

The Australian Journal of Mathematical Analysis and Applications

http://ajmaa.org

Volume 8, Issue 1, Article 3, pp. 1-7, 2011

AN L^p INEQUALITY FOR 'SELF-RECIPROCAL' POLYNOMIALS. II M. A. QAZI

Received 24 November, 2008; accepted 27 March, 2009; published 8 September, 2011.

DEPARTMENT OF MATHEMATICS, TUSKEGEE UNIVERSITY, TUSKEGEE, ALABAMA 36088 USA, qazima@aol.com

ABSTRACT. The main result of this paper is a sharp integral mean inequality for the derivative of a 'self-reciprocal' polynomial.

Key words and phrases: Polynomials, Restricted zeros, Growth, Inequalities.

2000 Mathematics Subject Classification. Primary 41A17. Secondary 30A10, 41A10.

ISSN (electronic): 1449-5910

^{© 2011} Austral Internet Publishing. All rights reserved.

1. INTRODUCTION

Let \mathcal{P}_n be the class of all polynomials of degree at most n. We say that a polynomial $f \neq 0$ belongs to \wp_n if it is of degree at most n and satisfies the condition $f(z) \equiv z^n f(1/z)$. Frappier, Rahman and Ruscheweyh [3, p. 96] call such a polynomial 'self-reciprocal'. Such polynomials have been studied for about thirty years (see [1, 2] [3, §7.5], [5, 6, 8, 9] [10, pp. 229–230], [11, pp. 431–432], [12, 13]).

For any entire function F, let

(1.1)
$$\mathcal{M}_p(F; r) := \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \left| F\left(r \mathrm{e}^{\mathrm{i}\theta}\right) \right|^p \mathrm{d}\theta \right)^{1/p} \qquad (0 0).$$

It is well-known (see for example [7, p. 143]) that for any given r > 0, the integral mean $\mathcal{M}_p(F; r)$ is a non-decreasing function of p and that

$$\mathcal{M}_p(F; r) \to \max_{|z|=r} |F(z)| \text{ as } p \to \infty.$$

This explains the notation

(1.2)
$$\mathcal{M}_{\infty}(F;r) := \max_{|z|=r} |F(z)| \qquad (r>0) \,.$$

It is also known (see [7, p. 139]) that for any given r > 0,

$$\mathcal{M}_p(F; r) \to \exp\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \log \left| F\left(r \mathrm{e}^{\mathrm{i}\theta}\right) \right| \,\mathrm{d}\theta \right) \quad \mathrm{as} \quad p \to 0 \,.$$

So, we set

(1.3)
$$\mathcal{M}_0(F; r) := \exp\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \log \left| F\left(r \mathrm{e}^{\mathrm{i}\theta}\right) \right| \, \mathrm{d}\theta\right)$$

When F is a polynomial, the associated quantity $\mathcal{M}_0(F; 1)$ is called its *logarithmic Mahler* measure. Let $F(z) := a_m \prod_{\mu=1}^m (z - z_\mu)$, and suppose that F(0) is not zero. Then by Jensen's theorem (see [14, p. 124])

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \log \left| F\left(e^{i\theta} \right) \right| \, \mathrm{d}\theta = \log \frac{\left| F(0) \right|}{\prod_{|z_{\mu}| < 1} |z_{\mu}|}$$

Hence

(1.4)
$$\mathcal{M}_{0}(F;1) = \exp\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \log\left|F\left(\mathrm{e}^{\mathrm{i}\theta}\right)\right| \,\mathrm{d}\theta\right) = |a_{m}| \prod_{\mu=1}^{m} \max\{|z_{\mu}|,\,1\}$$

Let $F(z) := z^m \Phi(z)$, where $\Phi(0) \neq 0$. Then $\mathcal{M}_0(F; 1) = \mathcal{M}_0(\Phi; 1)$, and (1.4) applies to Φ . Hence, in (1.4) the restriction ' $F(0) \neq 0$ ' may be dropped, making it a very useful formula.

