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ABSTRACT. This paper explores the construction of dyadic wavelet frames in L2(K), where

K is a local field with positive characteristic. Using frame multiresolution analysis (FMRA),

we establish a systematic method for generating wavelet frames within this setting. While con-

ventional results indicate that two functions are necessary for constructing wavelet frames, we

demonstrate that under specific conditions, a single function is sufficient. By leveraging prop-

erties of local fields, we provide a detailed characterization of the refinement equation and nec-

essary frame conditions. These results enhance the theoretical understanding of wavelet frames

and open new directions for applications in harmonic analysis and signal representation over

non-Archimedean fields.
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1. INTRODUCTION

1.1. Historical Background. Wavelets and multiresolution analysis have emerged as essential

tools in signal processing, driven by the need for enhanced efficiency and precision. Unlike

Fourier analysis, which struggles with localized and non-stationary signals due to its reliance

on sinusoidal elements, wavelets offer a more adaptable and localized signal representation.

In the conventional multiresolution analysis (MRA) framework, a set of scaling functions and

wavelet functions establish an orthonormal basis for the signal space. Notable contributions

from researchers like Y. Meyer [19], Mallat [18], C. Chui [9], and I. Daubechies [11] have

significantly advanced both the theoretical and practical aspects of orthonormal wavelet bases

over the past decade.

The construction of orthonormal wavelet bases hinges on the notion of Multiresolution Anal-

ysis (MRA), which entails a hierarchy of nested approximation subspaces denoted as Vj . These

subspaces are generated by a scaling function ϕ belonging to the space V0. By applying dilation

and translation operations, represented by ϕj,k(x) = 2
j
2ϕ(2jx− k) for j, k ∈ Z, an orthonormal

basis for Vj is formed. Adapting MRA and wavelet theory to local fields with positive char-

acteristics, such as field K, necessitates tailoring the framework to accommodate the unique

properties of these fields. Incorporating a prime element of the field becomes crucial in shap-

ing the foundations of MRA for such contexts, facilitating the analysis of signals within the

framework of locally compact Abelian groups.

While orthonormal bases offer a solid foundation, they have limitations in representing cer-

tain signal types effectively. Frame multiresolution analysis addresses these limitations by uti-

lizing frames, which introduce redundancy and flexibility into the signal representation process.

Originating in the late 1990s and early 2000s, this approach aims to overcome the constraints of

traditional wavelet-based methods, especially in representing complex signal structures. Cur-

rent research in this area focuses on developing efficient algorithms for frame decomposition,

reconstruction, and designing optimized frames, with applications spanning various domains

such as image processing, audio signal analysis, and data compression.

A recent advancement by Shah and Abdullah [26] extended the concept of multiresolution

analysis (MRA) to local fields with positive characteristics, diverging from the traditional Eu-

clidean space framework. In this extension, the translation set operating on the scaling function

to generate the subspace V0 expands beyond a group structure, encompassing both L and trans-

lations of L, where L =
{
u(n) : n ∈ N

}
represents distinct coset representations of the

unit disc D within K+. Ahmad and Sheikh [1] pioneered the concept of non-uniform wavelet

frames in non-Archimedean local fields, providing a comprehensive characterization of tight

nonuniform wavelet frames within these fields. Expanding on this groundwork, the concept

of non-uniform, non-stationary wavelets and associated multiresolution analysis in local fields
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DYADIC WAVELET FRAMES ON LOCAL FIELDS 3

was introduced. Additionally, Shah [24] proposed frame multiresolution analysis (FMRA) on

local fields, extending MRA principles to accommodate fields with positive characteristics.

The paper is organized as follows: Section 1 offers background information and a concise

literature review. Section 2 introduces preliminaries and establishes necessary notations. In

Section 3, we present a detailed construction method for a wavelet frame derived from a dyadic

frame multiresolution analysis in L2(K). We also discuss the conditions under which a single

function ψ can generate a wavelet frame for L2(K).

2. NOTATIONS AND PRELIMINARIES

2.1. A Background about Local Fields. [2, 3, 6, 12, 27, 24, 26, 25] In this section, we intro-

duce the notation for local fields, which will be used consistently throughout the paper. A local

field, denoted byK, is both an algebraic field and a topological space that satisfies the following

essential properties: it is locally compact, complete, totally disconnected, and non-discrete. The

additive and multiplicative groups associated with K are denoted by K+ and K∗, respectively.

A Haar measure on K+, represented by dx, can be chosen such that for any nonzero element

α ∈ K, the measure transforms as d(αx) = |α|dx. Here, |α| is the absolute value (or valuation)

of α, with the convention |0| = 0.

The absolute value function | · | satisfies the following fundamental properties:

(1) |x| ≥ 0 with equality if and only if x = 0;

(2) |xy| = |x| · |y| for all x, y ∈ K;

(3) |x+ y| ≤ max(|x|, |y|), known as the ultrametric inequality.

The set D = {x ∈ K : |x| ≤ 1} is called the ring of integers of K, which serves as the unique

maximal compact subring of K. Closely related is the subset P = {x ∈ K : |x| < 1}, known

as the prime ideal of K, which is the unique maximal ideal in D and exhibits both principal and

prime properties.

Due to the total disconnectedness of K, the absolute values |x| as x varies over K form a

discrete set, often expressed as {sk : k ∈ Z} ∪ {0} for some s > 0. Consequently, there

exists an element within P having the largest absolute value. We designate p as a fixed element

attaining this maximal absolute value within P, referring to it as a prime element of K. As an

ideal in D, the prime ideal satisfies P = ⟨p⟩ = pD.

It can be shown that D is both compact and open, which in turn implies that P shares these

properties. As a result, the residue field D/P forms a finite field isomorphic to GF (q), where

q = pc for some prime p and some positive integer c. A rigorous proof of this assertion can be

found in [20].

