can see that conditions (2] 27), (2.26) (2.28) and [2.29) imply that thefdatd’1# (0, T; V'),
qe W (0,T;W). Letj : V x V — R the functional defined by

(2.32) Jjlu,v) = / p(u, — g)v, da,Vu,v € V,
I's
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[:V xW — W by
(2.33) (l(u,p),€) = / Xousool (tis — 9) 61, (& — 90) € da

s

YueV, Y&peW.

By conditions [(2.211),[(2.22)[ (2.23) ar{d (2.24), the integral$ in (2.32) arjd in|(2.33) are well
defined. If{w, ©} are regular functions satisfying (2.4)-(2} 14), this imply thét) € V, ¢(t) €
W and keeping in mind the relatiorjs (P.1), (4.3R), (2.33), we deduce the variational formulation
of problemP, notedPy, .

Problem P,.. Find a displacement field : Q x [0,7] — R<, and an electric potential
¢ : Q2 x[0,7] — R such that

pagy (D)t (A(@(). £(0)y + (Ge(ult)). £(o))y +
' (E°Vi(t). £(0)y, +  (w(t),v) = (F(1), )y Vo €V, a0t € (0,T),

235 (V0. V), — (Ee(ult). VO, + (L (u(t), o(t)) . O = (alt). O
' Ve e W,aete (0,T),

(2.36) u(0) = uy, 4(0) = vy.

For the solvability ofPy,, we consider the truncation of the functiqy, . .; notedy); and its
defined by

0 if r<0
(2.37) Ys(r) = ks if 0 <r <y,
k if >0,

0 is a small parameter which will tend to zero in the sequel. We can seg¢ thdt; xR — R,
an increasing function which satisfies that

[V5(u1) — Vs(ua)| <K |ur — gl
(238) Vul,uz cR,ae.x e Fg,

Moreover, we assume thaf; satisfies

a) the mapping: — v s5(x, r) is Lebesgue measurable by Vr € R,
b)forr <0, vs(x,r)=0a.e.x e Is;.

Replacingx .| by the smooth function); leads us to replacing the functiénn 7 by a
functionh; defined fromlV x W — W and

(2.39) (hs (u, ), §) = : s (uy — g) 1, (p — o) € da,

VueV,V¢,pe W,a.ete (0,T).

We introduce now a regularized problépg.
Problem Pr. Find a displacement field; : ©Q x [0,7] — R and an electric potential
s 1 2 x [0,7] — R, such that

a0y (51 0)yny + (A(ibs(1). €(0)y + (Ge(us(t). £(v),
A0 L (EVisll), ey +  (us(0),0) = (F()v)yy . Vo€V, @kt € (0,T),

a1 (1V@s(1). VO — (Eelus(t), V) + (hs (us(t). o5(1) . O = (a(t). Oy
' VéEe W,aet e (0,7),

(2.42) us(0) = ug, us(0) = vy,
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To simplify the notation we take in the first study = w andy; = ¢, and we prove that are
weak solutions of probler®x.

3. AN EXISTENCE AND UNIQUENESS RESULT FOR THE REGULARIZED PROBLEM

Theorem 3.1. Assume that the conditior|s (2/17), (2.39) hold. Then there exists a unique solu-
tion of the problemPx. Moreover the solution satisfies

(3.1 weWY0,T;V)NnCY[0,T);H), e L*0,T;V"), ¢ W"0,T;W).
The proof of Theorer 3|1 will be carried on in several steps. It is based on results of evo-

lution equations with monotone operators, Banach’s fixed point theorem and the two following
classical results on parabolic equations, 5ée [2].

Theorem 3.2.LetV and H be a real Hilbert spaces satisfyiig ¢ H c V', with continuous
and dense injection, and let : V' — V'’ be a hemicontinuous monotone operator which
satisfies

Jap > 0,a; € R such that(Au,u)y , > ag ul? + a1, Yu €V,

Then a giveny, € H and f € L*(0,T; V"), there exist a unique functianwhich satisfies
uwe L*0,T;V)NC(0,T;H), ue€ L*0,T;V'),

(3.2) u(t) + Au(t) = f(t), ae.te (0,7),
(3.3 u(0) = wp.

