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2 A. SOGLOAND K. W. HOUEDANOU AND J. ADETOLA

1. INTRODUCTION

The Cahn-Hilliard(CH) equation in its original formulation, proposed in [8] 9, 3] describes
the dynamics of phase separation in binary alloys. It has been used also as a phenomenological
model in several different areas, from the description of multicomponent polymeric systems in
[26], and lithium-ion batteries in [33], to the modeling of nanoporosity during dealloying in [4],
or inpainting of binary images in [31], and even to the formation of Saturn rings In [22]. Re-
cently, CH type equations have also been employed to describe pattern formation in biological
systems (see, for instance, [22]) 24]) and diffuse interface tumor growth madels, [29, 17]. In
particular, aCH equation with degenerate mobility, obtained from the application of mixture
theory to solid tumors, is described in [32]. The Cahn-Hilliard equation is indeed a funda-
mental equation and an essential building block in the phase field theory for moving interface
problems (cf.[[28]), it Adaptive methods for the Cahn-Hilliard equation is often combined with
other fundamental equations of mathematical physics such as the Navier-Stokes equation (cf.
[12,[19,[25] and the references therein) to be used as diffuse interface models for describing
various interface dynamics, such as flow of two-phase fluids, from various applications.

In [2], Alain Miranville studies the Cahn-Hilliard equation, as well as some of its variants.
Such variants have applications in biology and image inpainting. A Wasserstein approach to the
numerical solution of the one-dimensional has been analysedlin [13] and a non-local version
in a two-component incompressible and immiscible mixture with linear mobilities has been
studied in[10]. These authors have showed that time-discrete approximations by means of the
incremental minimizing movement scheme converge to a weak solution in the limit. In the
paper[18], an optimal control problem for a two-dimensional Cahn-Hilliard-Darcy system with
mass sources that arises in the modeling of tumor growth has been analysed.

In this paper, we propose an approach based on optimal transportation, to study existence and
uniqueness of solution for a class of non-linear parabolic biharmonic equations in the probabil-
ity space under the Neumann boundary condition, say the proplem|(T1.]1)-(1.3):

/

D L = divn (Va(Dalp) ¥ )PV Alp)

1.2)  p(0,2) = pylz) in Q,
(1.3) pValp) v = p|Va(Au(p) — ¥ (p)IP2Va(Aulp) — ¢ (p)) v =0 on [0,+00) x I

(p))) in [0,400) x €,

wherep > 1 is a constant and : [0,4+00) — R is a convex function of clas€?, andQ2 c RY,

a bounded domain with smooth bound&®. Here, the initial datunp, : 2 — (0, +o0) is a proba-

bility density function. Of course, depending on the features @indp, equations[(T]1)-(1}3) occurs

in the modeling of the evolution of a broad range of physical and biological phenomena having non-
homogeneous properties such as, the interaction of particles, the flow of electrorheological fluids, fluids
with temperature-depending viscosity, flow in porous non-homogeneous and anisotropic media and im-
age processing.

In a recent work, some authors established the existence and the uniqueness of weak sofutipn of (1.1)-
(1.3) for different values oV andp = 2, see[[8| 9] B].

Optimal transportation method on the space of measures have demonstrated to be a valuable new
approach in time-step approximation of nonlinear diffusion problems since the pioneer works of Otto
[20] and Jordan-Kinderleher-Otto [21]. Today, a very broad fields on mathematics research such as,
Partial Differential Equations, Fluids mechanics , Shape optimization to quote just a few, have been
impacted by optimal transportation method. One can see for instance the workslin ([1],[5], [6].[7], [15],
[16],[20], [21], [34)]) . In [20], Jordan, Kinderlehrer and Otto have studied existence of solutions of the
heat equation:

Ip(t, x)

(1.4) e Agp(t,z), in [0, +00) x RY.
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For their purpose, they use a descent algorithm in the probability space endowed ith\theserstein
distancé¥ to construct the approximate solutions[of {1.4).[In [1], M. Agueh used a variational approach
similar as in[[20] to prove existence of solutions for ghparabolic equation:

Oeltr)  — div, (p(taw)\Vzwl(p(t,x))lp‘2va:1//(p(t,a:))) in [0, 400) x €,
(1.5) | p(0,2) =py(x) in @,
p(t,2)|Var) (p(t, ) P2Vt (p(t,2)) - v =0 on [0, +00) x 0L,

with p a constant, angd > 1.
Our purpose is to investigate at the light of some previous works of[1], [20], the case of non-homogeneous
equations induces byyabiharmonic operator, using the optimal transportation approach. From the best
of our knowledge, our approach contrasts with other treatments in the literature for the class of equations
under consideration, which generalizes the work [13, 10].

For the sake of completeness, we recall below some tools related to our approach and of interest for
this work. Thus, let’s consider the following Monge problem

(1.6) : inf /\T ) — x|%pdzx,
Typ1=py

wherep,, p, are two probability density oft andg = ﬁ satlsfyll) + 5 = 1. The conditionl’yp; = p,
say that: For all continuous functiah: 2 — R, we have

/¢ %w—/¢ Doy

The Monge problen] (1}6) can be associated to the Kantorovich problem

L.7) (K) : inf { [ -l e H(pl,pﬁ},

Y

which admits a solutior,.

HereIl(p,, p,) denote the set of all probability measures(nx Q2 whose marginals arg, and p,.

Both the Monge and Kantorovich’s formulation play a central role in our approach of the time-step
approximation of solutions of the problem ([L.1).

