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1. INTRODUCTION

Schwarz algorithms were proposed more than one hundred years ago for proving the solv-
ability of PDEs on a complicated domain. With parallel calculators, this rediscovery of these
methods as algorithms of calculations, based on a modern variational approach. Pierre-Louis
Lions, was the starting point of an intense research activity to develop this tool of calculation,
see, e.g.,[10, 11], and the references theteinl[1,/5,/9, 12, 13].

In this work, we are interested in the error analysis in the maximum norm of obstacle type
problems, quasi-variational inequalities (Q.V.l) related to stochastic inventory problems with
impulse control problem governed by partial differential inequatiohs![2, 3, 4, 7] in the context
of overlapping nonmatching grids: we consider a donaimhich is the union of two overlap-

ping subdomains where each subdomain has its own triangulation.

In section 2, we state the second order elliptic problem with Dirichlet condition, study some
qualitative properties, define the continuous Schwarz sequences for Q.V.I and give their re-
spective finite element counterparts in the context of overlapping grids. In section 3, we prove a
fundamental lemma for two auxiliary sequences and establish a main result concerning the error
estimate of solution in thé>°-norm, taking into account the combination of geometrical con-
vergence, and the error estimatelift-norm of Cortey Dumont [8]. It worth mentioning that

the method presented in this paper is simpler than that introduced in [9]. Finally, In Section 4,
to validate our theory, we present some numerical results for a quasi-variational inequality.

2. SCHWARZ ALGORITHM FOR QUASI-VARIATIONAL |INEQUALITIES

2.1. Some Preliminary Results on the Q.V.I..Let Q be a convex domain inRY with suffi-
ciently smooth boundar§2. We define the variational form, for amyv € H'(Q),

ou Ov ou
(2.1) a(u,v) = /Q < Z aij%a—xj + 1; aj%v + amw) dz,

1<i,j<N

and the differential operator associated with the bilinear fotm)

0 0 0
A=— Z a—%(awa—xz)—i‘ Z aja—l‘j—l—ao,

1<i,j<N 1<j<N
the coefficients:;;(x), a;(z), ap(x) are supposed to be sufficiently smooth ap@r) satisfied
(2.2) ag(x) > 0> 0,Ve € Q.
We also suppose that the bilinear form is continuous and strongly coercive,
(2.3) da>0:a(v,v) > aHvHél(Q),
we are also given right-hand side
(2.4) feL®Q),f >0,
the obstacle\/« of impulse control defined by
(2.5) Mu(z) =k+infu(x + &),z € 2, >0,z +& € Q, k>0,
the operatofl/ mapsL>((2) into itself and possesses the following properties [2]
(2.6) | Mu — Mv||georq) < ||t — v||Le(q), Vu, v € L=(Q),
(2.7) Mu < Mu,whenevern < u
and the nonempty convex set
(2.8) K,(u)={ve H(Q):v=g0ondN,0<v< MuinQ},
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whereg is a regular function defined aif?,
(2.9) gEW™(Q),2<p<o0,g>0.
We consider the following elliptic quasi variational inequality (Q.V.I)

Findu € H'(Q) satisfying
(210) { a<u’y_u> > (f,U—U),vv € Kg(u)

(.,.) denotes the usual inner product/if().

Remark 2.1. In problem({2.10)), the condition: > 0 is added because this appears naturally in
the theory of impulse contradl [2].

Theorem 2.1. [2] Under the preceding notations and conditiofts2) to (2.9), the problem
(2.10) has a unique solution, moreovesatisfies the regularity property € W?(Q),2 < p < co.

Let V}, denote the standard piecewise linear finite element space. The discrete counterpart of
(2.10) consists of finding,, € K (us) solution of

(2.11) a(up, v —up) > (f,v—up), Yo € Kyp(up)
where
(2.12) Kop(up) ={veVy:v=mgonoQ,0 <v <r,Mu,inQ},

7, IS an interpolation operator a2 andry, is the usual finite element restriction operatofin

Let u;, be the discrete solution of Q.V.I

a(up, v —up) > (f,v —up), Yo € Vj,
(2.13) up, = g ONOQ, uy, < rMuy In )
v=mpgono, v < ryMuyin )

in a similar way letu;, be the discrete solution of V.I

a(ﬂh,v — ﬂh) > (f,U —ﬂh),VU eV,
(214) ﬂh = ﬁhﬁonaQ,ﬂh < r,Muy in Q
v = ﬂh'g’onﬁQ,v < r,Muy, in Q

whereg is a regular function defined aif2.
Let us writeoy, (g, Muy) the solution of the problen (2.]13), whergis a mapping froni.>(€2)
into itself. We establish the monotonicity and stability properties of solution.