We assume first, that assumptiops (2.17)-(2.29) hold angl &tZ2(0, T; V'), we consider
the following problems.
Problem ;. Find a displacement fietd,, : Q x [0, 7] — R? such that

(3.4) (i (1), v) r + (Ae(ty(1)), ()5, + (0(t), €(v))y, = (F(1), v),
YVveV,aete (0,T),
(3.5) u,(0) = ug, u,(0) = v,
Problem P? Find an electric potentiab : 2 x [0, 7] — R such that
(3 6) (7v9077<t)7 vﬁ)H - (8€(u77(t>7 Vg)H + (h5 (uﬁ<t)7 (pn(t» 7€)W = (Q(t)a g)W '
' V¢ e W, a.e. on(0,7),
Lemma 3.3. there exists a unique solution to the probl@th Moreover it satisfies
(3.7) uw, € W0, T;V)nCY([0,T]); H), i, e L*0,T;V").

If u;, u, are two solutions of the problef; corresponding to the data,, n, € L*(0,T; V"),
then there exist a constant> 0 such that

1 t
38) )=l < o | [ (o) -malo)fy ).
ma [Jo
Proof. It is easy to see that the operatbr V' — V defined by
(3.9) (Au>u)vy = (Ae(u(t)),e(v))y,

is monotone and continuous (by conditiohs (2.17)) We recall fhatn € L*(0,7;V’) and
vy € H, (see the condition$ (2.B0), (B.5)). We recall now Thedrem 3.2, there exist a unique
functionwv,, which satisfies

(3.10) v, € L*(0,T;V)NC([0,T];H), v,€ L*(0,T;V"),
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(3.11) 0, (t) + Av,(t) = f(1), a.e.t€(0,7),

(3.12) v,(0) = ,.
Letw, : [0,7] — V be a function satisfying

(3.13) u,(t) = /t v,(s) ds + up.
0

Sincefu,7 e C([0,T]; H), thenw, is well defined, it is clear that using (8.9), (3.10), (3.11),
12), and -3) we deduce thaf is a unique solution of probler®!, with the regularity
‘3. ). Letn,, m, € L*(0,T;V") for which we have respectively,, u,, are solutions of
problemsP, , i = 1,2. Keeping in mind that/ (2.17) and that;, u, € W"*(0,7;V) and
we notev,, v- deflned by|[(3.13). So we deducet at

t
ma / 01(5) = va ()2 ds < [ [m(s) = ma(s)e ds,
0 0
which implies

[ui(t) — ua(t |V_ /|’l71 )|H, ds.

For existence and uniqueness of solution of the prolﬂ%r,nit is based on monotonicity of
the operatot4, the boundsys(u, — g)| < k and|é, (¢ — ¢y)| < L and the trace inequality

213).
Lemma 3.4. There exists a unique solution
(3.14) @, € WH(0,T; W),

of problemPg. If ¢, p, are two solutions of the problemg corresponding to the datg,and
n, € L?(0,T; V"), then there exist a constant> 0 such that

(3.15) 1 (1) —pa(t) |y < clun(t)—ua(t)]y -
Proof. Let define the operatot(t) : W — W, fort € [0, T}, by
Ap()e(t), §w = (YV(t), V) — (Ee(uy(t), VE),,
=+ <h5 (’U,n(t), Sp(t)) 7£)W ’ Vf ceW.
Lety,, ¢, € W, sincey satisfies[(2.20), the functiofy, is monotone and; > 0, this implies

(Ay()pr — Ay(t)pa, 1 — 902)W > mey |¢q — 902@[/ .
Thus the operatad, () is strongly monotone. Now by Conditions (2/20) and (2.15),we have

(An(t)‘»@l - An(t)%’g)w <clp; — S02|W |§|W'

this implies thatA, (¢) is Lipshitz continuous. The equatiof,(t)p(t) = ¢(t), has a unique
solutionp, (t) € W, for ¢(t) € W. The functiony, (t) is then the unique solution of the
problemPg. It is a classical result of evolutionary elliptic problems see for example [4].

Let now prove thatp, € W*(0,T; W), letty, t, € [0,T] andyp, (t1) = ¢, @, (t2) = ¥y,
w,(t1) = w1, uy(tz) = us, q(t1) = q1, q(t2) = ¢o, recall that the function); is positive and
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¢, is monotone. Then we deduce from conditigns (R.20), {2.L5),](2/16), (2.19)} (2.38), and the
bounds of the functiong;, ¢, , that

My 1 — ‘P2|12/V + . Vs (w2 — 9) (D1, (91 — ©0) — b1 (P2 — o) (1 — ¥2)