Remark 2.1. Since this paper focuses on dyadic wavelet frames, we adopt the convention p =

q = 2 for convenience in all subsequent discussions.
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For each integer k, we define the fractional ideals Pk = pkD = {x ∈ K : |x| ≤ q−k}. Each

Pk is both compact and open, forming a subgroup of K+ [20]. Moreover, any element x ∈ Pk

can be uniquely expressed as

x =
∞∑
ℓ=k

cℓp
ℓ,

where cℓ are coset representatives of the quotient group D/P.

2.1.1. Fourier Analysis on Local Fields. Consider a measurable subset E of K, where its

measure |E| is defined as the integral of its characteristic function χE(x) with respect to the

normalized Haar measure dx on K, ensuring that |D| = 1.

From fundamental observations, it follows that |P| = q − 1 and |p| = q − 1, where q is given

by pc. For a comprehensive discussion on these notions, one may refer to [20].

A crucial aspect of local fields is the existence of a nontrivial, unitary, and continuous character

Υ on K+. Notably, K+ is self-dual (see [20]).

We now consider a specific character Υ on K+, which remains trivial on D but is nontrivial on

P−1. Such a character is constructed by choosing an arbitrary nontrivial character and appropri-

ately scaling it. This process is particularly pertinent for local fields with positive characteristic.

For y ∈ K, we define the character shift Υy(x) = Υ(yx) for x ∈ K.

The Fourier transform of a function f ∈ L1(K) is given by:

f̂(ω) =

∫
K

f(x)Υω(x) dx

Alternatively, this can be rewritten as:

f̂(ω) =

∫
K

f(x)Υ(−ωx) dx

This formulation mirrors classical Fourier analysis on the real line but is adapted to the locally

compact, non-Archimedean nature of the field K.

To extend this definition to functions in L2(K), we introduce the characteristic functions Φk for

k ∈ Z, where Φk represents the characteristic function of Pk.

Definition 2.1. For f ∈ L2(K), let fk = fΦ−k. Then, the Fourier transform is defined as:

f̂(ω) = lim
k→∞

∫
|x|≤qk

f(x)Υω(x) dx,

where the limit is taken in the L2(K) sense.

A fundamental result regarding this transform is encapsulated in the following theorem (Theo-

rem 2.3 in [20]):

Theorem 2.1. The Fourier transform is a unitary operator on L2(K).
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2.1.2. Operators on L2(K). Wavelet theory extensively utilizes translation, modulation, and

dilation operators. We define these fundamental operators in the space L2(K):

(1) Translation Operator: To construct a translation set for L2(K), we consider the coset

representatives of the quotient group K+/D. Let N0 = N ∪ {0}, and suppose {u(n) :
n ∈ N0} forms a set of distinct coset representatives. The translation operator T :

L2(K) → L2(K) is then given by:

(Tnf)(x) = f(x− u(n)), n ∈ N0.

(2) Modulation Operator: For a given y ∈ K, we define the modulation operator as:

(Eyf)(x) = (Υyf)(x) = Υ(xy)f(x), x ∈ K.

(3) Dilation Operator: The dilation operator acts on L2(K) as:

(Df)(x) = q
1/2f(p−1x).

Considering the set {u(n)}∞n=0 as a complete collection of unique coset representatives of D

within K+, the set of characters {Υu(n)}∞n=0 constitutes an exhaustive list of distinct characters

on D. As demonstrated in [20], we establish the following result:

Lemma 2.2. [27] Let {u(n)}∞n=0 be a complete set of coset representatives of D in K+. Then,

{Υn}∞n=0 forms a complete orthonormal system on D, where Υn = Υu(n) for all n ∈ N0.

For f ∈ L1(D), the Fourier coefficients are defined as:

f̂(u(n)) =

∫
D

f(x)Υu(n)(x) dx.

The corresponding Fourier series expansion is given by:
∞∑
n=0

f̂(u(n))Υu(n)(x),

and satisfies the standard L2-orthogonality relation:∫
D

|f(x)|2 dx =
∞∑
n=0

|f̂(u(n))|2.

Lastly, quotient group structures play a significant role in this framework. Using previous results

(see [2, 3, 6, 12, 27]), we recall:

P−1/P ∼= D/P ∼= GF (q).

Setting {u(n) : 0 ≤ n ≤ q − 1} as coset representatives of D in P−1, we conclude:

P−1/D = {D, u(1) +D}, D/P = {P, u(1)p+D}.

These structural results provide a foundation for further analysis in the upcoming sections.
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2.2. Frames and Their Fundamental Properties. We now explore the concept of frames

within an arbitrary, separable Hilbert space H and highlight some of their key properties. For a

more detailed exposition, the reader is referred to [7].

Definition 2.2. Let H be a separable Hilbert space, and let I be a countable index set. A

sequence {fβ}β∈I is called a frame for H if there exist positive constants A and B such that:

A∥f∥2 ≤
∑
β∈I

|⟨f, fβ⟩|2 ≤ B∥f∥2, ∀ f ∈ H.

Here, the constants A and B are known as the frame bounds, with A serving as the lower bound

andB as the upper bound. A frame is deemed exact if the removal of any single element renders

it no longer a frame. If A = B, the frame is called tight, and when A = B = 1, it is referred to

as a Parseval frame.

In wavelet theory, we frequently encounter families generated by translations of a single func-

tion. Hence, it becomes crucial to determine the conditions under which a collection of the form

{Tkϕ : k ∈ N0}, where ϕ ∈ L2(K), constitutes a frame sequence. To facilitate this analysis,

we introduce a function Φ, which represents a complex-valued function on K, defined as:

Φ(ξ) =
∑
n∈N0

|ϕ̂(ξ + u(n))|2.(2.1)

It is evident that Φ is K-integrally periodic and belongs to L1(D). For further details, we refer

to [24] and related literature. With this formulation in place, we present a crucial lemma that

establishes bounds for the function Φ. This result, which generalizes a theorem by Benedetto

and Li [5], demonstrates that the frame properties of {Tkϕ : k ∈ N0} can be fully characterized

through Φ.

