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1. I NTRODUCTION

Let Pn be the class of all polynomials of degree at mostn. We say that a polynomialf 6≡ 0
belongs to℘n if it is of degree at mostn and satisfies the conditionf(z) ≡ znf(1/z). Frappier,
Rahman and Ruscheweyh [3, p. 96] call such a polynomial ‘self-reciprocal’. Such polynomials
have been studied for about thirty years (see [1, 2] [3, §7.5], [5, 6, 8, 9] [10, pp. 229–230], [11,
pp. 431–432], [12, 13]).

For any entire functionF , let

(1.1) Mp(F ; r) :=

(
1

2π

∫ π

−π

∣∣F (reiθ
)∣∣p dθ

)1/p

(0 < p < ∞ ; r > 0) .

It is well-known (see for example [7, p. 143]) that for any givenr > 0, the integral mean
Mp(F ; r) is a non-decreasing function ofp and that

Mp(F ; r) → max
|z|=r

|F (z)| as p →∞ .

This explains the notation

(1.2) M∞(F ; r) := max
|z|=r

|F (z)| (r > 0) .

It is also known (see [7, p. 139]) that for any givenr > 0,

Mp(F ; r) → exp

(
1

2π

∫ π

−π

log
∣∣F (reiθ

)∣∣ dθ

)
as p → 0 .

So, we set

(1.3) M0(F ; r) := exp

(
1

2π

∫ π

−π

log
∣∣F (reiθ

)∣∣ dθ

)
.

WhenF is a polynomial, the associated quantityM0(F ; 1) is called itslogarithmic Mahler
measure. Let F (z) := am

∏m
µ=1(z − zµ), and suppose thatF (0) is not zero. Then by Jensen’s

theorem (see [14, p. 124])

1

2π

∫ π

−π

log
∣∣F (eiθ

)∣∣ dθ = log
|F (0)|∏
|zµ|<1 |zµ|

.

Hence

(1.4) M0(F ; 1)=exp

(
1

2π

∫ π

−π

log
∣∣F (eiθ

)∣∣ dθ

)
= |am|

m∏
µ=1

max{|zµ| , 1} .

Let F (z) := zmΦ(z), whereΦ(0) 6= 0. ThenM0(F ; 1) = M0(Φ ; 1), and (1.4) applies toΦ.
Hence, in (1.4) the restriction ‘F (0) 6= 0’ may be dropped, making it a very useful formula.

Bernstein’s inequality for polynomials says that iff is a polynomial of degree at mostn such
thatM∞(f ; 1) = 1, then

M∞(f ′ ; 1) ≤ n ,

where the inequality becomes an equality if and only iff(z) ≡ eiγ zn, γ ∈ R. SinceMp(F ; r)
is a non-decreasing function ofp, it follows that for any polynomialf of degree at mostn such
thatM∞(f ; 1) = 1, we have

Mp(f
′ ; 1) ≤ n (0 ≤ p < ∞) .
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It is interesting that this is also sharp; for anyp ∈ [0 , ∞), the inequality becomes an equality
for polynomials of the formf(z) ≡ eiγ zn, γ ∈ R. Thus

(1.5) sup

{
Mp(f

′ ; 1)

M∞(f ; 1)
: f ∈ Pn , f(z) 6≡ 0

}
= n (0 ≤ p ≤ ∞) .

There exists (see [3, p. 97]) a polynomialf∗ ∈ ℘n such that

(1.6) M∞(f ′∗ ; 1) ≥M∞(f∗ ; 1) (n− 1) .

This is surprising since, for anyp ∈ [0 , ∞], the extremals in (1.5) have all their zeros at the
origin whereas any polynomial in℘n must have at least half of its zeros outside the open unit
disk.

If f(z) :=
∑n

ν=0 aνz
ν is such thata0 = an then (see [4, Theorem 2]),

(1.7) M∞(f ′ ; 1) ≤M∞(f ; 1)

(
n− 1

2
+

1

2 (n + 1)

)
.

In particular, (1.7) holds for anyf ∈ ℘n.

In this paper we consider the following question that was mentioned to me by Professor Q. I.
Rahman. It asks for an analogue of (1.5) for the subclass℘n.

Question.What is the value of the constant

(1.8) κn,p := sup

{
Mp(f

′ ; 1)

M∞(f ; 1)
: f ∈ ℘n

}
for any givenp ∈ [0 , ∞] ?

From(1.6) and(1.7) we know that

n− 1 ≤ κn,∞ ≤ n− 1

2
+

1

2 (n + 1)
.