<leg lur — waly + @1 — @2ly) lo1 — @alw

+ . V5 (U1, — g) — s (uaw — g)| |1 (01 — @o)| |1 — ¥ol da,

< [(ce + LkcoGo) Jur — ualy, + g1 — @2l w] 91 — @aly »
which implies that
(3.16) lo1 — @alyy < cllur —ualy + a1 — qaly ] -

Sinceg; € W2 (0,7, W) andu; € W'2(0,T; V), = 1,2, then we havep, € W'2(0,T; W).
We show next that we have the estimatipn (B.15). #gtn, € L*(0,T;V’) andy,, ¢,, are
respectively solutions of problerﬂ%ﬁi, i = 1,2, anduy, uy, are solutions of problemgli,
1 = 1, 2. With similar arguments we deduce that

1 _
1 — <P2|w < — (ce + kLcoCo) |ug — U2‘V .
My

1
Let now define the operatar: L2 (0,7; V') — L*(0,T; V') by
(3.17) (An(t),v)y v = (G (e(uy), €(0))y + j(uy, v) + €V, e(v)),,,

whereu,, ¢, are respectively the unique solutions of problé?gjsand?ﬁ. We have the follow-
ing result.

Theorem 3.5. The operatorA has a unique fixed point
n* e L*(0,T; V).

Proof. Lett € [0,7],n, € L*(0,T;V"), i = 1,2, and use the notation,, = u; andy, = ¢,
i =1,2. We apply proprieties (2.18 (b)], (2]19), (2.21) we deduce that

AN —Anslys < cflur — waly + 01 — waly] -
This yields to

[A(m) — A ("72)|L2(0,T;V') <c [|u1 - u2|L2(o,T,V) + 1 — 902|L2(0,T;W)] .

Apply now the inequalitieg (3}8)], (3.]L5), we deduce

|An, — A772‘L2(07T;v/) <Tc [|"71_"72|L2(0,T;V’)] '

reiterating the estimation times yields

(Tc)"

(3.18) A", — Ann2|L2(0,T;V’) < Y ’771_772|L2(0,T;V’)

this implies that the operatdy is a contraction ori.?(0, 7'; V'). By Banach’s fixed point theo-
rem,A has a unique fixed point* € L? (0,7;V"). &

We come back to the proof of Theor¢m|3.1
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Proof. ExistencelLetn* € L*(0,7;V’) a fixed point ofA and (un*; gan*) be the solution of
problemsP,. andP;.. Then using|(2.40)| (2.41) and (3|17), keeping in mind thay*) =
we deduce tha(tu,, O ) is the solution of the regularized problepg. The regularlty.l) IS
provided by Lemm@]S and Lemrma3.4.

Uniquenessthe uniqueness of the Theorém|3.1 is the consequence of the uniqueness of the
fixed point of the operatak given by [3.1}). For more details see[1§].

4. AN EXISTENCE AND UNIQUENESS RESULT OF THE PROBLEM Py

Theorem 4.1. Assume that the conditiorfs (2/17), (2.39) hold. Then there exists a unique solu-
tion of the problen,,. Moreover the solution satisfies

(4.1) wc WH0,T;V)NCH[0,T]; H), it € L*(0,T;V), ¢ € W"(0,T;W).

Recall that the unique solution of the regularized problBg means that there exists a
unique sequences; andy; solutions for [(2.40) and (2.41), with the initial conditions (2.42)
and with regularity [(3]1). To deduce that there exists a unique solution notud ¢ for
equations[(2.34)[ (2.35) with (2]36), we pass to the limit when- 0, in the problemPg,
taking in consideration some a priori estimations on the sequencasdyp;, the proprieties of
A, G, 7, ¢, h and some compactness results of evolutionary problems.

4.1. A priori estimates.

4.1.1. Estimates on a sequengg. Let replacet = 4(t) in (2.41)

(YVes(t ) V%( Ny — (Ee(us(t), Vs(t ))H
+fp Vs (uy(t) — 9) o1, (ps(t) — ©o) ws(t) da = (q(t), v5(t))

take into account_(ZT:EO],_(Z]lgj, (2124), (2.31) dnd (2.37), then we have this estimate
s < lelus(®)ly + la(®)lw] los(®)ly

then

(4.2) ‘905‘L2(O,T;W) <c ‘U’5|L2(O,T;V) + ’q‘LQ(O,T;W) :

Here and above denotes a generic positive constant which may depend,an, 7, ¢, h , €2,
Iy, I's, Iy, Ty, '3 andT and whose value may changes from line to line.