Lemma 2.3. Let ϕ ∈ L2(K) be given. Then
{
Tnϕ : n ∈ N0

}
forms a frame sequence with

bounds A and B if and only if

A ≤ Φ(ξ) ≤ B, ∀ ξ ∈ K\N ,

where N denotes the null set of Φ, given by

N =
{
ξ ∈ K : Φ(ξ) = 0

}
.

2.3. Frame Multiresolution Analysis on L2(K). This section presents the formal definition

of Frame Multiresolution Analysis (FMRA) on Locally Compact Abelian (LCA) groups. The

concept of FMRA was initially introduced for G = R by J. J. Benedetto and S. Li in their

seminal work [5]. The definition provided here serves as a generalized version of their original

framework.
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Definition 2.3. [24] A Frame Multiresolution Analysis (FMRA) for L2(K) consists of a se-

quence of closed subspaces {Vj : j ∈ Z} of L2(K) along with a function ϕ ∈ V0, satisfying the

following conditions:

(i) The subspaces are nested:

· · · ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ · · · .

(ii) The union of all subspaces is dense in L2(K) and their intersection is trivial:⋃
j∈Z

Vj = L2(K), and
⋂
j∈Z

Vj = {0}.

(iii) Each subspace is a scaled version of V0:

Vj = DjV0.

(iv) The subspaces are translation-invariant:

f ∈ V0 =⇒ Tλf ∈ V0, ∀λ ∈ Λ.

(v) The set {Tkϕ : k ∈ N0} forms a frame for V0.

The function ϕ that generates an FMRA is known as the scaling function. The subspaces Vj are

referred to as approximation spaces or multiresolution subspaces.

A classical Multiresolution Analysis (MRA) differs from an FMRA in that condition (v) re-

quires an orthonormal basis rather than a frame. Notably, condition (v) ensures that:

span
{
Tkϕ : k ∈ N0

}
= V0.

If ϕ generates an FMRA, we obtain the structural relation:

Vj = Dj
(

span
{
Tkϕ : k ∈ N0

})
= span

{
DjTkϕ : k ∈ N0

}
, j ∈ Z.(2.2)

An FMRA is classified as exact if the frame for V0 is exact; otherwise, it is termed non-exact.

The necessary conditions for a function ϕ to generate an FMRA can be derived by modifying

classical MRA principles.

For an in-depth discussion on constructing frame multiresolutions on local fields, we refer the

reader to [24]. The following theorem concisely presents the fundamental conditions for a

function ϕ to generate an FMRA for L2(K).

Theorem 2.4. [24] A function ϕ ∈ L2(K) generates a Frame Multiresolution Analysis (FMRA)

if it satisfies the following criteria:

(i) The subspaces {Vj : j ∈ Z} are defined as in Equation (2.2).

(ii) There exists a K-integral periodic function m0 ∈ L∞(D) such that

ϕ̂(p−1(ξ)) = m0(ξ)ϕ̂(ξ).(2.3)

(iii) The sequence {Tkϕ : k ∈ N0} forms a frame sequence.
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(iv) |ϕ̂| ≠ 0 on a neighborhood of 0 ∈ K.

Equation (2.3) is known as the refinement equation, and a function ϕ satisfying this equation is

termed refinable. The function m0, appearing in (2.3), is referred to as the two-scale symbol or

refinement mask. It satisfies the key relation:

(2.4) Φ(p−1(ξ)) = |m0(ξ)|2Φ(ξ) + |m0(ξ + pu(1))|2Φ(ξ + pu(1)).

Our principal objective is to construct a wavelet frame using the given FMRA. Throughout this

discussion, we assume that ϕ generates an FMRA satisfying all conditions of Theorem 2.4 and

follows dyadic dilations.

To achieve this, we decompose L2(K) into simpler components, analogous to classical MRA.

Let Wj denote the orthogonal complement of Vj in Vj+1, leading to the decomposition:

L2(K) =
⊕
j∈Z

Wj.

The existence of functions in L2(K) whose translations form a frame for W0 is central to con-

structing a wavelet frame. The following lemma formalizes this principle [7, Chapter 17], [24].

Lemma 2.5. [24] If ϕ ∈ L2(K) generates an FMRA, then:

(i) Wj = DjW0 for all j ∈ Z.

(ii) If ψ1, ψ2, . . . , ψn ∈ W0 form a frame for W0, then {DjTkψi} forms a frame for Wj , and

{DjTkψi} for all j constitutes a frame for L2(K) with identical bounds.

Lemma 2.5 indicates that our objective is simplified to the construction of functionsψ1, ψ2, . . . , ψn

in L2(K) such that the family {Tλψi : λ ∈ Λ, 1 ≤ i ≤ n} forms a frame for W0. Consequently,

it becomes crucial for us to provide a characterization of the space W0.

Lemma 2.6. [24] Assume that ϕ ∈ L2(K) generates an FMRA of dydic dilation with two-scale

symbol m0 ∈ L∞(D). If, for any K-integral periodic function F ∈ L2(D), we define f ∈ V1 by

(2.5) f̂
(
p−1(ξ)

)
= F (ξ)ϕ̂(ξ),

then f ∈ W0 if and only if(
Fm0Φ

)
(ξ) +

(
Fm0Φ

)
(ξ + pu(1)) = 0(2.6)

hold true for a.e. ξ ∈ K.

3. DYADIC WAVELET FRAMES

In previous studies on Multiresolution Analysis (MRA) and Frame Multiresolution Analysis

(FMRA), it has been demonstrated that when an FMRA is generated by dyadic dilations, only

two functions are sufficient to construct a frame for the space W0. For an in-depth exploration

of FMRA with dyadic dilations in the case G = R, one may refer to [14]. Similarly, [28] delves
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into the generalized MRA structure on Euclidean spaces. For discussions on dyadic wavelet

frames on locally compact Abelian groups, [16] provides valuable insights. Additionally, [17]

explores Dyadic Riesz bases originating from a Riesz MRA.