However, the exact value ofκn,∞ remains unknown and elusive.

The following result contains an answer to the question in the case wherep lies in [0 , 2].

Theorem 1.1. Let f(z) :=
∑n

ν=0 aνz
ν be a polynomial of degree at mostn such that

f(z) ≡ znf(1/z). Furthermore, letMp(. ; .) be as in(1.1) andM∞(. ; .) be as in(1.2).
Then,

(1.9) Mp(f
′ ; 1) ≤ n√

2

√√√√ 1

n

n−1∑
k=0

|f (e2kπi/n)|2 − 2|a0|2 (0 ≤ p ≤ 2) ,

and so a fortiori

(1.10) Mp(f
′ ; 1) ≤ n√

2

√
(M∞(f ; 1))2 − 2|a0|2 (0 ≤ p ≤ 2) .

The examplef(z) := zn + 1 shows that both(1.9) and(1.10) are sharp for everyp ∈ [0 , 2].

It may be added that if|f
(
e2kπi/n

)
|≤ 1 for k = 0, 1, . . . , n−1, then1

n

∑n−1
k=0 |f

(
e2kπi/n

)
|2≤ 1,

and so(1.9) contains the following result, which is stronger than(1.10).
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Corollary 1.2. Let f(z) :=
∑n

ν=0 aνz
ν be a polynomial of degree at mostn such thatf(z) ≡

znf(1/z). Furthermore, let|f
(
e2kπi/n

)
| ≤ 1 for k = 0, 1, . . . , n− 1. Then

Mp(f
′ ; 1) ≤ n√

2

√
1− 2|a0|2 (0 ≤ p ≤ 2) .

As the examplef(z) := (zn + 1)/2 shows, the estimate is sharp for everyp ∈ [0 , 2].

Remark 1.1. In view of (1.4), the casep = 0 of (1.10) can be stated as follows:
Let f(z) :=

∑n
ν=0 aνz

ν be a polynomial of degree at mostn such thatf(z) ≡ znf(1/z),
and letζ1, . . . , ζn−1 be the zeros off ′. Then

|a0|2 + |an|2
{

n−1∏
ν=1

max{|ζν | , 1}

}2

≤ (M∞(f ; 1))2

2
.

Theorem1.1 implies the following result.

Corollary 1.3. Let g(x) :=
∑n

ν=0 cνx
ν be a polynomial of degree at mostn with coefficients in

C. Furthermore, for anyp ∈ (0 , ∞), let

Ip , 1 :=
1

π

∫ 1

−1

∣∣∣n g(x) + i
√

1− x2g′(x)
∣∣∣p dx√

1−x2

and

Ip , 2 :=
1

π

∫ 1

−1

∣∣∣n g(x)− i
√

1− x2g′(x)
∣∣∣p dx√

1−x2
.

Then, for anyp ∈ [0 , 2], we have(
Ip , 1 + Ip , 2

2

)1/p

≤ n

√√√√ 1

n

{
|g(1)|2 + 2

n−1∑
k=1

∣∣∣∣g(cos
kπ

n

)∣∣∣∣2 + |g(−1)|2
}
−
(
|cn|
2n−1

)2

.(1.11)

In particular, if |g(x)| ≤ 1 at the pointsxk := cos (kπ/n), k = 0, 1, . . . , n then, for any
p ∈ (0 , 2], we have

(1.12)

(
Ip , 1 + Ip , 2

2

)1/p

≤ n

√
2−

(
|cn|
2n−1

)2

.

Both(1.11) and(1.12) become equalities forTn(x) := cos(n arccos x), the Chebyshev polyno-
mial of the first kind of degreen.

Remark 1.2. Since
1

π

∫ 1

−1

dx√
1− x2

= 1 ,

the quantity (
Ip , 1 + Ip , 2

2

)1/p

appearing on the left-hand sides of(1.11) and(1.12), is a ‘weighted integral mean’ of
1

2

{∣∣∣n g(x) + i
√

1− x2g′(x)
∣∣∣p +

∣∣∣n g(x)− i
√

1− x2g′(x)
∣∣∣p} .
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2. AN AUXILIARY RESULT

Lemma 2.1. Let f(z) :=
∑n

ν=0 aνz
ν be a polynomial of degreen such thata0 = an. Then,

(2.1)
1

n

n−1∑
k=0

∣∣f (e2kπi/n
)∣∣2 =

n∑
ν=0

|aν |2 + 2 |a0|2 =
n∑

ν=0

|aν |2 + 2 |an|2 .

