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ABSTRACT. The goal of this work is to examine the numerical solution of linear Volterra-
Fredholm integral equations of the second kind using the first, second, third and fourth Cheby-
shev polynomials. Noting that, the approximate solution is given in the form of series which
converges to the exact one. Numerical examples are compared with other methods, in order to
prove the applicability and the efficiency of this technical.
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1. I NTRODUCTION

Integral equations, leads to appear some phenomenon in many areas of scientific fields such
as mathematical biology, chemical kinetics and fluid dynamics. Also we can transform equa-
tions occur of scattering and radiation of surface water wave based on ordinary differential
equation of the second order with boundary conditions into a Volterra-Fredholm integral equa-
tions of the form.

(1.1) ϕ(x)−
∫ x

a

k1(x, t)ϕ(t)dt−
∫ b

a

k2(x, t)ϕ(t)dt = f(x),

with a given functionk(x, t) and a functionf(x), the kernelk(x, t) is bounded ina ≤ x, t ≤ b,
and value1 is not an eigenvalue of(1.1) , the functionϕ(x) is the unknown function to be
determined. Many authors are launched to solve this kind of equations by different methods,
where we find a moving least square method and Chebyshev polynomials in [2] and an Adomian
decomposition using maple in [3], the authors in [7, 8, 9] use the Chebyshev, Euler series and
quadratic numerical methods to solve the Fredholm integral equations. In [4, 10] the authors
estimate the density functionϕ(x) by means of Legendre and the first Chebyshev polynomials.

For this study we replace the functionϕ(x) by the four Chebyshev polynomials and compare
the accuracy of the estimation of the unknown function with many numerical examples.

2. CHEBYSHEV POLYNOMIALS

1- The first-kind polynomial Tn

The Chebyshev polynomialTn(x) of the first kind is a polynomial inx of degreen; defined
by the relation

(2.1) Tn(x) = cos nθ when x = cos θ,

wherex ∈ [−1, 1] , this involves that the corresponding variableθ ∈ [0, π] . It is easy to see that
T0(x) = 1, T1(x) = x and by the recurrence formula satisfied by Chebyshev polynomials

cos nθ + cos(n− 2)θ = 2 cos θ cos(n− 1)θ,

we obtain the fundamental relation

Tn(x) = 2xTn−1(x)− Tn−2(x), n = 2, 3, ....

Noting that the functions{Tn(x), n = 0, 1, 2, ....} form an orthogonal system on the interval

[−1, 1] with respect to the weightw(x) =
1√

1− x2
and so the polynomial systemSn(x) given

by{
S0(x) =

√
1

π
T0(x), S1(x) =

√
2

π
T1(x), S2(x) =

√
2

π
T2(x), ...Sn(x) =

√
2

π
Tn(x)...

}
,

form an orthonormal system on the interval[−1, 1] with respect to the weightw(x) =
1√

1− x2
.

In other words

〈Sk(x), Sl(x)〉 =

1∫
−1

Sk(x)Sl(x)√
1− x2

dx =

{
0 if k 6= l
1 if k = l

2- The second-kind polynomialUn
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The Chebyshev polynomialUn(x) of the second kind is a polynomial inx of degreen; defined
by the relation

(2.2) Un(x) =
sin(n + 1)θ

sin θ
when x = cos θ

The terms recurrence formula satisfied by Chebyshev polynomials is the translation of the
elementary trigonometric identity

sin(n + 1)θ + sin(n− 1)θ = 2 cos θ sin nθ,

which gives
Un(x) = 2xUn−1(x)− Un−2(x), n = 2, 3, ....

With
U0(x) = 1, U1(x) = 2x

Noting that the functions{Un(x), n = 0, 1, 2, ....} form an orthogonal system on the interval
[−1, 1] with respect to the weightw(x) =

√
1− x2 and so the polynomial systemSn(x) given

by{
S0(x) =

√
2

π
U0(x), S1(x) =

√
2

π
U1(x), S2(x) =

√
2

π
U2(x), ...Sn(x) =

√
2

π
Un(x)...