Remark 3.1. Drawing inspiration from previous research and assuming that the function ϕ

generates an FMRA with dyadic dilations, our goal here is to construct two functions ψ1 and

ψ2 such that the family {
Tkψi : k ∈ N0, i = 1, 2

}
(3.1)

forms a frame for W0. We break down this process into two distinct steps:

◦ First, we aim to demonstrate the existence of two functions ψ1, ψ2 ∈ W0 such that their

translates generate W0, i.e.,

W0 = span{Tkψi : k ∈ N0, i = 1, 2}.

Additionally, we will provide an explicit expression for these two functions.

◦ Subsequently, we will establish that the family consisting of translates of functions ψ1

and ψ2, obtained in the previous step, indeed constitutes a frame for W0.

This systematic approach allows us to construct a wavelet frame for L2(K) using only two

functions, thereby streamlining the analysis process.

The first task can be simplified considerably. We will provide an alternative characterization for

the family
{
Tkψi : k ∈ N, i = 1, 2

}
to generate the space W0. In this alternative approach,

we establish a sufficient condition that reduces our task to merely checking the solvability of a

system of linear equations. These insights are encapsulated in the following theorem.

Theorem 3.1. Assume that ϕ ∈ L2(K) generates an FMRA of dydic dilation and let for some

K-integral periodic m1,m2 ∈ L∞(D), the functions ψ1, ψ2 ∈ V1 be defined by:

ψ̂1(p
−1(ξ)) = m1(ξ)ϕ̂(ξ) and ψ̂2(p

−1(ξ)) = m2(ξ)ϕ̂(ξ).

If there exist K-integral periodic functions G0, G1 and G2 ∈ L∞(D) such that the equations

1∑
j=0

(
m0miΦ

)
(ξ + pu(j)) = 0, i = 1, 2(3.2)

2∑
i=0

(miΦGi) (ξ) = Φ(ξ)(3.3)

2∑
i=0

(miΦ)(ξ + pu(1))Gi(ξ) = 0(3.4)

are satisfied for a.e. ξ ∈ K, then we have W0 = span
{
Tnψi : n ∈ N0, i = 1, 2

}
.
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Proof. Equation (3.2) along with Lemma 2.6 implies that both ψ1 and ψ2 belong to W0. Fur-

thermore, as W0 is a closed and translation-invariant subspace of L2(K), we have the following

implication:

(3.5) span
{
Tnψi : n ∈ N0, i = 1, 2

}
⊆ W0.

For any ξ ∈ K and for any ℓ ∈ N0, an easy manipulation of the equations (3.3) and (3.4) yields

1

2
ϕ̂(p(ξ)) Υℓ(p(ξ)) =

∑
n∈N0

g0p(n)+ℓ Υn(ξ)ϕ̂(ξ) +
2∑

i=1

∑
n∈N0

gip(n)+ℓ Ξn(ξ)ψ̂i(ξ);

i.e. we have
1√
2
D−1E−ℓϕ̂ =

∑
n∈N0

g0p(n)+ℓ Υnϕ̂+
2∑

i=1

∑
n∈N0

gip(n)+ℓ Υnψ̂i.

Taking the inverse Fourier transform of the above equation, we obtain

(3.6) DTℓϕ =
∑
n∈N0

g0p(n)+ℓ T−nϕ+
2∑

i=1

∑
n∈N0

gip(n)+ℓ T−nψi.

Since ψ1, ψ2 ∈ W0 and since ϕ ∈ V0 generates an FMRA, therefore we get
2∑

i=1

∑
n∈N0

gip(n)+ℓ T−nψi ∈ W0 and
∑
n∈N0

g0p(n)+ℓ T−nϕ ∈ V0.

Now let f ∈ W0 and let ϵ > 0 be arbitrary. Since
{
DTnϕ

}
n∈N0

is a frame for V1, therefore

there exists a finite set Nϵ ⊂ N⊬ and a finite sequence {bℓ}ℓ∈Nϵ such that∣∣∣∣∣
∣∣∣∣∣∑
ℓ∈Nϵ

bℓDTℓϕ− f

∣∣∣∣∣
∣∣∣∣∣
2

< ϵ.

A substitution from (3.6) now gives us∣∣∣∣∣
∣∣∣∣∣∑
ℓ∈Nϵ

bℓ

(∑
n∈N0

g0p(n)+ℓ T−nϕ+
2∑

i=1

∑
n∈N0

gip(n)+ℓ T−nψi

)
− f

∣∣∣∣∣
∣∣∣∣∣
2

< ϵ.

Now we use orthogonality of the two terms appearing on the right hand side of equation (3.6),

to get ∣∣∣∣∣
∣∣∣∣∣∑
ℓ∈Nϵ

bℓ
∑
n∈N0

g0p(n)+ℓT−nϕ

∣∣∣∣∣
∣∣∣∣∣
2

+

∣∣∣∣∣
∣∣∣∣∣∑
ℓ∈Nϵ

bℓ

2∑
i=1

∑
n∈N0

gip(n)+ℓT−nψi − f

∣∣∣∣∣
∣∣∣∣∣
2

< ϵ.

This implies that ∣∣∣∣∣
∣∣∣∣∣∑
ℓ∈Nϵ

bℓ

2∑
i=1

∑
n∈N0

gip(n)+ℓT−nψi − f

∣∣∣∣∣
∣∣∣∣∣
2

< ϵ;

and from this, we conclude that f ∈ span
{
Tnψi : n ∈ N0, i = 1, 2

}
. We now have the reverse

inclusion in the expression (3.5) and thus we can write

W0 = span
{
Tnψi : n ∈ N0, i = 1, 2

}
.
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This completes the proof.