Indeed, we fixh > 0 to be a time step and assume thpgtis a probability density o). Define py,,

k € N* as a solution of the variational problem

1
1. P.): inf <I(p):=F d
1.9 = int {10)= B) + Wi}
where
1
19) E0) = [ (40) 4+ 3V20)F) o
andW, is theq Wasserstein metric defined by
(1.10) Wilpopn) = _int [ o= ylran.
YEll(ppr—1) JaxQ

Herell(p, p;,_;) is the set of all probability measures fnx 2 whose marginals areandp;,_ ;.
We prove in sectiorf {3) that the sequeripg), satisfies the equation

aan) PP iy L V(B0 ~ ¥ ()P Ve Be) v (0) } = olh),

weakly, wheren(h) tends to) whenh tends to0. Accordingly equation(1.11) shows that the sequence
(pr)k is a time discretization of (7).1)-(1.3).
We definep” as it follows

ht,x) = pplx) i (t2) € [k bk + 1)) x Q,
(142 {on 20 & G lorn
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and we show that the sequer(@#),, converges weakly tp = p(t, 2) which solves the parabolic equa-
tions [1.1){.B) weakly. Moreover, we use the transportation method to investigate the existence of local
vanishing property of our problem.

This paper is organized as it follows: sectjgn 2 is devoted to the preliminary tools useful throughout
the paper and in secti¢n 3, we establish the existence and the uniqueness of solution for the variational
problem(Py) and next prove that the Euler-Lagrange equation {1.11) is satisfies. In s@ction 4, we es-
tablish our convergence results and in sedtion 5 the existence and the uniqueness repulis [for|(1.1)-(1.3)
are stated. We study in sectiph 6 the asymptotic behavior of the solution of the parabolic bi-harmonic
problem. We offer our conclusion and the further works in se¢tjon 7.

2. PRELIMINARIES

2.1. Main assumptions. Throughout this work, we will assume the following:
(11) ¥ : [0, +00) — Ris convex function such that(0) = 0,

(¥2) ¥ € C2((0, +00)),
(13) t — tVy(t~V) is convex and decreasing,
(Hp,) : pois a probability density of2 such that,
2
(2.1) E(py) == /Q (1!)(,00) + W) dx < +o0.

2.2. Lebesgue-Sobolev spacedlVe recall in this section some definitions and fundamental properties
of the Lebesgue and Sobolev space.

Definition 2.1. Let p be a probability measure dn, andp > 1 a constant. We denote by, () the
Lebesgue space defined by :

(2.2) LE(Q) = {u Q- R;/ |u(2)|P p(z)dx < +oo} ,
Q

with the norm

23 lullzgior = [ latePoterie )

for all uw € LH(Q).
We denote bwpl’p((z) the Sobolev space defined by

(2.4) W, P(Q) == {u € Lh(Q), |Vu| € Lh(Q)}
equipped with the norm
(2.5) lullyro g = lull iz + Vel @)

It is well known thatZp(©2) and W,}’p (©2) are Banach spaces respectively with the nofmg (2.3) and

23).
We denote by, the conjugate op which is defined by
__p
q o1
Proposition 2.1. (Holder inequality). Letp € P(2) be a probability density angd > 1, ¢ > 1 two
constants such that + & = 1.

If u e LE(Q) andv € LE(Q), then:

/Q [u(2)o(@)|p(2)dz < Jull ey 1ol 22y
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Furthermore, ifp1, p2, p3 are such thatpl—1 = p% + p%, we have
vl o) < 2llull prz o VIl 23 (@)
foru € LE?(Q2) andv € L (Q).

Proposition 2.2. Let p € P(Q2) be a probability density ang,, p» two constants such that < ps.
Then, we have the following continuous injection:

(2.6) L§2(Q) s Lgl (Q).
Furthermore,
lull 21 0y < 2lel 22

Theorem 2.3. Assume that > 1. Then the Banach spacé$(2) and W[}’p(Q) are separable, reflexive
and uniformly convex.

2.3. Mass transportation theory. In this sectionQ2 ¢ R" is a bounded domain, an@({2) denote the
set of all probability density of.

Definition 2.2. Let p;, p, € P(€2) and~ a probability measure o x €.
We said thaty havep, andp, as its marginals, if one of the following equivalent condition holds:

(i) For all Borel setA C ,
Y(Ax Q) =p(A), and y(2x A) = py(A).
(ii) For (¢1,¢2) € Ly () x Ly, (),

/ mw+@@mmw=/@mmm+/@m@@w
Qx0 Q Q

We denote byI(p;, py), the set of all probability measures satisfyifigor (7).

Definition 2.3. Let p;, p, € P(£2). A borel mapT : Q@ — Q is said to pushy, forward top,, if
(i) For all Borel setA C Q,

(i) For¢; € L} (),

[ owmwis= [ 6@@m@a
Q Q

When(4) or (i) holds, we write thap, = T4 p, and we said thal’ pushes, forward top,.

Proposition 2.4. (see[1]) Letc : RNV — [0, +-00) be strictly convex ang,, p, € P(£2). Then,

(i) There is a function : @ — R such thatl” := idg — Vc*(Vu) pushes, forward to p,, where
¢* is the Legendre transform efandu(z) = inf  g{c(z —y) —v(y)}, forall z € Q.
(i) T :=idg — Vc*(Vu) is the unique minimizer of the Monge problem

2.7) o) gt { [ olT@) = e, Ty = s}

T

(iif) The probability measurg, := (idg x T')4p, defined by

1r(B) :==p({z €Q, (2,T(z)) € B}),
for all Borel setB C Q2 x 2 is the unique solution of Kantorovich problem

2.8) )it { [ clo-iv v eoup |

~
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(iv) If ¢(z) = |z|?, withg > 1. The Monge cost

1
q

Wy(p1,p2) == [iITlf </Q T (x) — z|9pydx, Tygp, = p2>}

is the g-Wasserstein metric.

3. EULER LAGRANGE EQUATION OF THE PROBLEM (F%)

Here, we establish the existence and uniqueness of the solution of proBjgrand show that the
sequencép,, ), is a time discretization of (111)-(1.3).

Proposition 3.1. Assume that hypothesg ), (v1), (¢,) and(v3) are fulfilled. Then, the problem

(3.1) ) it 160 = B0+ W )

admits a unique solutiop; andE(p;) < +oc0.