Lemma 2.2. Let g, g be two functions given and, = o,(g, Muy),u, = ox(g, Muy,) corre-
sponding discrete solutions (.13)) (resp.(2.14)). If g > g, then o, (g, Mup) > o4(q, Muy,).

Proof. Let
e e H'(Q)NLX(Q), ¢ =maz(—¢,0),
we denote byy — ¢~ a continuous mapping oHl(Q) N L*>(Q) into itself, we have
(up, — up)” = max(a, — up, 0) ONOSY,

we can take = uy, + (u;, — )~ as a trial function in(2.13), this gives

(2.15) a(up, (up —up)") > (f, (up —an) ™),
also, forv = @, — (up — w,)~ in (2.14)), we get
(2.16) a(tp, —(up —up)”) > (f, —(up —up) ™),
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so, by addition of2.15) and(2.16|), we obtain

a(up, — dp, (up, —up)”) >0,

and this implies

a((un —un)~, (un —un)”) <0,
asaf(.,.) is coercive this also implies

(up —up)” =0,
thus
Up, = Up,.
|
Remark 2.2. The proof is similar in continuous case.
Proposition 2.3. Under the notations and conditions of preceding lemma, we have
(2.17) [un = Ul Loy < lg = gllLo=o0)-
Proof. Let us pose
¢ =g — gllz= o),
we have
9—39=<1lg = gllz=@),
thus
g<g+9,
by lemmg 2.P, it follows that
on(g, Mup) = on(g + ¢, Muy + ¢),
however
on(g + ¢, Muy, + ¢) = on(g, Muy) + ¢,

from where

on(g, Muyp) — on(g, Muyp) < ¢.
Similarly by interchanging the roles gfandg, we also get

on(g, Muy,) — on(g, Muy,) < ¢.
This completes the demonstratian.

Remark 2.3. The preceding proposition remains valid in continuous case.

Theorem 2.4.[8] Under the preceding notations and conditions, and discrete maximum prin-
ciple assumption, there exists a constant ¢ independent of h such that

(2.18) |u — un |0y < ch?|log h|*.
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2.2. The Continuous Schwarz SequencesConsider the model obstacle problem: fimd:s
Ko(u)(g = 0) such that

(2.19) a(u,v —u) > (f,v —u),Yv € Ko(u).

We decomposg into two overlapping polygonal subdomaifis and(2, such that
Q=0UQ, 0% N0 #£0,

andu satisfies the local regularity condition
U, € W?2P(€;),2 < p < .

We denote by)(2; the boundary of2;, andl’; = 02; N ;. The intersection of; andfj,z' %7
is assumed to be empty.
Let

Vi() = {v e H(Q;)/v=00n0Q; N 0N} ,i=1,2.
Forw € C(I';), we define
V" = {v e Vi(Q)/v=wonTl;},i=12.
Letu® € C°(Q) be the initial value such that
(2.20) a(u’,v) = (f,v),v € H}(Q)
we respectively define the Schwarz sequepée?) on €, such that ' € V"2 solves

2.21) (@t v — ) > (o — ), vo € VD
| uf ™t < Mujin Q0 < Mui in Qy,

n+1
and(u} ™) onQ, such that ! € V' solution of
un+1

(2.22) CLQ(U§+1,U _ ugﬂ) > (fa, v — u?“),‘v’v c VQ( 1)

uy ™ < Mub in Qy,v < Mub in Qy,
where

ou Ov ou ,
ai(u,v) I/ ( Z aij%% + Z aj%v —I—awv) dr,i=1,2
@ \1<ij<N P 1<GEN J

u? = UO in Ql,ug = UO in QQ,U?+1 =01in ﬁ — ﬁl andu;ﬂ =0in ﬁ — ﬁz.

Now, consider a function; € L>(;) be continuous of2; — 9Q; N Q N 9 such that
Aw; = 0in Qi,i=1,2
(2.23) wi — 0onof; — o N
] 1ond, NN
with w; = 0 in Q — Q,. From maximum principle, we havie< w; < 1in €; (see[11]).
We prove a geometrical convergence result.