Using the suficient condition given in the above lemma, we now proceed to prove our first aim,

i.e. we find the two functions ψ1, ψ2 generating the space W0.

Theorem 3.2. Let K be a local field and let ϕ ∈ L2(K) generates an FMRA of dydic dilation.

Then there always exist two functions ψ1, ψ2 ∈ W0 such that

W0 = span{Tnψi : n ∈ N0, i = 1, 2}.

Proof. Utilizing Lemma 3.1, it suffices to demonstrate that equations (3.2), (3.3), and (3.4) are

satisfied almost everywhere on K. It’s noteworthy that each term appearing in these equations

is K-integral periodic, thereby reducing the requirement to establish their satisfaction almost

everywhere on D.

To streamline our computations further, we partition the set D into four disjoint parts as follows:

D(0) ={ξ ∈ D : Φ(ξ) = 0,Φ(ξ + pu(1)) = 0}

D(1) ={ξ ∈ D : Φ(ξ) > 0,Φ(ξ + pu(1)) = 0}

D(2) ={ξ ∈ D : Φ(ξ) = 0,Φ(ξ + pu(1)) > 0}

D(12) ={ξ ∈ D : Φ(ξ) > 0,Φ(ξ + pu(1)) > 0}

Note that

D(0) = Tpu(1)D
(0), D(12) = Tpu(1)D

(12), D(1) = Tpu(1)D
(2) and D(2) = Tpu(1)D

(1).

On D(0), we can define m1, m2, G0, G1 and G2 to be arbitrary bounded K- integral periodic

functions. In particular, we may set them equal to 0.

Equation (3.4) always holds on D(1). We can further choose m2 = 0 on D(1) so that (3.2)

holds for i = 2. Also, from (2.4), there are constants a, b > 0 such that either m0 = 0 or

a ≤ |m0| ≤ b on D(1). If m0 = 0, then (3.2) holds for i = 1 and (3.3) only forces

m1(ξ)G1(ξ) = 1;

which is easy to achieve. One choice is to take

m1(ξ) = G1(ξ) = 1.

If a ≤ |m0| ≤ b, then, for i = 1, (3.2) forces m1(ξ) = 0 so that (3.3) only requires

m0(ξ)G0(ξ) = 1,

which can be accomplished by taking

G0(ξ) =
1

m0(ξ)
.
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Clearly, this G0 satisfies all the required properties. Also, in both the subcases, any K-integral

periodic function in L∞(D) can work as G2. To avoid any complex calculations, we choose

G2 = 0 on D(1).

Equation (3.3) is always satisfied on D(2). Similarly to the previous case, we choose m2(ξ +

pu(1)) = 0 to ensure compatibility with the definition of m2 on D(1) and to guarantee that

equation (3.2) holds for i = 2. Further, from (2.4), there are constants a, b > 0 such that either

m0(ξ+ pu(1)) = 0 or a ≤ m0(ξ+ pu(1)) ≤ b for all ξ ∈ D(2). If 0 < a ≤ m0(ξ+ pu(1)) ≤ b,

then, for i = 1, (3.2) forces

m1(ξ + pu(1)) = 0;

which is compatible with the definition of m1 on D(1). Further, in this case, (3.4) reduces to

m0(ξ + pu(1))G0(ξ) = 0,

which can be accomplished by taking G0 = 0.

If m0(ξ + pu(1)) = 0, then (3.2) holds for i = 1 and (3.4) forces

m1(ξ + pu(1))G1(ξ) = 0;

which may be achieved by taking G1(ξ) = 0. Also, the choice G2 = 0 can be made for both

the above subcases. The justification for this choice is similar to the previous case.

For the final case, we further divide the set D(12) into two subparts:

D
(12)
1 ={ξ ∈ D12 : Φ(p−1(ξ)) = 0}

D
(12)
2 ={ξ ∈ D12 : Φ(p−1(ξ)) > 0}

If ξ ∈ D
(12)
1 , then (2.4) forces m0(ξ) = m0(ξ + pu(1)) = 0. This means that (3.2) gets trivially

satisfied for both i = 1, 2. Also, any K-integral periodic function in L∞(D) can work as G0. In

particular, we let G0(ξ) = 0. Now, we are left with

two linear equations in four variables. We make the choice m1(ξ) = 1 and

m2(ξ) = Ξu(1)(ξ). Then we get G1(ξ) = 1
2

and G2(ξ) = 1
2
Υu(1)(ξ). Thus, we are able to

find m1,m2, G0, G1 and G2 satisfying the equations (3.2), (3.3) and (3.4).

Lastly, let ξ ∈ D
(12)
2 . Equation (2.4) implies that

A

B
≤ |m0(ξ)|2 + |m0(ξ + pu(1))|2 ≤ B

A
;

where A and B respectively denote the lower and upper frame bound for the frame {Tnϕ : n ∈
N0}.

Now set m1(ξ) = (m0Φ)(ξ + pu(1)) Υu(1)(ξ) and m2(ξ) = 0. Observe that, with these choices

of m1 and m2, (3.2) always holds for both i = 1, 2. The remaining equations, (3.3) and (3.4),

now constitute a system of two linear equations in two unknowns, G0 and G1. The determinant
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∆ of this system is given by:

∆(ξ) =

∣∣∣∣∣ m0(ξ)Φ(ξ) m1(ξ)Φ(ξ)

(m0Φ)(ξ + pu(1)) (m1Φ)(ξ + pu(1))

∣∣∣∣∣
It is easy to note that

(3.7) |∆(ξ)| ≥ A4

B
> 0.

This implies that G0 and G1, occurring in (3.3) and (3.4), are unique and using Cramer’s rule,

we can write

G0(ξ) =
Φ(ξ)(m1Φ)(ξ+pu(1))

∆(ξ)
and G1(ξ) = −Φ(ξ)(m0Φ)(ξ+pu(1))

∆(ξ)
.