Proof. Let denotd the infimum ofl over P(2). Show that is finite.
If p = py, thenI(p,) = E(py). Then, by using hypothesigi,, ), we deduce thak(p,) is finite.
Let p is an probability density of . Sincey is convex, then by Jessen’s inequality we obtain:

1
(3.2) IROUELT () .
0 €
‘VP‘Q q
Therefore 5 dx > 0 andWg(p, py) > 0. Consequently
Q
1
(3.3) 1(p) > [ (m) .

We conclude thatis finite.

Let (p,,)» be a minimizing sequence 0F;) in P(Q).

Then the sequendd (p,,))~ is bounded irR. Thus, there exist a constafit > 0 such that/(p,,) < K
for all n € N. Consequently

(3.4 [P e <k [ st~ W)
' o 2 - Q gha—1 "4 R0
SinceW{ (p,,, po) > 0, then we use Jessen’s inequalfty [3.2) to obtain
Vol 1
(3.5) /d,ng—Qu} — ).
0 2 )

Consequently, the sequenge, )., is bounded inf!(2). Thus,(p,,) converge strongly to some, in
L?(€2), (up to a subsequence) apdis a probability density of.
Sincey is C'', we have

(3.6) liminf/ﬂw(pn)da::/ﬂw(pl)d:c.

Therefore, since,, — p strongly inL?(£2), then
2 2
(3.7) liminf/ wdxz/wdx.
o 2 o 2

Let~,, be a solution of Kantorovich problem

(3.8) Wi(pn:po) = inf / |z —y|ldy.
Y€ (pr,00) J X0
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Note thatP (2 x Q) is tight, then(+,,),, converges narrowly to a probability measutein P(2 x ),
(up to a subsequence), angd € I1(p;, py)-
Then we obtain that

(3.9) lim inf/ | — y|dry,, > / |z — y|%dy,.
19249 Qx0Q

Noting thatW/(p,,, py) = /Q . | — y|%d,, and/Q . |z — y|?dy; > Wi(py, po)- We conclude that
X X

(3.10) lim inf Wi (p,., po) = W (p1, po)-
From (3.9),[(3.10)[(317) anfl (3.6), we have
(3.11) liminf I(p,) > I(p;)-

ThenI(p,) = inf,cp) I(p). Consequently, is a solution of the probleniP;) and E(p;) < +oo.
We obtain uniqueness @f by using the convexity op —— E(p) and the strict convexity of the map

pr—W{(p,po)-

By induction, we obtain existence and uniqueness of the sequepte such thatp, is a unique
solution of the problen(Py).

Theorem 3.2. Assume that hypothesed, ), (¢4),(¥5) and(¢3) hold. Then, the Kantorovich problem

(3.12) (K): inf {/ |z — y|qd7}
Yell(pr,pe—1) LJaxQ

admits a unique solutiof,, and
supp(v) € {@,9): v =2 = BIVL[Balop) =¥ (PP 2Valdu (o) = ¥ (o1}

Proof. Since the cost functiof, y) — c(z,y) = |z — y|P is convex, then the Kantorovich problem

(3.12) admit a unique solution, .

Let ¢ € C°(Q, 1) be a test function, and consider the flow n{dp).cr in C°(RY,RY), such that
T
ﬁi ::¢012

(3.13) { 75“0 i

Define:p. = T.ypy.
The functionp, is a probability density of2 and satisfy

(3.14) e oy = —dive (), seell]
Consequently, by using (3.]14), we obtain

d /
(3.15) & | [ototenas] 1o = [ < 9.0 uton). o) > o),
and

d Vi (p))?
(3.16) LT ] 1o = - [ < vataston)00) > ol
Let~° be a probability measure @i x €2 defined by
(3.17) | edien = [ o@@). i),

QxQ QxQ

forall @ € CP(Q x Q). Theny® € I(p,, pj_1)-
By using the definition of*, we have

d
018  [[ e-slinlco=a [ <l e =) 600) > e
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The solutionp,, of the problem( P;) satisfies

d Ve 2
(319) % [/QW(PE) + ‘ (ng)‘ )dx + qhq_lwqq(pavpk—l>:| ’EZO =0.
Note thaty* is admissible for Py), then
(3.20) Wi(pe: Pr—1) S/ |z —y|dy..
QxQ

By using the inequality{ (3.20), we obtain

(3.21)  I(p.) :== E(p.) +

1 1
Wa - _ 4
qhq_l q(penok—l) < E(pa) + qhq—l /QXQ ‘J} y‘ st'

So, fore > 0, we have

(3.22) I(p.) = I(pr) _ E(p:) = Elpr) W«?(pg,pklf;lﬁf(ﬂk,pk_l) <
E(p.) — E(py) n Jaxa 2 = yl%dy. — [guq |z — ylidy,
€ qght—le ’
We use[(3.16)[(3.18) [, (3.119) arid (3.22) and we tetwl0,
(3.23) Dy (k) + Da(k) > 0,
with,
Dik) = [ < VelAalp) + 9 ()] 6(0) > prda - and
Do) = s [ <la =yl e - ). 6(0) > duilen)
Changingy by —¢ in (3.23), we obtain the desired equality
(3.24) D1 (k) + Dy(k) = 0.
Finally, we obtain
(3.25) y =2 —h|Va[Du(pr) — ¥ (pp)IP2ValAalpy) — ¥ (o)) — 71 e

Now, let show thatp,, ) is a time discretization of the parabolic equation|(1.1).
Let® € C°(2,R) be atest function. We defirig, : 2 — Q by

(3.26) Tip(x) = = — h|Va[As(pr) — ¥ (0p)] P72V [A(pr) — % (p1)].
We havel#p;, = pi_1, then
(3.27) /Q (01 (@) — ppr (2)) B (2)dzx = /Q (@) = (T (@) (o)

Using Taylor’s formula

(3.28) ®(Tj,()) = ®(x) + (Ti(2) =) - Vo ®(2) + (Ti(x) —2) Vi@ (2 +0(Ty () — 2)) - (Ty (w) — ),
with 6 € [0, 1] and (T (z) — )" is the transpose &fy(z) — x.