4.1.2. Estimates on a sequenag. Keeping in mindthau5 e W20, T;V)andthatd (z,0) €
H, G (z,0,0) € H then replace=v;(t) = u5(t) in (2.40)

L s(t) 3 + (Ae(vs(t) — A(,0) & (v5(1)))s,

43 HA@0). @)+ (98(’“5(75)) =G (@,0), e (vs(1))),
+(gc(a: ?)0) € (05(t)))y + (E°Vp5(t), € (v5(£)))y + J (us(t), v5(t))
= ,Us(t

Jyrs
For convenience calll (x,0) = Ao, G (x,0) = Gy, Recall properties (2.17), (2.18), (2|21), and
(2.18) then

 bos(t) +m s
(Lg + Lyo) lus(t)]y |vs(t)]y
(4.4) + [eles()w r2@) + 1F )|y + 1Goly + [Aoly] [vs(®)]y

IN
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leta € R, since

Vs + malos(t)
< (Lo + Lyt) 5 lus(f} + o (Lg + Lyo + 1) os(t)f
(4.5) +5 lesffy + IFO R+ 1ol + Aoz
choosen < ﬁ;‘c‘o—m and recall that

s (Dl < clus(®)]y + lg(@)]y -
We integrate fronf) to ¢ in (4.5), we have

1 . 2
%0 (Lg + Lyco) + C} |’u’5’L2(0,t;V)

(4.6) [0s(8)3 + € [Vslr20,4) <
2 2 2 2
+ |f|L2(o,T;V/) +T'(Gol3 + T [ Aoly + |voly -
Let f = | £[720z0n + T'1Gol5, + T Aol + |vol7;, we deduce fr06)
2 2 r
(4.7) |v5|L2(O,t;V) <c |u6|L2(0,t;v) + /.
From (3.1), we have that; € C'(0,7.V), then
t
us(t) = / vs(s)ds + o,
0

this implies that

(4.8) lus(t)fy < c [|’l’6|i2(o,t;x/) + |U0|i2(o,:r;v>] :

From [4.7) and[(4]8) we have

(4.9) s < sl 720 ) + €

Apply Gronwall’s lemma to the functiofu;(t)|: we have

(4.10) s 2071y < €

From the estimat¢ (4.10) afs, we deduce those of; given respectively by (4]2),
(4.11) |25l r20,7w) < €

we also deduce from the boundednesswf) in L*(0,T; V) and [4.7) thatis is bounded on
L*(0,T;V),

.12
(4.12) |’U/§|L2(07T7v) S C.
Now for the estimation ofis in L?(0, T; V'), recall the equation

(ts(t), v)yry = Ale(ts(t)), e(v))y — (Ge(us(t)), e(v))y
— (E"Vps(t),e(v))y — J (us(t),v) + (F(1),v)yr . YV EV,
then
(Gs(2), )|y < [Lalts(t)]y + Lg [us(t)]y +
ce Vs (O] + Ly [us()]y, + | F(O)]y] 0]y
so we have that
(4.13) |@s] 207 < C.
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4.2. Passage to the limit § — 0). Before going to the limit, we give the following result of
compactness for evolutionary problems.

Lemma 4.2. Let X, Y and H a three Banach'’s spaces such tfatC H C Y, the injection
X — H is compact. LefF a subset of.?(0,7; H), 1 < p < oo which satisfy

a) F is bounded inL?(0,T"; X),
b) ¥ = {¥| f e F} isbounded in.!(0,T;Y),

then F is relatively compact in.?(0,7; H) and vF the trace ofF is relatively compact in
LP(0,T; H) on the boundary'.

For the proof see for example [12].

A convergence of the sequeries).

To apply a Lemma@ 4]2, lettak€ =Y = H = V andF = {u;} thenX =V, H = H,
andY = V' for F = {us}, the conditions a) and b) are satisfied foe= 2. From [4.10),
(4.12) F = {us} is relatively compact in.?(0,7; V), andF = {us} is relatively compact in
L?(0,T; H). this implies that there exist a subsequence n@tgd such that

(4.14) us — wu, stronglyinL?*(0,T;V),
the convergence ih?(0, T; V') imply that
(4.15) us — w, strongly inL?(0,7T; H),

Therefore from[(4.7]0), the relation (2]16) given on the traceoéand Lemma 4]2 there exist a
subsequencéyu,} such that

(4.16) yus — yu, strongly inL?(0,T; L*(Ts)),
and there exist a subsequence ndtegl} such that

(4.17) us — w, strongly inL?(0,7T; H).
Now the estimatg (4.13) implies that

(4.18) iis — i, weaklyinL*(0,T;V").