Further (3.7) and Lemma 2.3 implies that

|G0(ξ)| ≤ B3

A4 ||m1||∞ and |G1(ξ)| ≤ B3

A4 ||m0||∞.

This implies that both G0 and G1 are K-integral periodic functions in L∞(D). As for G2, we

can make an arbitrary choice within the space L∞(D), and here we opt for G2 = 0.

Combining all cases, we can summarize as follows:

m1(ξ) =



(m0Φ)(ξ + pu(1)) Υu(1)(ξ) , ξ ∈ D
(12)
2

1 , ξ ∈ D
(12)
1

1 , ξ ∈ D(1) and m0(ξ) = 0

0 , otherwise

(3.8)

m2(ξ) =

Υu(1)(ξ) , ξ ∈ D
(12)
1

0 , otherwise
(3.9)

Thus we conclude that the equations (3.2),(3.3) and (3.4) are satisfied on D and hence on K.

The proof is now complete.

Our next objective is to construct a frame for W0. To achieve this, we present a result that

extends Lemma 2.3 and deals with a multiwavelet frame structure instead of a frame generated

by a single element. The proof of this result can be found in [21].

Lemma 3.3. Let f1, f2, · · · fn ∈ L2(K) and let L(ξ) denote the n× n matrix

L(ξ) =

[∑
k∈N0

f̂i(ξ + u(k))f̂j(ξ + u(k))

]
1≤i,j≤n

.

If Ñ denote the set

Ñ =

{
ξ ∈ D :

∑
k∈N0

∣∣∣f̂i(x+ u(k))
∣∣∣2 > 0 for some 1 ≤ i ≤ n

}
;
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then the family {Tkfi : k ∈ N0, 1 ≤ i ≤ n} is a frame for its closed linear span if and only if

the following two conditions hold:

(i) The largest eigenvalue of the matrix L(ξ) is essentially bounded on D.

(ii) The smallest nonzero eigenvalue of L(ξ) is bounded away from zero on the set Ñ .

Now, after giving some notations analogous to (2.1), we finally show that the functions ψ1 and

ψ2 obtained in Theorem 3.2 can now be used to construct a frame for the space W0.

Ψ1(ξ) =
∑
k∈N0

|ψ̂1(ξ + u(k))|2 and Ψ2(ξ) =
∑
k∈N0

|ψ̂2(ξ + u(k))|2.

Theorem 3.4. Consider a local field K and suppose ϕ ∈ L2(K) generates an FMRA with

dyadic dilation. Then, there always exist two functions ψ1, ψ2 ∈ W0 such that the family{
Tkψi : k ∈ N0, i = 1, 2

}
generates a frame for its closed linear span.

Proof. Theorem 3.2 tells us that there always two functions in W0 such that

W0 = span{Tkψi : k ∈ N0, i = 1, 2}.

Moreover, these functions ψ1 and ψ2 are explicitly given by

ψ̂1(p
−1(ξ)) = m1(ξ)ϕ̂(ξ) and ψ̂2(p

−1(ξ)) = m1(ξ)ϕ̂(ξ);

where m1 and m2 are given by (3.8) and (3.9) respectively. We will now show that the family{
Tkψi : k ∈ N0, i = 1, 2

}
, generated using these two functions ψ1 and ψ2 of Theorem 3.2,

is a frame for W0. For this, we intend to use Lemma 3.3, with a slight modification. Keeping

in mind the definitions of the functions ψ1 and ψ2, we find it easier to work with the matrix

L(p−1(ξ)) instead of L(ξ), and thus, the two conditions in Lemma 3.3 are now to be proved

only for the set D̃ = p(D). To simplify our computations, we further partition the set D̃ into

four disjoint parts as follows:

D̃(0) ={ξ ∈ D̃ : Φ(ξ) = 0,Φ(ξ + pu(1)) = 0}

D̃(1) ={ξ ∈ D̃ : Φ(ξ) > 0,Φ(ξ + pu(1)) = 0}

D̃(2) ={ξ ∈ D̃ : Φ(ξ) = 0,Φ(ξ + pu(1)) > 0}

D̃(12) ={ξ ∈ D̃ : Φ(ξ) > 0,Φ(ξ + pu(1)) > 0}

Note that this division closely resembles the one made in Theorem 3.2. Furthermore, we have a

similar relationship between the subsets D̃(0), D̃(1), D̃(2), and D̃(12) as we did in Theorem 3.2.

With these functions ψ1 and ψ2, we observe that the matrix L(p−1(ξ)) has the following repre-

sentation:

L(p−1(ξ)) =

[
(|m1|2Φ)(ξ) + Tpu(1)(|m1|2Φ)(ξ) (m1m2Φ)(ξ) + Tpu(1)(m1m2Φ)(ξ)

(m1m2Φ)(ξ) + Tpu(1)(m1m2Φ)(ξ) (|m2|2Φ)(ξ) + Tpu(1)(|m2|2Φ)(ξ)

]
.
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Let θ+(ξ) and Θ(ξ) respectively denote the smallest nonzero eigenvalue and the largest eigen-

value of the matrix L(p−1(ξ)).

We note that L(p−1(ξ)) is a zero matrix when any of the following conditions hold:

◦ ξ ∈ D̃(0);

◦ ξ ∈ D̃(1) and m0(ξ) ̸= 0;

◦ ξ ∈ D̃(2) and m0(ξ + pu(1)) ̸= 0.

We need not prove anything for the cases mentioned above and so we will now investigate the

remaining cases one by one.

If ξ ∈ D̃(1) and m0(ξ) = 0, then the matrix L(p−1(ξ)) becomes

L(p−1(ξ)) =

[
Φ(ξ) 0

0 0

]
This implies that θ+(ξ) = Θ(ξ) = Φ(ξ). Furthermore, Lemma 2.3 establishes the relation

A ≤ Φ(ξ) ≤ B. Hence, the assertions of Lemma 3.3 are satisfied in this case.