We use[(3.28) and (3.26) ih (3]127), then

/Q (01 — p1)® () = /Q < Ve lBa(pr) — & (o)IP 2B (o) — ¥ (1), V() > dar +

(3.29)

/Q < (2 — T(2))", V20 (x + 0Vi) (x — Ti(x)) > ppda.
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Thus, by using Neumann boundary condition, we obtain

0= )@l == [ div, (192[8a(p0) = ¥ (0P VilBpg) = ¥ (p0)]) o) +
Q Q

(3.30) % /Q < (x = Tp(2))", V20(x 4+ Vi) (x — Ti(2)) > py(x)dz.

In @30),Vi. := |Va[Aulpr) =4 (0r)]F2Va[Aulpr) = & (0]
Define A, (®) = / < (z — Ti(x))", Vi®(x + Vi) (x — Ti(x)) > ppdx and show thatd,(®) tends
to 0 whenh tends St)o().

We have
(3:31) AL(®)| < sup [V20(0)| [ [Tila) = 2fpe(a)da
BAS
Sincep,, is the solution of Py), thenl(p;) < I(p;_;). Consequently
1
(3.32) E(py) — E(pp_1) > ahi- ———Wi(pp, pPr_1)-
Therefore, since,, is the solution of[(3.72), then
(3:33) Wilprsr) = [ oyl
QxQ
q p
=h / ’V (Pk)]‘ prd.
From [3.32) and (3.33), we obtain that
p
(3.34) B(ow) = Bl =+ [ Vol =0 (o0 e
Taking the sum ovet = 1, ..., L in 3:34), we get
(3.35)
’ p
B(po) - EQ/W [ e = 7 [ (92180000 = (00))
We use Jensen'’s inequality [n (3}35) and obtain:
p
(3.36 Boo) ~ 19010 (i) 2 & [ [7ulato) = (o0
So, by using inequalitie§ (3.36) and (3.33), we have
(3.37) /‘ M—yﬂhkSWWJ[( >\mw( )]
QxQ |Q|
o If ¢ <2, then
(3.38) [ oyl < dam@P [ oyt
QxQ QxQ
o If ¢ > 2, then
2
(3.39) / | —y|*dy, < (/ |z — y\qdvk> :
QxQ QxQ

Consequently, by usin§ (3.37) we obtain

e [ Qrw—yr%mthq-l[dianmﬂ?—q[ (p0) — 1211 )

, fg<2

0]
/ |:c—y|2cm§q3hi[ (o) — 12 >] g2
Qx0Q |

an L— 1
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Finally, we deduce that

(3.41) !A(<1>)Sqhq_l[diam(ﬁ)]z_qsgg\Viq’(x)l[ (Po) — [9204(

T B~

)], ifg<2
2
q

2 2 .
A@)] < gin? sup V20(@)] | Blpo) ~ (g |+ o>
z€e) |Q’
The inequality[(3.411) proves that, (®) tends td) whenh tends td). Hence, the sequen¢g;, ). satisfies
the Euler-Lagrange equatidn (1] 11§ .

Next, let's show that the sequenge);, converges weakly (up to a subsequence) to a fungtien
p(t, z) which solves the parabolic equatiops {1.1).

4. CONVERGENCE RESULTS

In this section, we assume that the initial datpgns a probability density which satisfies

lé(wﬁﬂg+w%0dx<w.

Using the previous results, we prove that the sequéRgd ), is bounded in.2([0, 7] x ). Then,
we deduce that" converges strongly tpin L2([0, 7] x Q).

Finally, we use the strong convergence(pf); to p, to prove the weak convergence of the nonlinear
term

(4.) {dive{p"|Va[Da(p") = 0 (p"IP?Va[Ar(p") = (")}
to
(42) dzvx{plvx[Am (p) - w(ph)”p72va: [Ax(p) - T/J(P)]}

Theorem 4.1. Assume thap, satisfym < p, < M and hypothesisH, ), (¢4), (12) and(y3) are
fulfilled. Then,
i) The sequencép”);, converge strongly to somein L2([0, 7] x Q).
ii) The sequencé|V,(A.(p") — (o) P72V (AL (p") — ¥(p™)))1, converge weakly to some
in [L2([0,T] x Q)]
iii) If ¢t — wu(t) is a positive test function whose support ig+i", 7'] for 0 < T < oo. Then

4.3) im [ [Va(As(o") = (o) prult)dtde = Ly

h—0 Qr

where
(4.4) Ly:= /Q <0, Va(As(p) —¥(p)) > p(t, z)u(t)dtdz,

with,
Qp :=10,T] x Q.
Furthermoredivx{phW( (") = (p")P2V (AL (p") — ¥(p"))}1 converges weakly to
div,(po) in [C°(R x Q)]', anddiv, (po) = dive[p|Va(Az(p) = () P2V (As(p) —1(p))]
weakly.
Proof.
i) Sincep, minimize I over P(£2), then

Va(pp)? 1 Valpp_1)?
(4.5) /Q <| <2pk)’ +(p )) dx + gha—1 Wg(pkapk—l) < /Q <|(p2kl)| + w(Pk—ﬁ) de.
Thus, sincéV{(py, pr_1) > 0, we have
Va(p;)|? Valpi_1)|?
(4.6) A’ffNM—A‘(gﬁﬁmsAMWJM—Awmm
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By taking the sum foy = 1,. .., k in (4.6), we obtain that

4.7) /\V ()l /IV (Pl </¢ da:—/l/ka

Consequently, by using definition pf and the Jessen’s inequality in previous relation, we have

