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ABSTRACT. If the n − th order differential equation is not exact, under certain conditions, an
integrating factor exists which transforms the differential equation into an exact one. Thus, the
order of differential equation can be reduced to the lower order. In this paper, we present a
technique for finding integrating factors of the following class of differential equations:

Fn

(
t, y, y′, y′′, . . . , y(n−1)

)
y(n) + Fn−1

(
t, y, y′, y′′, . . . , y(n−1)

)
y(n−1) + · · ·+

+ F1

(
t, y, y′, y′′, . . . , y(n−1)

)
y′ + F0

(
t, y, y′, y′′ . . . , y(n−1)

)
= 0.

Here, the functionsF0, F1, F2, · · · , Fn are assumed to be continuous functions with their first
partial derivatives on some simply connected domainΩ ⊂ Rn+1. We also presented some
demonstrative examples.
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1. I NTRODUCTION

Differential equations play a major role in Applied Mathematics, Physics, and Engineering
[5, 7, 9, 11, 15, 16]. To find the general solution of a differential equation is not an easy
problem in the general case. In fact, a very specific class of differential equations can be solved
by using special techniques and transformations. One of these techniques is to reduce the order
of the differential equation by finding a proper integrating factor. Recently, many studies appear
to deal with the problem of existence and finding integrating factors of differential equations.
In [1, 3, 4, 6, 10, 13], the authors investigated the existence of integrating factors for some
classes of second order differential equations. In [4], the authors investigated the existence of
integrating factors ofn-th order system of differential equations which has known symmetries
of certain type.

In [8], the authors improve some symbolic algorithms to compute integrating factors for
a class of third order differential equations. In this paper, we presented a technique to find
integrating factors for the following class of differential equations:

Fn

(
t, y, y′, y′′, . . . , y(n−1)

)
y(n) + Fn−1

(
t, y, y′, y′′, . . . , y(n−1)

)
y(n−1) + · · ·+

+ F1

(
t, y, y′, y′′, . . . , y(n−1)

)
y′ + F0

(
t, y, y′, y′′ . . . , y(n−1)

)
= 0(1.1)

whereF0, F1, F2, · · · , Fn are assumed to be continuous functions with their first partial deriva-
tives on some simply connected domainΩ ⊂ Rn+1. To demonstrate our technique, we present
some illustrative examples. The paper layout: In section2, we prove the main result. In section
3 is devoted for concluding remarks.

2. I NTEGRATING FACTORS AND FIRST I NTEGRALS FOR A CLASS OF n-TH ORDER

DIFFERENTIAL EQUATIONS

In this section, we investigate the existence of certain forms of integrating factors for equation
(1.1) when it is a non exact differential equation. In general, then-th order differential equation

f(t, y, y′, · · · , y(n−1), y(n)) = 0

is called exact if there exists a differentiable functionΨ(t, y, y′, · · · , y(n−1)) = c, such that
d
dt

Ψ(t, y, y′, · · · , y(n−1)) = f(t, y, y′, · · · , y(n−1), y(n)) = 0. In this case,Ψ(t, y, y′, · · · , y(n−1)) =

c is called the first integral off(t, y, y′, · · · , y(n−1), y(n)) = 0, e.g., see, [12, 14]. In [2], the au-
thor gave the explicit conditions for (1.1) to be exact. He also gave an explicit formula for the
first integralΨ

(
t, y, y′, · · · , y(n)

)
= c. Particularly, we have the following theorem:

Theorem 2.1. [2]. Assume thatF0, F1, F2, . . . , Fn are continuous with their first partial deriv-
atives on a simply connected domainΩ in Rn+1. Then the differential equation(1.1) is exact if

∂Fi

∂y(j−1)
=

∂Fj

∂y(i−1)
for all i = 2, 3, . . . , n and j = 1, 2, . . . , i − 1, and

∂Fi

∂t
=

∂F0

∂y(i−1)
for all

i = 1, 2, 3, . . . , n. Moreover, the first integral of(1.1) is explicitly given by

Ψ
(
t, y, y′, · · · , y(n−1)

)
=

∫ t

t0

F0

(
η, y, y′, · · · , y(n−1)

)
dη +

∫ y

y0

F1

(
t0, η, y′, · · · , y(n−1)