A convergence of the sequerigsg).
From the estimation (4.11) we have

(4.19) w5 — @, weakly inL*(0,T; W),

and from the embedding’ C L?(Q) which is compact, we conclude that there exist a subse-
qguence ;) which satisfies

(4.20) w5 — @, strongly inL*(0, T; L*(12)).

Proof of theorem 4]1All the convergences abovg (4]14) allow us to pass to the limit in the
equations of the systef. From the weak convergende (4.18)i%(0, 7'; V') we have

(b5, v)yy — (6,0),, , YveV,aete(0,T).

The strong convergence of first derivatiug in L2(0, T; H) with the assumptior] (2.17)(b) on
A leads to

(Ae(us(t)), e (v))y — (Ae(ia(t)),e (v)),, VYveV,aete (0,7).

The strong convergence af respectively in the spacég (0, 7; V) andL?(0, T; H) (see|(4.15)
with the property[(2.1]8)(b) imply that

(4.21) (Ge(us(t)), e(v)y) — (Ge(u(l)), e(v))y,
(4.22) Vo eV,a.ete (0,T).
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From the convergenclg) and the strong convergenegiafL?(0, T'; H) with the assump-
tion onp (2.21)(b) we have
(E"Vs(t),e(v))y — (E°Vp(t),e(v));, » YveV,aete (0,7T),
and
J(us(t),v) — j(u(t),v), YveV,aete(0,T).
Therefore, we obtain the equation of displacement field of sy®emRecall now the regular-
ized equation of the electric potential

(’YVQO(;(t), Vf)?—[ - <5€<u6(t)7 vé)?—t + (h5 (ué(t)a §0§<t)) 7£)W = (Q(t)v g)W
V¢ € W,a.e.on(0,7),

the convergence (4.[19), (4]20), (4.14) allow us to pass to the limit on teyNig;(t), V&),
and(Ee(u;(t), VE),,. Remind thats (us(t), ps(t)) is

(hs (us(t), 05(t)) &) = | s (uan(t) = g) dr (¢5(t) — @) € da.

I's
First we have the strong convergenice (#.16)
(4.23) ug, (t) — u,(t), stronglyinL?(T's), a.e. on(0,T),

secondly, we have for a pointwise value R,
Vs (1) = KXo, o0 (r) Whend — 0,
sincey; is Lipshitz continuous with); (0) = 0 we have
s (v = 9| r2ry) < luw = glragry) »
now with the dominated convergence theorem, we deduce that
(4.24) s (uy — g) = kX[o oo (U — g), Strongly inL?(I's).
We also have
|5 (sw = 9) = kX0, 100 (10 = )| o1y
= |5 (s — g) = 5 (s = 9) + U5 (s = 9) = EXpo ool (U = 9] ap
< Y5 (usy — g) — V5 (w — 9)|L2(r3)
+ |95 (s = 9) = EX[o o0 (U = 9)] 2
<k [usy — | oy + 05 (U = 9) = kX000 (4 — 9)|L2(F3) ,
using (4.2B),[(4.24) and the convergences above, we obtain the strong convergence
s (usy — 9) = kX[o 100 (v — ), Strongly inL?(T's), a.e. in(0, 7).
In another hand, since
91 (05 — o) — 1 (0 — o)l 2y < Lo s — lrary)
and from the strong convergenceyafin L2(0,T; W), and trace Theorerp (2]15), we have
1, (95 — o) = ¢ (» — ), stronglyinL*(T;), a.e. on(0,T).
We get now

Vs (usw — 9) D1 (05 — Po) = kX[o 400 (v — 9) DL (¢ — pp) , @€ INL,

and because of the boundedness of the funciions)s; and the dominated convergence theo-
rem, we get

Vs (usy — 9) 91 (05 — o) = EX[o 400 (U — 9) @1 (¢ — ) , Strongly inL?(T's),
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consequently, we have that
hs (us, ps) — 1 (u,p) ,a.e.on(0,7).

We conclude now, that is a solution of the electric potential equatipn (2.35) of the system

Before ending the existence of the solution to the probmrecall the strong convergence
of us tow in L?(0,T; V) and ofas to @ in L?(0, T; H), allow us to obtain the initial conditions
u(0) = ug, u(0) = vq. Itis clear that the uniqueness of solutiamsndy is a consequence
of the uniqueness of the limiErom the limit process, the solutionsand ¢ of the problem
Py have the same regularity of the sequenagsand p5. The proof of the Theorern 4.1 is
complete.p
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