(4.8) /deg/g(lv (2p0)|2+1/)( )> d$—|Q|¢<|é‘)

Consequently, the sequengé (t,.)); is bounded inf7'(Q2). We deduce thap”(t,.)); con-
verge strongly to somge(¢, .) in LQ([Q) forallt > 0.
Sincem < py < M, thenm < p" < M (see the maximum principle inl[1]). Consequently, we
use dominate convergence theorem and we deduce that the se(u/epanverge strongly to
pin L2([0,T] x Q).

i) We use[3.3p), then

@9) Eoo) =100 (1) = & [ [7el8ato) = /(00
We integrate[(4.11) oft), 7'] and obtain that

@100 [ (9 [al) - ][ e < ar B - 0t ()]

By using the maximum principle: < p < M, we conclude that

(4.11) /[omg‘v A (ph)—w/(ph)ﬂpdtdﬂcéf{ (o) — |QW)<|Q])]

Thus, the sequeno{& (AL (") = ' (
(IVa[Az(p") =¥ (p )Hp Vel Aa(p"
Consequently(|V,, [ p") = (p")]]
in [L9([0,T] x Q).

iif) The proof of (4.3) will be derived from the three following lemmas:

P
‘ prdzx.

™)) is bounded if L7 ([0, 7] x Q)" and
) — ' (p")])n is bounded iHL2([0, T] x Q)]V.
P27 (AL (p") — o' (p")])1, converge weakly to some

|

Lemma4.2. For0 < T < +o0, we have

(4.12) | <. 9ulau0) = 0 ) > pu(t)deds
Qr

< liminf / ValAa(p) — v (o) Polut)dtde,
h—0 Qr
with Qp := [O,T] x .

Proof. We set

(4.13) Ut @) = [ValAa(p) = ' (0)]IP*ValAulp) = ¢ (p)]  and
(4.14) V(t,@) = ValAu(p") = &' (0")] = ValAulp) = ¢'(p)].
Sinceu is positive and — |v|P~2v is monotone, we have
(4.15) / Alt, 2)u(t)dtdz > 0,

Qr
where,

Alt,z) =< o™ —U(t,z),V(t,z) > p"
with
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By the previous inequality, we obtain

(4.16) /Q < " ValAa(p") — ¢ (0] > pPut)ded
> / < 0" ValAu(p) =¥ (p)] > plu(t)dtde +
Qp

/ <U(t,z),V(t,z) > phu(t)dtdz.
Qrp

Then, using the strong convergencepbfto p, the weak convergence of
(o) to o and the weak convergence @F .[A, (p") — o' (p")])n to V4 [As(p) — ' (p)], we have

(4.17) lim | < 0" Va[Au(p) = ¢ (p)] > pu(t)dtdz = Ly,
— Qr

where
Ly:= /[ o < VelA ) ¥ ) > pultyind
0,7
Also

(4.18) lim < U(t,x),V(t,z) > plu(t)dtdz = 0.
h—0 Qr

By tendingh to 0 in (4.18) and usind (4.17) and (4]18), we obtain the proof of lenima (#.2).
Lemma4.3. For0 < T < +o0, we have

lim sup / Velaph) o (o) prult)did <
h—0 Qp

@19) [ [po (o) - ww(po))} u(0)dr + /

OT]XQ
T [ S
[0,71x$2

Proof. Sincep, minimize I over P(£2), we obtain energy-inequality

!

W( ) =" (W ()| (t)dtde

1
(4.20) I(pp—1) — L(py) > ng(pk)pkfl)‘
Consequently, using the expression/aind [3.26), we obtain
V(pp_1)|? \Y% 2
(4.21) / [|(P1;1)| + ¢(Pk—1)] dx —/ [‘(gk)' +¥(pp) | do = K,
Q Q
where,
h
(4.22) Ky = p /Q V2 (A(pr) = ¥ (pp) I pred.
Multiplying the previous inequality by > 0, we obtain after integration
(4.23) Za(h) + Zo(h) > /[ VA ),
0, T]xQ
where
T
(4.24) Zi(h) = / / [ (Pr—1) p’“)} u(t)dtdz  and
k=1 (k=1
T
(4.25) Zo(h) = / { (P 1‘ —\v (i) " } u(t)dtdz,
k=1 (k=1
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with 7 = % andp” is a approximate solution defined by
(4.26) p'(t,x) = p(x), if (t,x) € [rk,7(k+1)).
Notice that

(4.27) Zl(h):/[OVT]XQﬂ)(PT) [”() ult - }dtd:ﬂ—k //w u(t — 7)dtdz.

We tendh to 0 in (4.27), and obtain

(4.28) lim Zl(h):/[OT] Q@Z)(p)u/(t)dtd;v—|—/Q¢(p0)u(0)daj

h—0

Therefore

0.7)x9 2
T T\ |2

(4.29) + 1/ Mu(t—ﬂdtdac,

T Jo 9] 2
and

2 2
(4.30) lim Zo(h) = / el iyt + / Nalpol® )z
h—0 0,7]xQ Q 2

We use[(4.23) and (4.28), (4]29), (4.30) and obtain

lim sup/ \Vx[Az(,Oh) - w,
[0,T]x

h—0
Ly := [/[Oﬂm’(ﬂ(ﬂ)u (t)dtdw‘F/Qib(Po)u(O)dx]

(PMPp"u(t)dtde < Ls+ L4+ Ls,

where,

2
Ly = / [Valp)] u (t)dtdz  and
0T]xQ 2
2
Ly = /WU((DCL%'.
Q 2

From the definition ofy*, we havey™*(a) > ab — ¢ (b) for all a,b > 0 and we obtain the equality if
a = (b). Then, using)(py) = pot (po) — V" (¥ (po)) andyy(p) = pip (p) — ™ (¥ (p)) in @.31), we
obtain [4.19).1

Lemma4.4.For0 < T < oo, we have
/ < 0, Ve[Au(p) — ' ()] > pu(t)dtdz > Jy + Jo + Js,
[0,T]xQ
with,
B [ ot (00) = 0@ (o)) w0
no= | [pw - w*w/(p))] d(t)dtdm and
[0,T]xQ

J3 = / |V( t)dtdx +/’
[0,7]x$2
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Proof. DefineU (¢, z) = [AL(p) — o (p(t, z))]u(t), ©(t,.) € WhP(Q).