)
dη

+ · · ·+
∫ y(n−1)

y
(n−1)
0

Fn (t0, y0, y
′
0, · · · , η) dη = c

wherec is an integrating constant.�

AJMAA, Vol. 16, No. 1, Art. 3, pp. 1-7, 2019 AJMAA

http://ajmaa.org


FINDING INTEGRATING FACTORS AND FIRST INTEGRALS 3

Assume that (1.1) is a non exact differential equation. Then according to the above theorem,
an integrating factorµ(t, y, y′, · · · , y(n−1)) of (1.1) exists if it solves the following system ofn!
first order partial differential equations:

(2.1)



µ(y)
∂Fi(y)

∂t
+

∂µ(y)

∂t
Fi(y) = µ(y)

∂F0(y)

∂y(i−1)
+

∂µ(y)

∂y(i−1)
F0(y),

i = 1, 2, · · · , n,

µ(y)
∂Fi(y)

∂y(j−1)
+

∂µ(y)

∂y(j−1)
Fi(y) = µ(y)

∂Fj(y)

∂y(i−1)
+

∂µ(y)

∂y(i−1)
Fj(y),

i = 2, · · · , n, j = 1, 2, · · · , i− 1

wherey = (t, y, y′, · · · , y(n−1)). Generally, to solve such system of partial differential equa-
tions is not easy. Thus, we consider some special forms of the integrating factor
µ(t, y, y′, · · · , y(n−1)). Particularly, we look for integrating factorsµ(ξ) where

ξ := ξ(t, y, y′, · · · , y(n−1)) = α(t)
n∏

k=1

αk(y
(k−1)).

The functionsα(t) andαk

(
y(k−1)

)
, k = 1, 2, · · · , n are assumed to be differentiable functions.

By substitutingµ(ξ) in (2.1), we get

(2.2)



µ(ξ)∂Fi(y)
∂t

+ µ′(ξ)ξtFi(y) = µ(ξ) ∂F0(y)

∂y(i−1) + µ′(ξ)ξy(i−1)F0(y),

i = 1, 2, · · · , n,

µ(ξ) ∂Fi(y)

∂y(j−1) + µ′(ξ)ξy(j−1)Fi(y) = µ(ξ)
∂Fj(y)

∂y(i−1) + µ′(ξ)ξy(i−1)Fj(y),

i = 2, · · · , n, j = 1, 2, · · · , i− 1

whereµ′(ξ) = dµ
dξ

andξη denotes to∂ξ
∂η

. Equivalently, we have

(2.3)



µ′(ξ)

µ(ξ)
=

∂F0(y)

∂y(i−1) − ∂Fi(y)
∂t

ξtFi(y)− ξy(i−1)F0(y)
, i = 1, 2, · · · , n,

µ′(ξ)

µ(ξ)
=

∂Fj(y)

∂y(i−1) − ∂Fi(y)

∂y(j−1)

ξy(j−1)Fi(y)− ξy(i−1)Fj(y)
, i = 2, · · · , n, j = 1, 2, · · · , i− 1.

Hence, an integrating factorµ(ξ) of equation (1.1) exists if

∂F0(y)

∂y(i−1) − ∂Fi(y)
∂t

ξtFi(y)− ξy(i−1)F0(y)
, i = 1, 2, · · · , n

and
∂Fj(y)

∂y(i−1) − ∂Fi(y)

∂y(j−1)

ξy(j−1)Fi(y)− ξy(i−1)Fj(y)
, i = 2, · · · , n, j = 1, 2, · · · , i− 1

are all equal and they are functions inξ. Thus, we have the following theorem:

Theorem 2.2. Let ξ = α(t)
n∏

k=1

αk(y
(k−1)) whereα(t) and αk

(
y(k−1)

)
, k = 1, 2, · · · , n are

differentiable functions. Assume thatF0(y), F1(y), F2(y), . . . , Fn(y) are continuous functions
with their first partial derivatives on some simply connected domainΩ ⊂ Rn+1. Moreover,
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assume that Equation(1.1) is a non exact differential equation. Then it admits a non constant
integrating factorµ(ξ) if

∂F0(y)

∂y(i−1) − ∂Fi(y)
∂t

ξtFi(y)− ξy(i−1)F0(y)
, i = 1, 2, · · · , n

and
∂Fj(y)

∂y(i−1) − ∂Fi(y)