Bernstein's inequality for polynomials says that if f is a polynomial of degree at most n such that $\mathcal{M}_{\infty}(f; 1) = 1$, then

$$\mathcal{M}_{\infty}(f'; 1) \le n \,,$$

where the inequality becomes an equality if and only if $f(z) \equiv e^{i\gamma} z^n$, $\gamma \in \mathcal{R}$. Since $\mathcal{M}_p(F; r)$ is a non-decreasing function of p, it follows that for any polynomial f of degree at most n such that $\mathcal{M}_{\infty}(f; 1) = 1$, we have

$$\mathcal{M}_p(f'; 1) \le n \qquad (0 \le p < \infty).$$

It is interesting that this is also sharp; for any $p \in [0, \infty)$, the inequality becomes an equality for polynomials of the form $f(z) \equiv e^{i\gamma} z^n$, $\gamma \in \mathcal{R}$. Thus

(1.5)
$$\sup\left\{\frac{\mathcal{M}_p(f';1)}{\mathcal{M}_\infty(f;1)}: f \in \mathcal{P}_n, f(z) \neq 0\right\} = n \qquad (0 \le p \le \infty).$$

There exists (see [3, p. 97]) a polynomial $f_* \in \wp_n$ such that

(1.6)
$$\mathcal{M}_{\infty}(f'_*; 1) \geq \mathcal{M}_{\infty}(f_*; 1) (n-1).$$

This is surprising since, for any $p \in [0, \infty]$, the extremals in (1.5) have all their zeros at the origin whereas any polynomial in \wp_n must have at least half of its zeros outside the open unit disk.

If $f(z) := \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ is such that $a_0 = a_n$ then (see [4, Theorem 2]),

(1.7)
$$\mathcal{M}_{\infty}(f'; 1) \leq \mathcal{M}_{\infty}(f; 1) \left(n - \frac{1}{2} + \frac{1}{2(n+1)} \right)$$

In particular, (1.7) holds for any $f \in \wp_n$.

In this paper we consider the following question that was mentioned to me by Professor Q. I. Rahman. It asks for an analogue of (1.5) for the subclass \wp_n .

Question. What is the value of the constant

(1.8)
$$\kappa_{n,p} := \sup\left\{\frac{\mathcal{M}_p(f';1)}{\mathcal{M}_{\infty}(f;1)}: f \in \wp_n\right\}$$

for any given $p \in [0, \infty]$?

From (1.6) and (1.7) we know that

$$n-1 \le \kappa_{n,\infty} \le n - \frac{1}{2} + \frac{1}{2(n+1)}$$

However, the exact value of $\kappa_{n,\infty}$ remains unknown and elusive.

The following result contains an answer to the question in the case where p lies in [0, 2].

Theorem 1.1. Let $f(z) := \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ be a polynomial of degree at most n such that $f(z) \equiv z^{n} f(1/z)$. Furthermore, let $\mathcal{M}_{p}(.;.)$ be as in (1.1) and $\mathcal{M}_{\infty}(.;.)$ be as in (1.2). Then,

(1.9)
$$\mathcal{M}_p(f'; 1) \le \frac{n}{\sqrt{2}} \sqrt{\frac{1}{n} \sum_{k=0}^{n-1} |f(e^{2k\pi i/n})|^2 - 2|a_0|^2} \qquad (0 \le p \le 2),$$

and so a fortiori

(1.10)
$$\mathcal{M}_p(f'; 1) \le \frac{n}{\sqrt{2}} \sqrt{\left(\mathcal{M}_\infty(f; 1)\right)^2 - 2|a_0|^2} \qquad (0 \le p \le 2).$$

The example $f(z) := z^n + 1$ shows that both (1.9) and (1.10) are sharp for every $p \in [0, 2]$.

It may be added that if $|f(e^{2k\pi i/n})| \le 1$ for k = 0, 1, ..., n-1, then $\frac{1}{n} \sum_{k=0}^{n-1} |f(e^{2k\pi i/n})|^2 \le 1$, and so (1.9) contains the following result, which is stronger than (1.10).

Corollary 1.2. Let $f(z) := \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ be a polynomial of degree at most n such that $f(z) \equiv z^{n} f(1/z)$. Furthermore, let $|f(e^{2k\pi i/n})| \leq 1$ for k = 0, 1, ..., n-1. Then

$$\mathcal{M}_p(f'; 1) \le \frac{n}{\sqrt{2}} \sqrt{1 - 2|a_0|^2} \qquad (0 \le p \le 2)$$

As the example $f(z) := (z^n + 1)/2$ shows, the estimate is sharp for every $p \in [0, 2]$.