The case where ξ ∈ D̃(2) and m0(ξ + pu(1)) = 0 can be addressed similarly.

Now, only the case where ξ ∈ D̃(12) remains. We further divide this set into two disjoint parts

as follows:

D̃
(12)
1 ={ξ ∈ D̃12 : Φ(p−1(ξ)) = 0}

D̃
(12)
2 ={ξ ∈ D̃12 : Φ(p−1(ξ)) > 0}.

If ξ ∈ D̃
(12)
2 , then the matrix L(p−1(ξ)) has the representation:

L(p−1(ξ)) =

[
Ψ1(p

−1(ξ)) 0

0 0

]
;

where Ψ1(p
−1(ξ)) = |m1(ξ)|2Φ(ξ)+|m1(ξ+pu(1))|2Φ(ξ+pu(1)). It is easy to note Ψ1(p

−1(ξ)) >

0 and thus we have θ+(ξ) = Θ(ξ) = Ψ1(p
−1(ξ)). An easy calculation further gives us that

A4

B
≤ Ψ1(p

−1(ξ)) ≤ B4

A
;

and thus the assertions of the Lemma 3.2 are proved.

Finally, let ξ ∈ D̃
(12)
1 . Then the matrix L(p−1(ξ)) has the representation:

L(p−1(ξ)) =

[
Φ(ξ) + Φ(ξ + pu(1)) Υu(1)(ξ) (Φ(ξ)− Φ(ξ + pu(1)))

Υu(1)(ξ) (Φ(ξ)− Φ(ξ + pu(1))) Φ(ξ) + Φ(ξ + pu(1))

]
After straightforward calculations, we find that the two eigenvalues corresponding to the matrix

above are 2Φ(ξ) and 2Φ(ξ + pu(1)). Furthermore, we have:

2A ≤ 2Φ(ξ) ≤ 2B

and

2A ≤ 2Φ(ξ + pu(1)) ≤ 2B.
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Hence, it is evident that the assertions of Lemma 3.2 are also satisfied for this case. By combin-

ing all cases, we conclude from Lemma 3.3 that the family of translates
{
Tkψi : k ∈ N0, i =

1, 2
}

forms a frame for W0.

3.1. The case of Single Generator. In the context of locally compact Abelian groups G, it

has been noted that for classical MRA with dyadic dilation, an orthonormal basis for L2(G)

can always be formed from dilations and translations of a single function [10]. A similar result

holds for Riesz wavelet bases arising from Riesz MRA of dyadic dilations [17]. However, in

the case of frames, this may not hold true [16].

Extending this discussion to local fields, similar expectations arise, particularly considering

Theorem 3.1, where two non-trivial functions are needed to generate a frame for L2(K). No-

tably, the structure of the function ψ2 from Theorem 3.2 and prior works by J. J. Benedetto, S.

Li [5, 4], and R. Kumar, Satyapriya, F. A. Shah [16, 17] suggest that the measure associated

with the set

Ω =
{
ξ ∈ D : Φ(p−1(ξ)) = 0, Φ(ξ) > 0, Φ(ξ + pu(1)) > 0

}
(3.10)

will play a significant role here. Let’s address the case when µK(Ω) > 0. We start by showing

in the following lemma that the set W0 is nontrivial in this scenario. It’s noteworthy that this set

Ω is equivalent to the set D(12)
1 defined in the proof of Theorem 3.2.

Lemma 3.5. Assume that ϕ ∈ L2(K) generates an FMRA of dydic dilation with two-scale

symbol m0 ∈ L∞(D). Assume that the set Ω, defined in (3.10), has a positive measure and

define functions K-integral periodic functions P1, P2 ∈ L2(D) by

P1(ξ) =χΩ(ξ)(3.11)

P2(ξ) =χΩ∩(pD)(ξ)− χΩ∩(pu(1)+pD)(ξ)(3.12)

Then the functions f1, f2 defined by

f̂1(p
−1(ξ)) =P1(ξ)ϕ̂(ξ),

f̂2(p
−1(ξ)) =P2(ξ)ϕ̂(ξ);

belong to W0.

Proof. We can express P1 and P2 in terms of sequences {g1n}n∈N0 and {g2n}n∈N0 in l2(N0) as:

P1(ξ) =
∑
n∈N0

g1nΥu(1)(ξ),

P2(ξ) =
∑
n∈N0

g2λΥu(1)(ξ).

AJMAA, Vol. 22 (2025), No. 2, Art. 7, 21 pp. AJMAA

https://ajmaa.org


DYADIC WAVELET FRAMES ON LOCAL FIELDS 17

For any t ∈ K, f1 and f2 can be expressed as:

f1(t) = 2
∑
n∈N0

g1−nϕ(p
−1(t)− u(n)),

f2(t) = 2
∑
n∈N0

g2−nϕ(p
−1(t)− u(n)).

It’s evident that f1 and f2 belong to V1. Moreover, they aren’t identically zero on D due to the

lower frame bound A.

Utilizing Lemma 2.6, we aim to show f1 and f2 also belong to W0. Thus, we need to demon-

strate:
P1m0Φ + Tpu(1)(P1m0Φ) = 0,

P2m0Φ + Tpu(1)(P2m0Φ) = 0.

Since P1(ξ) = P2(ξ) = 0 when ξ /∈ Ω, both equations hold trivially in this case. We only need

to verify them on Ω.

For ξ ∈ Ω, combining the definitions of Ω and Φ, we have m0(ξ) = m0(ξ + pu(1)) = 0. Thus,

both equations hold on Ω, completing the proof.

Drawing from the insights provided in the preceding lemma, we now establish a theorem

demonstrating that if µK(Ω) > 0, then there cannot exist a function ψ ∈ L2(K) capable of

generating the space W0.