∂y(j−1)

ξy(j−1)Fi(y)− ξy(i−1)Fj(y)
, i = 2, · · · , n, j = 1, 2, · · · , i− 1

are all equal and they are functions inξ. In this case, the integrating factor is explicitly given
by

µ(ξ) = exp

{∫ ∂F0(y)
∂y

− ∂F1(y)
∂t

ξtF1(y)− ξyF0(y)
dξ

}
. �

Corollary 2.3. Assume that
F0(y), F1(y), F2(y), · · · , Fn(y) are continuous functions with their first partial derivatives on
some simply connected domainΩ ⊂ Rn+1. Moreover, assume that Equation(1.1) is a non exact
differential equation. Then it admits a non constant integrating factorµ(t) if

I) for i = 2, · · · , n and forj = 1, 2, · · · , i− 1, we have

∂Fj(y)

∂y(i−1)
=

∂Fi(y)

∂y(j−1)
,

and
II) for i = 1, 2, · · · , n, the functions[

∂F0(y)

∂y(i−1)
− ∂Fi(y)

∂t

]
/ [Fi(y)]

are equal and they are functions int.

In addition, the integrating factor is explicitly given by

µ(ξ) = exp

{∫ [
∂F0(y)

∂y
− ∂F1(y)

∂t

]
/ [F1(y)] dξ

}
. �

Example 2.1.Consider the followingn-th order linear differential equation:

(2.4) Pn(t)y(n) + Pn−1(t)y
(n−1) + · · ·+ P2(t)y

′′ + P1(t)y
′ + P0(t)y = h(t)

wherePi(t), i = 0, 1, 2, · · · , n are non-zero differentiable functions on some open interval
(a, b) ⊂ R, andh(t) is continuous function on(a, b). ThenFn = Pn(t),
F(n−1) = P(n−1)(t), · · · , F1 = P1(t), F0 = P0(t)y − h(t). Clearly,

∂Fj(y)

∂y(i−1)
=

∂Fi(y)

∂y(j−1)
= 0, i = 2, · · · , n andj = 1, 2, · · · , i− 1.

Moreover, ∂F0(y)

∂y(i−1) = 0, ∀i = 2, · · · , n, ∂Fi(y)
∂y

= P ′
i (t), ∀i = 1, · · · , n, and ∂F0(y)

∂y
= P0(t).

Hence, to have an integrating factor int, we must have

P ′
n(t)

Pn(t)
= · · · = P ′

2(t)

P2(t)
=

P ′
1(t)− P0(t)

P1(t)
.

Therefore,Pn(t), · · · , P2(t) must be linearly dependent functions. Moreover,P0 andP1 must
satisfyW (P1, P2)(t) = P0(t)P2(t) whereW (P1, P2) is the Wronskian’s ofP1 andP2. In this
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case, the integrating factorµ(t) = 1
Pn(t)

. Hence, for non-zero and differentiable functionsP (t),
P1(t) andP0(t) the differential equation

anP (t)y(n) + an−1P (t)y(n−1) + · · ·+ a2P (t)y′′ + P1(t)y
′ + P0(t)y = h(t),

has an integrating factorµ(t) = 1
P (t)

provided thatW (P1, P )(t) = P0(t)P (t). Hence, we get
P0

P
=

(
P1
P

)′
, and so, the above differential equation becomes

any
(n) + an−1y

(n−1) + · · ·+ a2y
′′ +

P1(t)

P (t)
y′ +

(
P1(t)

P (t)

)′

y =
P (t)

h(t)
.

Thus, the first integral of(2.4) is given by

any
(n−1) + an−1y

(n−2) + · · ·+ a3y
′′ + a2y

′ +
P1(t)

P (t)
y =

∫ t h(s)

P (s)
ds + c

wherec is the integrating constant.

Example 2.2.Consider the Initial value problem

e−ty′′ + (cos y)(1 + 2e−t)y′ + sin(y) = 0, y
(π

2

)
= y′

(π

2

)
= 0.