Remark 1.1. In view of (1.4), the case p = 0 of (1.10) can be stated as follows:

Let $f(z) := \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ be a polynomial of degree at most n such that $f(z) \equiv z^{n} f(1/z)$, and let $\zeta_{1}, \ldots, \zeta_{n-1}$ be the zeros of f'. Then

$$|a_0|^2 + |a_n|^2 \left\{ \prod_{\nu=1}^{n-1} \max\{|\zeta_\nu|, 1\} \right\}^2 \le \frac{\left(\mathcal{M}_\infty(f; 1)\right)^2}{2}.$$

Theorem 1.1 implies the following result.

Corollary 1.3. Let $g(x) := \sum_{\nu=0}^{n} c_{\nu} x^{\nu}$ be a polynomial of degree at most n with coefficients in C. Furthermore, for any $p \in (0, \infty)$, let

$$I_{p,1} := \frac{1}{\pi} \int_{-1}^{1} \left| n g(x) + i\sqrt{1 - x^2} g'(x) \right|^p \frac{\mathrm{d}x}{\sqrt{1 - x^2}}$$

and

$$I_{p,2} := \frac{1}{\pi} \int_{-1}^{1} \left| n g(x) - i\sqrt{1 - x^2} g'(x) \right|^p \frac{\mathrm{d}x}{\sqrt{1 - x^2}}$$

Then, for any $p \in [0, 2]$, we have

(1.11)
$$\left(\frac{I_{p,1}+I_{p,2}}{2}\right)^{1/p} \leq n\sqrt{\frac{1}{n}\left\{|g(1)|^2+2\sum_{k=1}^{n-1}\left|g\left(\cos\frac{k\pi}{n}\right)\right|^2+|g(-1)|^2\right\}-\left(\frac{|c_n|}{2^{n-1}}\right)^2}.$$

In particular, if $|g(x)| \leq 1$ at the points $x_k := \cos(k\pi/n), k = 0, 1, ..., n$ then, for any $p \in (0, 2]$, we have

(1.12)
$$\left(\frac{I_{p,1} + I_{p,2}}{2}\right)^{1/p} \le n \sqrt{2 - \left(\frac{|c_n|}{2^{n-1}}\right)^2}$$

Both (1.11) and (1.12) become equalities for $T_n(x) := \cos(n \arccos x)$, the Chebyshev polynomial of the first kind of degree n.

Remark 1.2. Since

$$\frac{1}{\pi} \int_{-1}^{1} \frac{\mathrm{d}x}{\sqrt{1-x^2}} = 1 \,,$$

the quantity

$$\left(\frac{I_{p,1}+I_{p,2}}{2}\right)^{1/p}$$

appearing on the left-hand sides of (1.11) and (1.12), is a 'weighted integral mean' of

$$\frac{1}{2} \left\{ \left| n g(x) + i\sqrt{1 - x^2} g'(x) \right|^p + \left| n g(x) - i\sqrt{1 - x^2} g'(x) \right|^p \right\}.$$

2. AN AUXILIARY RESULT

Lemma 2.1. Let $f(z) := \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ be a polynomial of degree n such that $a_0 = a_n$. Then,

(2.1)
$$\frac{1}{n} \sum_{k=0}^{n-1} \left| f\left(e^{2k\pi i/n} \right) \right|^2 = \sum_{\nu=0}^n |a_{\nu}|^2 + 2 |a_0|^2 = \sum_{\nu=0}^n |a_{\nu}|^2 + 2 |a_n|^2.$$