Theorem 3.6. Given that ϕ ∈ L2(K) generates an FMRA of dyadic dilation with a two-scale

symbol m0 ∈ L∞(D), if the set Ω, as defined in (3.10), has a measure µK(Ω) > 0, then it is

impossible to find a function ψ ∈ W0 such that the family {Tkψ : k ∈ N0} forms a frame for

W0.

Proof. Suppose there exists a function ψ ∈ W0 such that the family {Tnψ}n∈N0 forms a frame

for W0. Then, we can express f1 and f2 as:

f1(t) =
∑
n∈N0

g1nψ(t− u(n)),

f2(t) =
∑
n∈N0

g2nψ(t− u(n)); t ∈ K.

For any ξ ∈ K, we have:
f̂1(ξ) = C1(ξ)ψ̂(ξ),

f̂2(ξ) = C2(ξ)ψ̂(ξ),

where Ci(ξ) =
∑

n∈N0
ginΥu(n)(ξ), i = 1, 2. Clearly, C1 and C2 are K-integral periodic func-

tions in L2(D).

Since ψ ∈ W0 ⊂ V1 and {DTkψ : k ∈ N0} is a frame for V1, we have:

ψ(t) =
∑
n∈N0

hnψ(p
−1(t)− u(n)); t ∈ K,
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where {hn}n∈N0 ∈ l2(N0). Consequently, for any ξ ∈ K, we can write:

ψ̂(p−1(ξ)) = F (ξ)ϕ̂(ξ),

with F (ξ) = 1
2

∑
n∈N0

hnΥn(ξ), a K-integral periodic function in L2(D).

Substituting these into the expressions for f̂1 and f̂2, we get:

f̂1(p
−1(ξ)) = C1(p

−1(ξ))F (ξ)ϕ̂(ξ),

f̂2(p
−1(ξ)) = C2(p

−1(ξ))F (ξ)ϕ̂(ξ); ξ ∈ K.

Now, for ξ ∈ Ω, Φ(ξ) > 0, implying there exists an ℓ ∈ N0 such that ϕ̂(ξ + u(ℓ)) ̸= 0. Thus,

for this ℓ:

f̂1(p
−1(ξ + u(ℓ))) = C1(p

−1(ξ))F (ξ)ϕ̂(ξ + u(ℓ)),

f̂2(p
−1(ξ + u(ℓ))) = C2(p

−1(ξ))F (ξ)ϕ̂(ξ + u(ℓ)).

Comparing with the definitions of f1 and f2, we obtain:

C1(p
−1(ξ))F (ξ) = P1(ξ),

C2(p
−1(ξ))F (ξ) = P2(ξ).

For ξ ∈ Ω ∩ (pD), we have:

P1(ξ) = 1, P1(ξ + pu(1)) = 1,

P2(ξ) = 1, P2(ξ + pu(1)) = −1.

These values, when substituted back, lead to:

0 ̸= F (ξ) = F (ξ − pu(1)),

0 ̸= F (ξ) = −F (ξ − pu(1)).

These contradictions show that {Tkψ : k ∈ N0} cannot generate W0 and hence cannot be a

frame for W0, thus completing the proof of the theorem.

Now it remains to investigate the condition where µK(Ω) = 0. Before that, we state a suffi-

ciency lemma, analogous to Theorem 3.1, which gives us the sufficient conditions under which

a family of translates of a single function ψ spans the spaceW0. We skip the proof of this lemma

to avoid repetitiveness.

Theorem 3.7. Assume that ϕ ∈ L2(K) generates an FMRA of dydic dilation and let for some

K-integral periodic m ∈ L∞(D), the function ψ ∈ V1 be defined by:

ψ̂(p−1(ξ)) = m(ξ)ϕ̂(ξ)
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If there exist K-integral periodic functions G0 and G1 ∈ L∞(D) such that the equations(
m0mΦ

)
(ξ) +

(
m0mΦ

)
(ξ + pu(1)) = 0(3.13)

(m0ΦG0) (ξ) + (mΦG1) (ξ) = Φ(ξ)(3.14)

(m0Φ)(ξ + pu(1))G0(ξ) + (mΦ)(ξ + pu(1))G1(ξ) = 0(3.15)

are satisfied for a.e. ξ ∈ K, then we have W0 = span
{
Tnψi : n ∈ N0, i = 1, 2

}
.

With an approach similar to Theorem 3.2, we can find the function m on D and then extend

it K-integral periodically to whole of K. With these observations at hand, we now present a

theorem which asserts that if µK(Ω) = 0, then one function is enough to generate a frame for

W0.

Theorem 3.8. If ϕ ∈ L2(K) generates an FMRA, and Ω is defined as in (3.10), then if Ω has

measure zero, there exists a function ψ ∈ W0 such that the family {Tkψ : k ∈ N0} forms a

frame for W0. Consequently, the family {DjTkψ : j ∈ Z, k ∈ N0} constitutes a frame for

L2(K).

Proof. Observe that the function ψ2, obtained in Theorem 3.2, is non zero only when ξ ∈ D
(12)
1 .

Also, we observe that Ω = D
(12)
1 . Since, by our assumption, Ω is a null set, therefore, a similar

approach, as used in Theorem 3.2, tells us that the functions m,G0 and G1 can be chosen as

follows:

m(ξ) =


(m0Φ)(ξ + pu(1)) χu(1)(ξ) , ξ ∈ S(12)

1 , ξ ∈ D(1) and m0(ξ) = 0

0 , otherwise

(3.16)

G0(ξ) =


Φ(ξ)(mΦ)(ξ+pu(1))

∆(ξ)
, ξ ∈ D(12)

1
m0(ξ)

, ξ ∈ D(1) and m0(ξ) ̸= 0

0 , otherwise

G1(ξ) =


−Φ(ξ)(m0Φ)(ξ+pu(1))

∆(ξ)
, ξ ∈ D(12)

1 , ξ ∈ D(1) and m0(γ) = 0

0 , otherwise

This concludes the proof.
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