ThenF2((t, y, y′) = e−t, F1((t, y, y′)(cos y)(1 + 2e−t), and F0((t, y, y′) = sin(y). From the

above corollary, an integrating factor int for this equation if∂F1

∂y′
= ∂F2

∂y
, and

(
∂F0

∂y
− ∂F1

∂t

)
/F1 =(

∂F0

∂y′
− ∂F2

∂t

)
/F2 and they are functions int. Clearly, these conditions hold and(

∂F0

∂y
− ∂F1

∂t

)
/F1 =

(
∂F0

∂y′
− ∂F2

∂t

)
/F2 = 1. Thus, and integrating factor for this equation exists

and it equals toet. This integrating factor transforms the above equation into

y′′ + (cos y)(et + 2)y′ + sin(y)et = 0.

Due to Theorem 2.1 this equation is exact and its first integral is given by

y′ + (sin y)(et + 2) = 0

which can be solved by separating the variables.

Corollary 2.4. Assume thatF0(y), F1(y), F2(y), . . . , Fn(y) are continuous functions with their
first partial derivatives on some simply connected domainΩ ⊂ Rn+1. Moreover, assume that
Equation(1.1) is a non exact differential equation. Then it admits a non constant integrating
factorµ(y(k−1)), k = 1, 2, · · · , n, if the following two conditions hold:

I)
∂Fi

∂t
=

∂F0

∂y(i−1)
for i = 1, 2, · · · , n, and

∂Fj(y)

∂y(i−1)
=

∂Fi(y)

∂y(j−1)
for i = 2, 3, · · · , n, j =

1, 2, · · · , i− 1, and i, j 6= k; and
II) for i = 1, 2, · · · , k − 1, k + 1, · · · , n the functions[

∂Fk(y)

∂y(i−1)
− ∂Fi(y)

∂y(k−1)

]
/ [Fi(y)]

and the function [
∂Fk(y)

∂t
− ∂F0(y)

∂y(k−1)

]
/ [F0(y)]

are all equal and they are functions iny(k−1).
In addition, the integrating factor is explicitly given by

µ(ξ) = exp

{∫ [
∂Fk(y)

∂t
− ∂F0(y)

∂y(k−1)

]
/ [F0(y)] dξ

}
. �

AJMAA, Vol. 16, No. 1, Art. 3, pp. 1-7, 2019 AJMAA

http://ajmaa.org


6 MOHAMMADKHEER AL-JARARHA

Example 2.3.Consider the following third order differential equation:

(2.5) y3y′′′ + y3y′′ − 2ty′ + y = 0.

ThenF3 = y3, F2 = y3, F1 = −2t, andF0 = y. Hence,F2y′′ = F3y′ = 0, F0y′′ = F3t = 0,
F0y′ = F2t = 0, 0 = F1y′ 6= F2y = 3y2, 0 = F1y′′ 6= F3y = 3y2, and−2 = F1t 6= F0y = 1.
By applying the above corollary, an integrating factor in terms ofy exists for this equation.
Particularly, µ(y) = y−3. By Multiplying(2.5)byµ(y) = y−3, we get

y′′′ + y′′ − 2ty−3y′ + y−2 = 0.

Clearly, this differential equation is exact. Moreover, its first integral is

y′′ + y′ + ty−2 = c

wherec is an integrating constant.

3. CONCLUDING REMARKS

In this paper, we investigated the existence of integrating factors of the following class of
third order differential equations:

Fn

(
t, y, y′, y′′, . . . , y(n−1)

)
y(n) + Fn−1

(
t, y, y′, y′′, . . . , y(n−1)

)
y(n−1) + · · ·+

+ F1

(
t, y, y′, y′′, . . . , y(n−1)

)
y′ + F0

(
t, y, y′, y′′ . . . , y(n−1)

)
= 0(3.1)

whereF0, F1, F2, · · · , Fn are continuous functions with their first partial derivatives on some
simply connected domainΩ ⊂ Rn+1. Particularly, we proved some results related to the exis-
tence of integrating factors of (3.1). We also presented some illustrative examples. We remark
that these results not only useful for finding integrating factors for (3.1) analytically but also
computationally. In fact, we can check the validity of the conditions in our results by using
the symbolic toolboxes in different mathematical softwares, e.g., MAPLE and MATLAB soft-
wares. Also, by using these symbolic toolboxes, we can find the integrating factors of (3.1) by
using the explicit forms given in our results. Following the same procedure described in the
paper, we can also find different forms of integrating factor for (3.1). For example,µ(ξ) where

ξ = α(t) +
n∑

k=1

αk

(
y(k−1)

)
.
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