}
,

form an orthonormal system on the interval[−1, 1] with respect to the weightw(x) =
√

1− x2.
In other words

〈Sk(x), Sl(x)〉 =

1∫
−1

Sk(x)Sl(x)
√

1− x2dx =

{
0 if k 6= l
1 if k = l

3- The third-kind polynomial Vn

The Chebyshev polynomialVn(x) of the third kind is a polynomial inx of degreen; defined
by the relation

(2.3) Vn(x) =
cos(n + 1

2
)θ

cos 1
2
θ

when x = cos θ

The three term recurrence formula satisfied by Chebyshev polynomials is the translation of
the elementary trigonometric identity

cos(n +
1

2
)θ + cos(n− 2 +

1

2
)θ = 2 cos θ cos(n− 1 +

1

2
)θ,

which becomes
Vn(x) = 2xVn−1(x)− Vn−2(x), n = 2, 3, ....

With
V0(x) = 1, V1(x) = 2x− 1

Noting that the functions{Vn(x), n = 0, 1, 2, ....} form an orthogonal system on the interval

[−1, 1] with respect to the weightw(x) =

√
1 + x

1− x
and so the polynomial systemSn(x) given
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by{
S0(x) =

√
1

π
V0(x), S1(x) =

√
1

π
V1(x), S2(x) =

√
1

π
V2(x), ...Sn(x) =

√
1

π
Vn(x)...

}
,

form an orthonormal system on the interval[−1, 1] with respect to the weightw(x) =

√
1 + x

1− x
.

In other words

〈Sk(x), Sl(x)〉 =

1∫
−1

Sk(x)Sl(x)

√
1 + x

1− x
dx =

{
0 if k 6= l
1 if k = l

4- The fourth-kind polynomial Wn

The Chebyshev polynomialWn(x) of the fourth kind is a polynomial inx of degreen; defined
by the relation

(2.4) Wn(x) =
sin(n + 1

2
)θ

sin 1
2
θ

when x = cos θ

The three term recurrence formula satisfied by Chebyshev polynomials is the translation of
the elementary trigonometric identity

sin(n +
1

2
)θ + sin(n− 2 +

1

2
)θ = 2 cos θ sin(n− 1 +

1

2
)θ,

which becomes
Wn(x) = 2xWn−1(x)−Wn−2(x), n = 2, 3, ....

With
W0(x) = 1, W1(x) = 2x + 1.

Noting that the functions{Wn(x), n = 0, 1, 2, ....} form an orthogonal system on the inter-

val [−1, 1] with respect to the weightw(x) =

√
1 + x

1− x
and so the polynomial systemSn(x)

given by{
S0(x) =

√
1

π
W0(x), S1(x) =

√
1

π
W1(x), S2(x) =

√
1

π
W2(x), ...Sn(x) =

√
1

π
Wn(x)...

}
,

form an orthonormal system on the interval[−1, 1] with respect to the weightw(x) =

√
1− x

1 + x
.

In other words

〈Sk(x), Sl(x)〉 =

1∫
−1

Sk(x)Sl(x)

√
1− x

1 + x
dx =

{
0 if k 6= l
1 if k = l

3. DISCRETIZATION OF INTEGRAL EQUATION

Applying a collocation method to the equation(1.1) in order to discredit and convert this
equation to a system of linear equations. For this latter, supposing thata = −1 andb = 1 and
approximate the unknown functionϕ(x) by a finite sum of the form

(3.1) ϕ(x) =
N∑

k=0

ckSk(x),
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whereSn(x) denotes the nth Chebyshev polynomial of the first, second, third or fourth kind.
After substitution of the expansion(3.1) into the equation(1.1) this latter becomes an approxi-
mate equation as

(3.2)
N∑

k=0

αkSk(x)−
∫ x

a

k1(x, t)
N∑

k=0

αkSk(t)−
∫ b

a

k2(x, t)
N∑

k=0

αkSk(t) = f(x).