Approximating? by C2°(2) functions and using (3.80), we have

(4.31) / P =P (1, ) = / Gk, ¢, 2)pypu(t)dtdz + O(h),
Q Q

with

(432) Gk t,2) =< |Va[Aulpp) = ¥ (PP ValDalpr) = ¢ (p0)]s ValAalp) =¥ (p)] >,

where0(h) tends to) whenh tends ta0.
By using the definition op”, we obtain after integration

/ /pk Pr = Prot gy x)dtdx_/ G(k,t, z)p u(t)dtdz + O(h).
—1)h [0,T1xQ

Noting that
(4.33) Y £ — ”’f Pk~ PV g (¢, z)dtdz = A(h) + B(h),
> ool
where
A(R) = F / /”’f‘p’f P = Phot A (oVu(t)dtd
~1)h
= —/ /pOA t)dtdx
u(t+h) —u(t)

(4.34) - /[0 OBl 1) [h} dtdx

B / (e, ault) [Ax<p<t+h>>—Am<p>} s

[0,T1xQ h
and
B(h) = / /p’f Ph=Loy (p)u(t)dtds
—1)h

= / /pow t)dtdzx

(4.35) + /[0 T]mp Py (p(t + h)) [W] dtdzx
n Vet +h) = p)|

+ /[O,T]pr (t, z)u(t) . ]dtd :
Consequently, we tenidto 0 in[4.34 and we obtain that

i A) = = [ poAs(po)u(0)ds

- / pA(p)u (t)dtdx
0,T]xQ

0
_ /[0 BNCICEeC DT
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By using boundary conditiopV,(p) -» =0 on 0, we deduce that

lim A(h) = /Q 1V, () 2u(0)da
2

07]xQ 2

2 2
> /Wu(O)dm—i—/ VaIF (pyatd.
Q 2 0IxQ 2

u (t)dtdx

We rewrite B(h) as follow

h
B = 3 /0 | oo utyeas

(4.37) + /[0 e P (p(t + b)) [W] dtdx

!’ !

Y (p(t+h) =1 (p)
h

+ / p(t + h, z)u(t) ] dtdx
0,7]xQ

! /

Y (p(t+h) =2 (p)
h

+ / (p"(t,x) — p(t + h,x)) ] u(t)dtda.
[0,T]xQ

Since the Legendre transfor#ii of ¢ is convex, then

’ / / /

(4.38) V(W (p) = (¥ (p(t + h,x))) = p(t + b, z)[¢ (p) — ¢ (p(t + D, z))].

Consequently
(4.39) /[(LT]XQ p(t + h, ) [wl(p(t + ’2) v (”)] w(t)dtdz > K(h),
where

(4.40) K(h) = /WQ !w*w’(p(t +ha)) - w(u/(p))] -

From (4.39), we have
K(h) = Ki(h) + Ka(h) + K3(h),

where

h
Kih) = 7 /0 |0 outyas

_ oy [HO == D]
Koh) = /{mhww(w(p»[ = ara
T+h
Kalh) = ¢ [ 0@ e)u(teda.
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We combine[(4.37) andl (4.41). TheB(h) is as follow

B(h) > / / oot (p)u(t)dtda

ut+h) —u®)) o

+ /M PO (p (t+h))[ : ]dtd
- (o | PO Zult =] L

/h T+h]><Qw (¥ () [ h } dtd

(4.41) - //¢ t)dtdx
T+h

s [ @ e
+ /[omm(ph(t’x) — p(t + h, ) [w <f’(t+h}f3) — 1 (p)] w(t)dtd.

Since(p");, converges strongly tp, then

(442)  lim (P (t,x) — p(t + b)) [w (plt 1) =y <p)] w(t)dtdz = 0,
h—=0 Ji0,T]xQ h

We tendh to 0 in (4.47), and using (4.42), we have

(4.43) ti B1) = [ [t (00) = "0 (o)) w(O) +

[ o) - v o] w s,
[0,T]xQ
Finally, we combine relation (4.43),(4]36) and (4.33) and we réach(4.31).

To get the proof of[(4]3), we use the results in the three previous lemmas .

Now, let show that

{dive (192080007 = 6 (PN P2ValAa (") — 0 (6M)]) |

h
converges to

diva(po) = divs (pIValAa(p) = ¥ (DI 2Vl Au(p) = ¥/ (0)]) in [C2(10,T) % )]

Lete > 0 be small ands € C2°(2) be a test function. Defing. (¢, z) = A, (p) — ¢ (p) — ed(x).
U, € WhP([0,T) x Q).
We use the fact that — v|v|P~2 is monotone to derive

(4.44) <o = [V (W) P2V, (W2), Vi Ay (") = &' (")) = Vo ¥e > plu(t)didz > 0,
[0,71x$2

wheres” is defined above. Thus

/

(4.45) / ValAa(p") — ¥ (PP ult)dbde
0,T]xQ
—/ < oM VU, > plu(t)dtdx
[0,7]

—/ < V(W) P2V (P2), Vi [Ar(p") — 0 (p")] = Vo Ue > u(t)dtdz > 0.
[0.7]
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We tendh to 0 in the previous inequality, and we u$e (4.3), to get
@ae) [ <oV [Aup) - ¥ ()] > pult)itds
0, 7]
—/ < 0,V¥. > pu(t)dtdx
0,T]x