Proof. For any realθ, we have

(2.2)
∣∣f (eiθ

)∣∣2 = f
(
eiθ
)
f (eiθ) =

n∑
ν=0

aνe
iνθ

n∑
ν=0

aνe
−iνθ =

n∑
m=−n

bmeimθ ,

where

(2.3) b−n = a0 an = |a0|2, bn = an a0 = |a0|2, b0 =
n∑

ν=0

|aν |2

and

bm =
n−m∑
µ=0

am+µ aµ, b−m = bm (m = 1, . . . , n− 1) .

The values ofb1, . . . , bn−1 andb−1, . . . , b−n+1 are of little importance.
Let ω := e2mπi/n, wherem ∈ {±1, . . . ,±(n − 1)}. Note thatωn = 1. Sinceω 6= 1, we see

that

(2.4)
n−1∑
k=0

(
e2mπi/n

)k
=

n−1∑
k=0

ωk =
1− ωn

1− ω
= 0 (m = ±1, . . . ,±(n− 1)) .

From(2.2), (2.3) and(2.4) it follows that
n−1∑
k=0

∣∣f (e2kπi/n
)∣∣2 = b−n

n−1∑
k=0

e−2kπi + bn

n−1∑
k=0

e2kπi +
n−1∑
k=0

b0

+
n−1∑

m = −n + 1,
m 6= 0

bm

n−1∑
k=0

(
e2mπi/n

)k

= nb−n + nbn + nb0 = n
n∑

ν=0

|aν |2 + 2n|a0|2 ,

which is equivalent to(2.1).

3. PROOFS OF THEOREM 1.1 AND COROLLARY 1.3

Proof of Theorem 1.1.We present the proof in three steps.

Step I. First we show that iff(z) :=
∑n

ν=0 aνz
ν is a polynomial of degree at mostn, whose

coefficients satisfy the condition

(3.1) |aν | = |an−ν | (ν = 0, 1, . . . , n) ,

then
1

2π

∫ π

−π

∣∣f ′ (eiθ
)∣∣2 dθ ≤ n2

2

1

2π

∫ π

−π

∣∣f (eiθ
)∣∣2 dθ .
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Indeed,(3.1) allows us to write

1

2π

∫ π

−π

∣∣f ′ (eiθ
)∣∣2 dθ =

n∑
ν=0

ν2|aν |2 =
1

2

(
n∑

ν=0

ν2|aν |2 +
n∑

ν=0

ν2|an−ν |2
)

=
1

2

n∑
ν=0

{
ν2 + (n− ν)2

}
|aν |2

≤ n2

2

n∑
ν=0

|aν |2 =
n2

2

1

2π

∫ π

−π

∣∣f (eiθ
)∣∣2 dθ .

Step II. By Lemma 2.1,

1

2π

∫ π

−π

∣∣f (eiθ
)∣∣2 dθ =

n∑
ν=0

|aν |2 =
1

n

n−1∑
k=0

∣∣f (e2kπi/n
)∣∣2 − 2 |a0|2 .

Hence,

(3.2) M2(f
′ ; 1) ≤ n√

2

√√√√ 1

n

n−1∑
k=0

|f (e2kπi/n)|2 − 2|a0|2 .

Step III. Finally, note thatMp(f
′ ; 1) ≤ M2(f

′ ; 1) for 0 ≤ p ≤ 2 sinceMp(f
′ ; 1) is a

nondecreasing function ofp. Hence(3.2) implies(1.9).

Proof of Corollary 1.3. Consider the polynomial

f(z) := zng

(
z + z−1

2

)
.

It clearly belongs to℘2n, and writing it in the formf(z) :=
∑2n

ν=0 aνz
ν we see thata2n = a0 =

cn/2
n. Since ∣∣f ′ (eiθ

)∣∣ = |i n g(cos θ) + g′(cos θ)(− sin θ)| ,

Theorem 1.1, with2n in place ofn, may be applied tof to conclude that for anyp ∈ (0 , 2], we
have (

1

2π

∫ π

−π

|n g(cos θ) + i (sin θ)g′(cos θ)|p dθ

)1/p

≤ n

 1

n

|g(1)|2 + 2
2n−1∑

k = 1,
k 6= n

∣∣∣∣g(cos
kπ

n

)∣∣∣∣2 + |g(−1)|2

−
(
|cn|
2n−1

)2


1/2

,

which is equivalent to(1.11).
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