Choosing the Fourier’s coefficientsαk such that(3.2) is satisfied on the interval[−1, 1]. For
this technical we take the equidistant collocation points as follows

(3.3) tj = −1 +
2j

N
, j = 0, 1, ...N,

and define the residual as

(3.4) RN(x) =
N∑

k=0

αkSk(x)−
∫ x

a

k1(x, t)
N∑

k=0

αkSk(t)−
∫ b

a

k2(x, t)
N∑

k=0

αkSk(t)− f(x)

Then, by imposing conditions at collocation points

(3.5) RN(xj) = 0, j = 0, 1, ....N,

the integral equation(3.2) is converted to a system of linear equations.

Theorem 3.1.Suppose that for the equation(1.1)

we have

(1) f ∈ C ([a, b]) , k1 (x, t) ∈ C (D1) with D1 = {(x, t) ∈ R2; a ≤ t ≤ x ≤ b}
(2) ϕ ∈ C ([a, b]) , k2 (x, t) ∈ C (D2) with D2 = [a, b]× [a, b]
(3) M1 = max

D1

k1 (x, t) ; M2 = max
D2

k2 (x, t)

(4) There exists a contantc > 0 such that

1

c

[
M1 + M2e

c(b−a)
]

< 1.

Then the equation (1) admits a unique solutionϕ ∈ C ([a, b]) .

Proof. Application of the fixed point theory. See [6]

Theorem 3.2.LetA : X → X be compact operator and suppose that the equation

(3.6) (I − A)ϕ = f,

admits a unique solution.For the projectionsPn X → Xn such that‖PnA− A‖ → 0, n →
∞.The approximate equation

(3.7) ϕn − PnAϕn = Pnf,

has a unique solution for allf ∈ X with sufficiently largen,besides

(3.8) ‖ϕ− ϕn‖ ≤ M ‖ϕ− Pnϕ‖ ,

with some positive constantM depending onA.
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Proof
As it is known for all sufficiently largen the inverse operators(I − PnA)−1 exist and are

uniformly bounded, see [1, 5]. To verify the error bound, we apply the projection operatorPn

to the equation(3.6) and get

(3.9) Pnϕ− PnAϕ = Pnf,

or again

(3.10) ϕ− PnAϕ = Pnf + ϕ− Pnϕ.

Subtracting(3.10) from (3.7) we find

(I − PnA)(ϕ− ϕn) = (I − Pn)ϕ.

Hence the estimate(3.8) follows.

4. NUMERICAL EXAMPLES

Example 1
Consider the Fredholm integral equation

ϕ(x)−
∫ x

0

(x + t)ϕ(t)dt−
∫ 1

0

(x− t)ϕ(t)dt = f(x),

where the functionf(x) is chosen so that the solutionϕ(x) is given by

ϕ(x) = x3

Applying the second Chebyshev polynomialTn(x) to approximate the solutionϕ(x), that is
to sayϕN(x) solution of the system of linear equations forN = 20

Points ofx Exact sol Approx sol Error Error [3]
0.1000 1.0000e-003 9.9997e-04 2.7733e-08 2.2180e-04
0.2000 8.0000e-03 7.9999e-03 2.7743e-08 3.4990e-04
0.4000 6.4000e-02 6.3999e-02 3.0414e-08 1.9947e-03
0.6000 2.1600e-01 2.1600e-01 3.7607e-08 4.2426e-03
0.8000 5.1200e-01 5.1199e-01 5.1990e-08 6.4507e-03
1.0000 1.0000e+00 9.9999e-01 7.9374e-08 6.2804e-03

Table 1.The exact and approximate solutions of example 1
in some arbitrary points, using the first Chebyshev polynomialTn(x)

Example 2
consider the linear Volterra–Fredholm integral equation,

ϕ(x)−
∫ x

0

(x− t)ϕ(t)dt−
∫ 1

0

xϕ(t)dt = f(x),

where the functionf(x) is chosen so that the solutionϕ(x) is given by

ϕ(x) = xex.