_/ < |Vx(\ll€)]p_2vx(\11€),VI[A(;)) - T/J/(P)] — Vo We > pu(t)dtdz > 0.
0,7]xQ

By using definition ofl_, the previous inequality becomes

(4.47) / < 0,Vad(x) > pult)dtdz > Ku(h),
0.T)x9

with

(4.48) Ka(h) = / < Va0 P2V, (), Vad(a). > pu(t)dtda.
[0,TTxQ

We tends to 0 , and we have

(4.49) / < 0,Vap(x) > pu(t)dtde >
[0,T]x$2

/ < Va(Aa(p) =¥ (0) P> Va(Aalp) =¥ (p)), Vad(x) > pu(t)dide.
[0,T]xQ
Replacingy by —¢ in the previous inequality, we obtain the equality:

(4.50) / < o0,Vap(x) > pu(t)dtde =
[0,T]xQ

/[0 _ < |Va(Aulp) = & (0)) P> Va(Aul(p) = ¥ (p)), Vad(x) > pu(t)dida.
Finally, we deduce that the sequence
{dive (p"1V218a(6") = 0 (NP 2Valdu (") = ¥ (6)]) },

converges to
divg(po) = dive (pIValAalp) = ¥ (DI ValAa(p) ¥/ (0)]) in [C2(0,T) < )] - 0

5. EXISTENCE AND UNIQUENESS OF SOLUTION

In this section, we show the existence and thank to additional assumption the uniqueness of weak
solutions of the parabolic biharmonic equatipn(1[T){(1.3).

Theorem 5.1. Assume that hypothesi#/, ), (1), (¥,) and(¢3) are fulfilled. Then , the sequence

(p™)1, converges strongly to a positive functipt, z) andp € L>=([0, 0o[x ). Also p is a weak solution
of the equation[(1]1). Thatis, for al(t, z) € C2°(]0, 0o[xQ), suppe(.,x) C [-T,T],for0 < T < oo,
we have:

(5.1)
/ p [W+ < [ValBa(p) =¥ (DI ValBalp) = & ()], Vad(t, ) > | dbdz = Yo,
[0,T]xQ
with

Yo = /onéb((),x)dx-
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Proof. Using [3.27):

i / %gb(t,x)dtdx _

k—1)h,kh] x Q2
/[0 rx < Va[As(p") = " (M) 2Va As(p") = &' (0], Vad(t,2) > pldtda + 0(R),

where0(h) tends ta) whenh tends ta).
Note that:

— Pr—1 _ n|[o(t —h,x) — ot x)
(5.2) Z/ 7h o(t, z)dtde = /O T]Xﬂp [ - dtdzx

[(k—=1)h,kh]x
- // plé(t — h,x)dtdz.

Replacing the previous relation in (5.2), we have:

n| ot —h,x) — otz ] hors .
(5.3) /Mmp[ ) dtda // (t — h)dtd

/[Oﬂ < |ValBa(p") = & (NP2 Va[Aa(p") = &' (")), Vad(t,2) > ptdtde = 0(h).

We tendh to 0 in (5.3) and use theorerp (4.1) to obtain:
/ pé’(b(t, %) gt
[0,T]x

ot

/

+ / < |vx[Ax(p) - 7#, (p)”p_va[Ax(p) - 7/} (P)], vz¢(ta IE) > pdtdl’
[0,T]x

= - / p0¢(0a ZL‘)dl’
Q
We conclude thap is a weak solution of the parabolic equatipn [1[I){(1mB).

Theorem 5.2. Assume that hypothesi#l, ),(+,), (15) and(v3) are fulfilled. Letp® andp® be two
weak solutions o[(I]lI 3) satlsfylr% € L1(Q), fori = 1,2, with initial datump! (0, .) andp?(0, .)
respectively satisfying: < p'(0,.), p?(0,.) < M. Then,

(5.4) [6'a) = () de <0,
Q

forall T > 0.

Proof. Definefds : R — [0, 1], by:

—>lw

0 if s<0
(5.5) Os(s) = if 0<s<¢§
if s>09.
By using definition of the weak solution, we have:
(5.6) 650 1) — Pltadde = [ < A = PAGP) V16> drd
o1]x Ot 0,7]%©

where

/

A(p) = [Va[As(p) — ¥ (0P Va[As(p) — ' (p)].
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We useds([—A(p") +'(p")] = [~A(p*) + ¢ (o)) in[5.6; we have:

L 8s(l-2u0h) 4 4 (01 - [-2ul) + 8 ) (01, 2) — (1) =

/Q < prA(p") = PPA(P?), Va(0s([—Aalp') + ¢ (p1)] — [ Aulp?®) + ¥ (p))]) > dtdz

-5 [ <A + A, ValBalp!) 6 (0] = Vel Aulp?) + 0 ()] > Pt +

(1;/Q < (p' = PHA(P"), Val[-Aalp') + 9 (p")] = Va[-As(p?) + ¢ (p%)] > p*dtde,

where
Qs o= Qr N{0 < =Dy (p") + Du(p?) + ¢ (") — ¢ (p*) < 6}
andQp :=[0,7] x Q.
Sincev — v|v|P~2 is monotone, we have
1
5
If § — 07, then|Qy 5] — 0 and
O5(=Da(ph) + Au(p?) + 0 (p") = &'(p?) — signt (=Au(p!) + Au(p?) + ¢ (p") — ¥
sign™(p! — p?); with sign(s) = 5 for all s € R*. Then,

sl

< —A(p") + A(p*), V[ Au(p") + ¥ (p1)] = Val=Au(p?) + ¥ ()] > p*dtdz <0,

Qps

’

(p?) =

1 2\+
(5.7) / 9p —p)* — / signt(p' — pQ)Q(p1 ) <o
[0,7]xQ ot 0,7 % ot
This implies
(5.8) [0 T.0) — 2T < 0
Q

for all T > 0. Then the solution of equatiop (1.1) is unique.