Theorem 2.5. Under maximum principle assumption, the sequer@gs’), (u5™'),n > 0
produced by the Schwarz algorithm converge geometrically to the solution u of the obstacle
problem [2.1P). More precisely, there exists two constants, €0, 1] such that for alln > 0,

(2.24) Jur — uf L@y < EPESlu — 6| oo (ry),

(2.25) Jug — us | poo(ny < KT REJu — u| Lo (ry),
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Proof. From the maximum principle, we have
lur = ui ™ ey < llur — uf Hzoe ey,

and

lur =i ooy < lug — ugl|zooqry) < Jlwrue — wiug | ey

< flwiug — wiuy ||z (a,) < [Jwius — wiuy || pery)

< lw || zeo oy [tz — U5 (| oo (ry) < [Jwi ] oo ro) [[watta — waug || Loo(ry)

< lwi || poe oy Jwaun — wou || poory) < ||wi || Lo () llwaur — woud || Lo (a)

< Jwi][zoo oy lwauy — woud || oo ryy < {Jwal|Loory) lwr || oo ro) l[ur — uf || oo ry)s
putting

ki = sup {w;(x)/z € 09, N Qi # j} €]0,1[,Vi,j = 1,2,

then

lur = ui o) < Eakallun = uf |y,
by induction, we get

Jur — ™ Lo () < RTES[Jur — i || Loo(ry)

< krkyllu — u®llzry),

whereu} = «" onT'; andul = 0 on 92, N ON.
Similarly

[Jug — USHHL"O(Qz) [z — USLHHL“(H)

||w2u1 - UJQU?HHLOO(FQ) < ||w2u1 - w2u7f+1||L°o(Ql)

[wary — waou ™| ooy < fJwal ooy llun = w ™| Loy
[wall oo oy lwrws — wiui™ || oo,y < [Jwa| oo ey [wre — wiug | oo (ry)

w2 oo (0 [[wite — Wity || Lo (,) < [Jwal Loy |wine — wiug || Lo (ry)

VAN VAN VAN VAN VAR VA

[|wal| Loo () [|[W1 ]| Loo (o) U2 — Uy || Loo(ra) < kikalug — ug|Leo(ry),
by induction, we obtain

luz — uy ™| oo ) kg lup — upll e (ry) < RTES [[waur — waug]| 1= (ry)
kPR lwauy — wauy || pe(y) < kg lwaun — wouy| oo (ry)
kg lun — | pooryy < ATFRS [Jug — uh| ey

KPR (Jug — ug| poeqay) < KTHRS [lug — 6| Loo(ry)

IA A IA A A

k"f“k‘gllu - UOHL‘X’(FQ)ﬂ
which completes the proog

Remark 2.4. The demonstration of theorédm P.5 is an adaptation of the onelin [11] given for the
problem of variational equation. This theorem remains true for the problem introduced in this
paper.
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2.3. The Discretization. Fori = 1,2, let 7" be a standard regular and quasi-uniform finite
element triangulation if2;, h; being the meshsize. We assume that the two triangulations are
mutually independent of2; N €2y, in the sense that a triangle belonging to one triangulation
does not necessarily belong to the other.

Let V},,(©;) be the space of continuous linear functions piecewise-orwhich vanish on

o1 N 09;. Forw € C(I';) we define
Vh(iw) ={v € V,,,(%)/v=00n92 NI, v =7y, (w) onT;},i=1,2,

wherer;,, denotes a suitable interpolation operatod pnWe now define the discrete analogous
of Schwarz sequences.
We also assume that the respective matrices resulting from the discretizations of problems

(2.21) and(2.22)), are M-matrices [6].

- . (un )
Letuf = ry,u” be given, find the sequeneg,' € V, *"*" such that
+1 +1 +1 (ugy,)
(2.26) (11(U17fh1 o —uy) = (fr,o —ug), Yo €V,
uly < g Muly, in T w0 < g Mugy, in T,
i - e .
respectively, find the sequena®'' € V, """ solution of
n+1 n+1 n+1 (uﬁrll)
(2.27) ag (s, v —upy ') > (fo, v —uyt), Yo €V,
Ut < Ty Mgy, in 72,0 <y, Mug,, in 72,

wherery, is a usual restriction operator §iy andul, = wuj in Qy,ud, = up_ in Qs.

3. L>*-ERROR ANALYSIS

This section is devoted to demonstration of main result of this work. For that we start by
introducing two discrete auxiliary sequences and prove a fundamental lemma.