Applying the second Chebyshev polynomialUn(x) to approximate the solutionϕ(x), that is
to sayϕN(x) solution of the system of linear equations forN = 20
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Points ofx Exact sol Approx sol Error Error [3]
0.1000 1.1051e-01 1.1051e-01 3.4955e-09 1.1984e-03
0.2000 2.4428e-01 2.4428e-01 7.3223e-09 2.4176e-03
0.4000 5.9672e-01 5.9672e-01 1.6285e-08 5.0039e-03
0.6000 1.0932e+00 1.0932e+00 2.7624e-08 7.9393e-03
0.8000 1.7804e+00 1.7804e+00 4.2272e-08 1.1428e-02
1.0000 2.7182e+00 2.7182e+00 6.1421e-08 1.5715e-02

Table 2.The exact and approximate solutions of example 2
in some arbitrary points, using the second Chebyshev polynomialUn(x)

Example 3
Consider the Volterra-Fredholm integral equation

ϕ(x)−
∫ x

0

cos(x− t)ϕ(t)dt−
∫ 1

0

sin(x− t)ϕ(t)dt = f(x),

where the functionf(x) is chosen so that the solutionϕ(x) is given by

ϕ(x) = ex.

Applying the third Chebyshev polynomialVn(x) to approximate the solutionϕ(x), sayϕN(x)
solution of the system of linear equations forN = 20

Points ofx Exact sol Approx sol Error Error [2]
0.0000 1.0000e+00 1.0000e+00 1.0215e-08 1.0000e-04
0.2000 1.2214e+00 1.2214e+00 7.6344e-09 1.0000e-04
0.4000 1.4918e+00 1.4918e+00 3.6767e-09 1.0000e-04
0.6000 1.8221e+00 1.8221e+00 1.8910e-09 1.0000e-04
0.8000 2.2255e+00 2.2255e+00 9.3059e-09 1.0000e-04
1.0000 2.7182e+00 2.7182e+00 1.8804e-08 1.0000e-04

Table 3.The exact and approximate solutions of example 3
in some arbitrary points, using the third Chebyshev polynomialVn(x)

Example 4
Consider the Fredholm integral equation

ϕ(x)−
∫ x

−1

(xt) ϕ(t)dt−
∫ 1

−1

2 cosh(x + t)ϕ(t)dt = f(x),

where the functionf(x) is chosen so that the solutionϕ(x) is given by

ϕ(x) =
cosh x

sinh 2 + 1
.

Applying the fourth Chebyshev polynomialWn(x) to approximate the solutionϕ(x), say
ϕN(x) solution of the system of linear equations forN = 20
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Points ofx Exact sol Approx sol Error
-1.0000 3.3350e-01 3.3350e-01 1.1299e-07
-0.6000 2.5621e-01 2.5621e-01 1.0667e-07
-0.2000 2.2046e-01 2.2046e-01 9.6093e-08
0.0000 2.1612e-01 2.1612e-01 9.3194e-08
0.4000 2.3365e-01 2.3365e-01 1.0029e-07
0.8000 2.8905e-01 2.8905e-01 1.4034e-07
1.0000 3.3350e-01 3.3350e-01 1.8618e-07

Table 4.The exact and approximate solutions of example 4
in some arbitrary points, using the fourth Chebyshev polynomialWn(x)

5. CONCLUSION

In this work, we assume that the unknown the functionϕ(x) may be approximated by a finite
sum of four Chebyshev polynomials. Substituting this finite sum into the Volterra-Fredholm
integral equation in order to obtain a system of linear equations withN + 1 unknowns. The
comparison of examples with other methods shows its efficiency of this technical
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