Proof. For any real θ , we have

(2.2)
$$\left|f\left(e^{i\theta}\right)\right|^{2} = f\left(e^{i\theta}\right)\overline{f\left(e^{i\theta}\right)} = \sum_{\nu=0}^{n} a_{\nu}e^{i\nu\theta}\sum_{\nu=0}^{n} \overline{a}_{\nu}e^{-i\nu\theta} = \sum_{m=-n}^{n} b_{m}e^{im\theta},$$

where

(2.3)
$$b_{-n} = a_0 \,\overline{a}_n = |a_0|^2, \ b_n = a_n \,\overline{a}_0 = |a_0|^2, \ b_0 = \sum_{\nu=0}^n |a_\nu|^2$$

and

$$b_m = \sum_{\mu=0}^{n-m} a_{m+\mu} \,\overline{a}_{\mu}, \ b_{-m} = \overline{b}_m \qquad (m = 1, \dots, n-1)$$

The values of b_1, \ldots, b_{n-1} and b_{-1}, \ldots, b_{-n+1} are of little importance. Let $\omega := e^{2m\pi i/n}$, where $m \in \{\pm 1, \ldots, \pm (n-1)\}$. Note that $\omega^n = 1$. Since $\omega \neq 1$, we see that

(2.4)
$$\sum_{k=0}^{n-1} \left(e^{2m\pi i/n} \right)^k = \sum_{k=0}^{n-1} \omega^k = \frac{1-\omega^n}{1-\omega} = 0 \qquad (m = \pm 1, \dots, \pm (n-1)) \ .$$

From (2.2), (2.3) and (2.4) it follows that

$$\sum_{k=0}^{n-1} \left| f\left(e^{2k\pi i/n} \right) \right|^2 = b_{-n} \sum_{k=0}^{n-1} e^{-2k\pi i} + b_n \sum_{k=0}^{n-1} e^{2k\pi i} + \sum_{k=0}^{n-1} b_0 + \sum_{\substack{m=-n+1,\\m \neq 0}}^{n-1} b_m \sum_{k=0}^{n-1} \left(e^{2m\pi i/n} \right)^k = nb_{-n} + nb_n + nb_0 = n \sum_{\nu=0}^n |a_{\nu}|^2 + 2n|a_0|^2,$$

which is equivalent to (2.1).

3. PROOFS OF THEOREM 1.1 AND COROLLARY 1.3

Proof of Theorem 1.1. We present the proof in three steps.

Step I. First we show that if $f(z) := \sum_{\nu=0}^{n} a_{\nu} z^{\nu}$ is a polynomial of degree at most n, whose coefficients satisfy the condition

(3.1)
$$|a_{\nu}| = |a_{n-\nu}| \qquad (\nu = 0, 1, \dots, n),$$

then

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left| f'\left(\mathbf{e}^{\mathbf{i}\theta}\right) \right|^2 \, \mathrm{d}\theta \le \frac{n^2}{2} \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| f\left(\mathbf{e}^{\mathbf{i}\theta}\right) \right|^2 \, \mathrm{d}\theta.$$

Indeed, (3.1) allows us to write

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left| f'\left(\mathbf{e}^{\mathbf{i}\theta}\right) \right|^{2} d\theta = \sum_{\nu=0}^{n} \nu^{2} |a_{\nu}|^{2} = \frac{1}{2} \left(\sum_{\nu=0}^{n} \nu^{2} |a_{\nu}|^{2} + \sum_{\nu=0}^{n} \nu^{2} |a_{n-\nu}|^{2} \right)$$
$$= \frac{1}{2} \sum_{\nu=0}^{n} \left\{ \nu^{2} + (n-\nu)^{2} \right\} |a_{\nu}|^{2}$$
$$\leq \frac{n^{2}}{2} \sum_{\nu=0}^{n} |a_{\nu}|^{2} = \frac{n^{2}}{2} \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| f\left(\mathbf{e}^{\mathbf{i}\theta}\right) \right|^{2} d\theta.$$

Step II. By Lemma 2.1,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \left| f\left(e^{i\theta} \right) \right|^2 d\theta = \sum_{\nu=0}^n |a_{\nu}|^2 = \frac{1}{n} \sum_{k=0}^{n-1} \left| f\left(e^{2k\pi i/n} \right) \right|^2 - 2 |a_0|^2.$$

Hence,

(3.2)
$$\mathcal{M}_2(f'; 1) \le \frac{n}{\sqrt{2}} \sqrt{\frac{1}{n} \sum_{k=0}^{n-1} |f(e^{2k\pi i/n})|^2 - 2|a_0|^2}.$$

Step III. Finally, note that $\mathcal{M}_p(f'; 1) \leq \mathcal{M}_2(f'; 1)$ for $0 \leq p \leq 2$ since $\mathcal{M}_p(f'; 1)$ is a nondecreasing function of p. Hence (3.2) implies (1.9).