3.1. Definition of two Auxiliary Sequences. Forwgi = ugi, we define the sequentfé‘,fl1 € Vh(fg),
discrete solution of V.I

~n+1 ~n+1 ~n+1 (“g)
{ al(jﬁlhl ;U — Wiy ) Z}Sfl,v — Wy, ), Vo € ‘h/hl
~n M . A :
Wiy S Muty, In T o < Mugy, Iint

(3.1)

un+1 ) )
respectively the sequen(fg‘,f2 le th ) satisfied

n+1
~n+41 ~n+1 ~n+1 (uy™)
(32) az(Uith U — w?hg ) Z (f27 U= w2h2 ),VU S vhz
Wt < M, in 2 o <, MuZ, in T
2ho 2 2hsg ’ 2 2ho )

Notation: In the continuation of this work, we will adopt the following notations.
=1z |2 = Nl-lzee o),
[l = [ zee @y M-z = -z ().

hl - h2 - h,Thl - Thg - ,rh77rh1 = 7Th2 - 7Th'

The following lemma will play a crucial role in demonstration of the main result.
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Lemma3.1.Let(u), (u};t!),i = 1,2 be the sequences defined221)), (2.22)), (2.26), (2.27)
respectively. Then, we have

n+1 n

(3.3) lui ™ =i < >k =@l 4+ lub — @bl
p=1 p=0
n+1 n+1

(3.4) lus™ =My <> ub = @[l + > uf — @[l
p=0 p=1

Proof. Let us reason by recurrence, for= 1 : according to proposition 2.3, we have

@1, — wapll < lwnul — waubyly < Jluh — ugylla < Jup — @ l2,

thus
lur = uipll < lup — @iyl + flug — @52,
in the same way

[ty — ug 2 lJuy — Wapll2 + | Wa), — |2
3 — Wapll2 + [Tauy — Thul,|e

[y — g [l2 + [y — waylh

1 1
Z [y — Wy [l2 + Z luy — @y, 1,
p=0 p=1

for n = 2 : using proposition 2|3, we have

VAN VAN VAN
El

IN

Jui — iyl < fluf — @l + @07, — uiylh
< luf = @iyl + [rnug — mhug)
< luf — @l + [lug — gl
1
< = @l + k= Bl + D b = Tl
p=0
2 1
< Z [uy — Wiyl + Z [y — Wy, |2,
p=1 p=0
and
Jus —udplla < luy — @3ll2 + W3, — udyl2
< luz — oy ll2 + [maud = Thulyle
< luz = @l ll2 + [luf — iyl
2 1
< lud = @3ylle + > Mk — @l + Y lub — @l
p=1 p=0

2 2
< DMk =@l + > Nl — @b
p=1 p=0

Let us now suppose that

n n
lup —uglle < Y llaf — @bl + > llub — @b, |2,
p=1 p=0

AJMAA Vol. 11, No. 1, Art. 10, pp. 1-13, 2014 AIJMAA
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then
it —uf e < ™ — @+ i = el
< ™ — @b+ [mauy — maug, |y
< ™t =Pl A+ (Juh — bl

A
=

and consequently

n+1

n n
P = @+ )l — @l A b — @Bl
p=1 p=0

n
™ = < >l = @l Y Jub — @by e,
p=1 p=0

likewise, using the above estimate, we get

|2

lus™ =g Mle < flug™ — @il + g — ug
< flus ™ =@yl + et = mpady
< flus™t =@ o+ lur T = ui L
n+1 n+1
< 3l =@yl + Y b — @B,
p=1 p=0
Hence,
n+1 n+1
g™ —upt s < Db =@+ D (b — @b,
p=1 p=0
|

3.2. L*>°-Error Estimate.
Theorem 3.2. There exists a constanindependent of. and 4 such that
(3.5) |u; — ult|; < ch®|log hf?,i = 1,2.

Proof. Let us give the proof fof = 1.The case = 2 is similar.
Indeed, lett = max(kq, ko)

lur = ugy < fhuy = g™ s+ g™ =gyl

we use theorein 2.5 and lemmal3.1

n+1 n
< R =+ Y = @+ luh — @l
p=1 p=0
n+1 n
< u® —uh Y =@l 4+ (b — @l
p=1 p=0
n+1 n
< =y Yl = @+ Y b — @,
p=1 p=0
n+1
<

p=1

AJMAA Vol. 11, No. 1, Art. 10, pp. 1-13, 2014
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according to theoren 2.4

Juy —ul i < (ch®|log h|? + ch®|log h)?) + (n + 1)ch®|log h|* + (n + 1)ch?|log h|*
< ch?|log h|* + 2(n + 1)ch?®|log h*.