6. ASYMPTOTIC BEHAVIOR

In this section, we study the asymptotic behavior of the solution of the parabolic bi-harmonic equation
(L.2)-(1.3). We establish the regularity of the solution in this lemma.

Lemma 6.1. Assume that hypothesi&l, ), (¢), (¢2) and(z3) hold. Letp be a solution of parabolic
p-biharmonic equatior (1.1). Then, there exist a constant0 such that

(6.1) /Q Ay(dy)pdz /Q Ay(dy)pdz > /Q < ValAp)(62), b1 (z) — dy(x) > pia
(6.2) + 3 [ lona) = oa(a)pda.

for all ¢, ¢, € [L4(Q)]V, and where

Ap = _Am(p) + 77/},(:0)

Proof. Sincep is a solution of the equatiop (1.1), then there exist a sequgngg defined in[(1.B) which
converge tg. Therefore, the optimal map whose pusghforward top,,_, is defined by

(6.3) Ti(2) = 2 + h|Va[~Au(pr) + ¢ (pp)] P2 Val=Aalpr) + ¥ (o).

Consequently
72 (T (x) — @
)

AJMAA Vol. 21(2024), No. 1, Art. 7, 23 pp. AIMAA

Ti(z) —x

(6.4) Val=Aalpr) +9 (o)) = | =



https://ajmaa.org

20 A. SOGLOAND K. W. HOUEDANOU AND J. ADETOLA

In ], it is know that the mag}, is differentiable andv, Ty = id — (p — 1)|Vug|[P~2D?uy, whereuy,
is a semi-concave function. We deduce taf—A, (p;,) + ¢’ (p )] is differentiable and

65)  D’[~Au(py) + ¥ (o) = (g — D(p — DA P () — 2]V [~ D2,

Sinceuy, is semi-concave, then D?uy, is diagonalizable with non-negative eigenvalues (see [1]). Con-
sequently

(6.6) < D*[=Du(p) + ¥ (o)) 2 >2 ALz,

for all z € RN and for some\ > 0.
From [6.6), we obtain that

(6.7) Ay (21) = Ay (22) 2< Vi Ay, (22), 21 — 22 > +A|21 — 227,
By using, the fact thatl, converge weakly tol,, we obtain[(6.77) &

Theorem 6.2. Assume that hypothesil, ), (v1), (¢2) and(z3) are fulfilled. Letp be a solution of
parabolicp-biharmonic equation (1.1). Then

(6.8) [E(p(t,.)) = E(po)] < e PO [E(py) — Epoo)]
and

(6.9 Wa(o(t, ), poc) < e OV (B p0) ~ Blpc)]
where) > 0 is a constant angl,, is a probability density of2 whose satisfy
(6.10) PVl Da(po) + 1 () =0 N Q

Proof. Let p; andp, two probability density o2 and7 : 2 — ) the map whose push forward top,
in the Monge-Kantorovich problem

—_ rlq
(6.11) . inf / [T(@) — 2t m’
Typ1=p2
Sincey is convex, then
(6.12) /Ql/J(Pz)dl" - /Qw(pl)dx > /Q < 1//(P1)7P2 —pp > dz.
Therefore,
2 2
(6.13) / de—/ NeilZ, 2/ < Vapy, Val(pa) = Valpy) > da
o 2 o 2 Q
By using boundary conditiopV,p-v =0 onof2, we obtain that,
(6.14) /Q < Va1, Va(pe) = Valpy) > do = /Q(—Azm)l)zdx - /Q(—Azp1)/’1d95-

Using (6.14),[(6.12) and lemmia (6.1), we obtain that
(6.15) E(py) — E(p1) = / < T(x) = 2, Val[-Dupy + ¢ (p1)] > prda + )\/ T (z) — |pyda.
Q Q

whereE(p) = [,[v( M]dm. Noting that [, |T'(z) — z|9p;dz > W (py, py), WhereW, is the
q- Wassersteln metrlc Consequently

(6.16) E(py) — E(py) 2 /Q < T(x) = 2, Va[=Dupy + ¢ (p1)] > prda + AW (py, po).-

If 1 = pog SISy o Vi [~ Aupo + ¢ (po)] = 0 @ndpy = p then [6.15) becomes

(6.17) Wa(p(t,), poc) < {1 (p(t; ) — Elpe)
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We use Young inequality in (6.]L6) and obtain

(6.18) B(ps) = Blp) > = | [T(@) = altpudo

p !
(6.19) - % /Q IVael=Azpy + 9 (p1)Pprda
(6.20) + )\/ |T(x) — z|?pdx.

Q

By using in the previous relatiom = Aiq p1 = pandp, = p.,, we obtain

E(p) ~ E(p) > - /Q () - |9pda

1 /
_ —AL Podx
s | Va0 ()P pa
(6.21) + )\/ |T(x) — x|?pdx
Q

1 ! P
ST /Q Val=Aup + 0 (0)]Ppd.

By using 4 [E(p) — E(pso)] = — [ [Va[~Aup + V' (p)]|Ppdz, and the previous inequality, we obtain
that
d
(6.22) 71 [E(p) = E(poc] < =p(Aa)"[E(p) = E(poo)]-
From [6.22), we deduce that
(6.23) [E(p) = E(po)] < e P [E(py) — E(pso)].
Combining [6.2B) and (6.17), we conclude that
L iag)r
(6.24) Wil(p(t, ), poc) < 5 PV [B(pg) — E(pos).
|

7. SUMMARY

In this work, we have developed a new approach based on optimal transportation, to study existence
and uniqueness of solutions for a class of non-linear parabolic biharmonic equations in the probability
space under the Neumann boundary condition. We established a regularity result to analyze the asymtotic
behavior of the solution. In a forthcoming paplerl[23], we will discretize the problem using the finite
element method. An a priori and a posteriori estimator will be performed to study the convergence of the
method.
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