Proof of Corollary 1.3. Consider the polynomial

$$f(z) := z^n g\left(\frac{z+z^{-1}}{2}\right) \,.$$

It clearly belongs to \wp_{2n} , and writing it in the form $f(z) := \sum_{\nu=0}^{2n} a_{\nu} z^{\nu}$ we see that $a_{2n} = a_0 = c_n/2^n$. Since

$$f'(e^{i\theta})| = |i n g(\cos \theta) + g'(\cos \theta)(-\sin \theta)|$$

Theorem 1.1, with 2n in place of n, may be applied to f to conclude that for any $p \in (0, 2]$, we have

$$\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |n \, g(\cos \theta) + \mathbf{i} \, (\sin \theta) g'(\cos \theta)|^p \, \mathrm{d}\theta\right)^{1/p} \\ \leq n \left[\frac{1}{n} \left\{ |g(1)|^2 + 2 \sum_{\substack{k=1, \\ k \neq n}}^{2n-1} \left| g \left(\cos \frac{k\pi}{n}\right) \right|^2 + |g(-1)|^2 \right\} - \left(\frac{|c_n|}{2^{n-1}}\right)^2 \right]^{1/2},$$

which is equivalent to (1.11).

REFERENCES

- [1] A. AZIZ, Inequalities for the derivative of a polynomial, *Proc. Amer. Math. Soc.*, **89** (1983), pp. 259–266.
- [2] B. DATT and N. K. GOVIL, Some inequalities for polynomials satisfying $p(z) \equiv z^n p(1/z)$, Approx. Theory Appl. (N. S.), **12** (1996), pp. 40–44.

- [3] C. FRAPPIER, Q. I. RAHMAN and ST. RUSCHEWEYH, New inequalities for polynomials, *Trans. Amer. Math. Soc.*, **288** (1985), pp. 69–99.
- [4] C. FRAPPIER, Q. I. RAHMAN and ST. RUSCHEWEYH, Inequalities for polynomials with two equal coefficients, *J. Approx. Theory*, **44** (1985), pp. 73–81.
- [5] N. K. GOVIL, V. K. JAIN and G. LABELLE, Inequalities for polynomials satisfying $p(z) \equiv z^n p(1/z)$, *Proc. Amer. Math. Soc.*, **57** (1976), pp. 238–242.
- [6] N. K. GOVIL and D. H. VETTERLEIN, Inequalities for a class of polynomials satisfying $p(z) \equiv z^n p(1/z)$, *Complex Variables Theory Appl.*, **31** (1996), pp. 185–191.
- [7] G. H. HARDY, J. E. LITTLEWOOD and G. PÓLYA, *Inequalities*, Cambridge University Press, 1934.
- [8] V. K. JAIN, Inequalities for polynomials satisfying $p(z) \equiv z^n p(1/z)$ II, J. Indian Math. Soc., **59** (1993), pp. 167–170.
- [9] M. A. QAZI, An L^p inequality for 'self-reciprocal' polynomials, J. Math. Anal. Appl., 329 (2007), pp. 1204–1211.
- [10] Q. I. RAHMAN, Some inequalities for polynomials, Proc. Amer. Math. Soc., 56 (1976), pp. 225–230.
- [11] Q. I. RAHMAN and G. SCHMEISSER, Analytic Theory of Polynomials, London Math. Society Monographs, New Series No. 26, Clarendon Press, Oxford, 2003.
- [12] Q. I. RAHMAN and Q. M. TARIQ, An Inequality for 'self-reciprocal' polynomials, *East Journal on Approximations*, **12** (2006), pp. 43–51.
- [13] Q. I. RAHMAN and Q. M. TARIQ, On Bernstein's inequality for entire functions of exponential type, *Comput. Methods Funct. Theory*, 7 (2007), pp. 167–184.
- [14] E. C. TITCHMARSH, The Theory of Functions, 2nd edn., Oxford University Press, 1939.