Now setting
k™ = h,
we obtain
Juy — w1 < ch®|log hf?,
which is the desired error estimage.

Conclusion 1. We have established a convergence order of Schwarz algorithm for two sub-
domains. However, it is worth noting that the approach developed in this paper relies on the
geometrical convergence for the systens (2.21), {2.22), where the cohstat 1] depends
on(2; andI';. The method relies also on the discrete maximum principle. This assumption im-
poses a restriction on bilinear form(., .) as well as the triangulation. In 2-D, for example,
angles of triangles must be acUy@}. The error estimate obtained contains a logarithmic factor
with an extra power oflog h| than expected.

4. NUMERICAL EXPERIMENTATION

In this section, we present some results of a sample numerical test involving nonmatching
overlapping grids. We put

Q = [0,1] x[0,1],V = Hy(Q)
Au = —Au+u
f(z,y) = (2% + 1)sin(7z)sin(7y)
Mu(z) = 14+ inf{u(x+¢&),£>0,z+&€Q},VeeQ
Q= [0,21] x [0,1], Q9 = [x9,1] x [0,1]
d = 11 —29,0< 29 <21 <1

we stop the iteration when
Jufy, —ufy e < 107° and||ufy,, — b, | < 107°.

Let u), = 0 be the initial value. For each macro-iteration (Schwarz iteration) we use on each
subdomain the relaxation iterative method by projection, where the relaxation parameter is
w= 1.5

AJMAA Vol. 11, No. 1, Art. 10, pp. 1-13, 2014 AIJMAA
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I error in{); error in{)y its | ity | ity
d=0.5 1 / / 6| 22| 23
Ty =025 [ 2] 3.4460e — 02(/) 1.4128¢ —02(/) | 6 | 65| 23
hy = 2}“ 3] 8.6500e — 03(3.98) | 3.2638¢ — 03(4.32) | 6 | 250| 67
hy = 5~ |4]2.2461e — 03(3.85) | 8.0498¢ — 04(4.05) | 6 | 885|254
d=0.25 |1 / / 15( 21| 23
ro =05 [2]| 3.3886e —02(/) 1.2371e — 02(/) |[16| 34 | 23
hy 211+1 3| 8.4832¢ — 03(3.99) | 2.9105¢ — 03(4.25) | 17| 143| 67
hy = 5~ |4]2.1911e — 03(3.87) | 7.3943¢ — 04(3.93) | 17| 516 | 254
d=1/3 |1 / / 9] 2221
xe=1/3 2] 4.6320e — 02(/) 2.0774e — 02(/) | 10| 26 | 23
hy 3X211_1 3| 1.2975e — 02(3.57) | 5.2879¢ — 03(3.93) | 10| 125| 28
hy = 525 | 4]3.1613¢ — 03(4.10) | 1.2342¢ — 03(4.28) | 10| 456 129

Table 4.1: Errors and iterations number

it3, indicates the macro-iteration of Schwarz (external iteration),
itq,ity, indicates the micro-iterations of relaxation method by projection for each subdomain
(interior iterations).
[, indicates the refinement level.
In the rowl, the number between bracKetindicates the quotient of the value in the rG- 1)
over the value in the ro. The quotient shows the good precision of the discretization, thus
the convergence order equadlsWe notice that the iterations number of Schwagas bounded
independently of the meshsizes.

k = its 1 2 3 4 5 6
u¥(0.25,0.25) | 0.42204973 | 0.49844705 | 0.50031850 | 0.50036433 | 0.50036546 | 0.50036548
#(0.5,0.5) | 0.69966404 | 0.99328516 | 1.00047814 | 1.00065431 | 1.00065863 | 1.00065873
u*(0.75,0.75) | 0.48780615 | 0.49975636 | 0.50004905 | 0.50005622 | 0.50005639 | 0.50005640

N

By

Table 4.2: iterations of solution fdt; = 55, hy = 55,d = 0.5

AN[1[2[3]4
1726|666
1/3| 9 [10[ 10|10
14| 15|16 17|17

Table 4.3: iterations number of Schwarz

We notice that if the geometrical distandedecreases, the iterations number of Schwarz
its increases, this proves that the iterations number of Schwarz depends imperatively of the
geometrical interfac€; N €2,.
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FiB o

£ axis

Y oaxis 0 o
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Figure 1: Surface of numerical solution
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