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ABSTRACT. In this article we investigate the universét-algebras associated to certain 1- di-
mensional simplicial flag complexes which describe the noncommutative circle. We denote it by
STc. We examine thé(-theory of this algebra and the subalgeb$&s/ 1, I;, . Wherel,, for
eachk, is the ideal inS7¢ generated by all products of generatégscontaining at least + 1
pairwise different generators. Moreover we prove that such algebra divided by thdddeal
commutative.
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2 SALEH OMRAN

1. INTRODUCTION

J. Cuntz in[[2] associate to every simplicial complex a univetsaalgebra with generators
and relations. In the following we give some examples and properties of such algebras see also

[6].

Definition 1.1. A simplicial complexX consists of a set of verticds; and a set of non-empty
subsets of’s;, the simplexes i, such that:

o If s € V5, then{s} € X.

e If F € X and) # E C FthenE € X.

> is called locally finite if every vertex ok is contained in only finitely many simplexes
of 3, and finite-dimensional (of dimensioqQ n) if it contains no simplexes with more than
n + 1-vertices.
For a simplicial complexZ one can define the topological spakke associated to this complex.
It is called the "geometric realization” of the complex and can be defined as the space of maps
f:Ve —[0,1] suchthad .. f(s) =1andf(sp).....f(s;) = 0 whenever sy, ..., s;} & 3.
If X is locally finite, then X is locally compact.

e Cy is the universal’*-algebra with positive generatoks, s € Vs, satisfying the rela-
tions
hsohs, ...hs, = 0 wheneveH sy, sy, ..., $,} ¢ X,

> hhy=h, Vtek.
s€Vy
Here the sum is finite, becausais locally finite.
e C¥ is the abelian version of the universat-algebra above, i.e. satisfying in addition
hsh; = hihg forall s,t € V5.

Remark 1.1. There exists a canonical surjective nap— C.

A simplicial map between two simplicial complexBsandy.’ is a mapy : Vs — V4 such
that, whenevett, ..., t,,) is a simplex in% this implies tha{p(to), ..., o(t,)) is a simplex ins’.

Proposition 1.1. Every simplicial mapy : ¥—Y¥' between two simplicial complex&sand
" induces ax- homomorphisnp* : Cyy — Cs.

Proof. Definey* : Csv —Cyx, DY hy — g, := Z¢(t):5ht andh, mapped td) if s is not in the
image ofp. We verify that the sum of alf, overs is equal to if one the sum of alll, overt is

equal to one and the produgts.....g;, = 0 wheneverny,.....hs, = 0.
For the first condition, we have

ngs - ZS(Z@(t):sht) = Ztht =1,

and for the second condition

because is a simplicial mapg

It has been shown in[2] that tHe-theory ofCs, coincides with thex'-theory ofC% (which in
turn is isomorphic ta’y(|X]). In the sequel we will study th& -theory of anothet*-algebra
that can be associated with certain complexes.
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Definition 1.2. A simplicial complexX is called flag or full, if it is determined by it3-
simplexes in the sense that
{s0,..,sn} € X <= {s;,s;,} e Xforall0 <i<j<n.

Definition 1.3. Let X be a locally finite flag complex. Denote bjthe set of its vertices. Define
C{f“g as the universal’*-algebra with positive generatoks, s € V, satisfying the relations

> hhy=h, teV
seV
and
hshy =0 for {s,t} ¢ X.

Denote byl the ideal incglag generated by products containing at least 1 different gener-
ators. The filtratior(7;) of cglag is called the skeleton filtration.

For simplicity we denoté’é’ag by Cg. This algebra is an interesting example of a noncom-
mutativeC*- algebra described by a simplicial complex. If we consider the flag conipiex
with vertices{0~,0", 17, 1%} and the condition that exactly the edggs,i*} do not belong
to Y41, the geometric realization &fs: is the noncommutative circlg!. We consider the uni-
versalC*-algebra withd positive generatorg;, i € Vs, := {0~,0%,17,17} and satisfying the
relations

> hie+ Y hi- =1 hsh- =0 Vie{0,1}.

The algebra described above is exactly the algélégq. We will denote it byS7c. The
abelianization of thig~*-algebra is isomorphic to the algebra of continuous functions on the
circle S* as shown in[[2]. Thek-theory of S7¢ is described by the following theorem.

Theorem 1.2. [2] The evaluation mapv : S7¢ — C at the vertexi*, which maps the
generatorh+ to 1 and all the other generators 1@ induces an isomorphism ii-theory. (The
same is true for the evaluation maps, corresponding to the other vertices.)

Let
A= {(tg,....t,) ER"™ |0 <t; <1, Zti =1}

i=1
be the standard-simplex. Denote by s the associated universat‘-algebra with generators
hs, s € {to,...,t,}, sSuch thatu, > 0 and)__ h, = 1. Denote byZ, the ideal inC, generated
by products of generators containing all the, ¢ = 0, ..., n. For eacht, denote by/,, the ideal
in Cx generated by all products of generatatscontaining at least + 1 pairwise different
generators. We also denote Hy the image off;, in C4°. We have the following lemma.

Lemma 1.3. [2] LetX: be a locally simplicial complex ang), be an ideal inCyx, defined above.
Then isomorphism

I/ Ijpr = @IA,
A

where the sum is taken over alsimplexes\ in .

For any vertex in A there is a natural evaluation m&p — C mapping the generatofs
to 1 and all the other generatorso
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Proposition 1.4. (i) The evaluation mag, — C defined above induces an isomorphism in
K-theory.

(ii) The surjective maff, — Z%° induces an isomorphism iff-theory, whereZ%’ is the
abelianization ofZ .

Proof. For (i) it is enough to prove that, is homotopy equivalent t&. Consider thex-

homomorphismsy : C — Ca, A — ¢y := Alandf : Ch — C, by — =5, i €

{0,1,...,n}. Itis clear thats o a« = idc. Definey, : CA — Ca by ,(h;) = jﬁ + th;, t €

[0,1]. Itis obvious thatp, = idc, andy, = o 3. Soa o 3 ~ idc,. This implies thaC, is

homotopy equivalent t@.

Using Lemma 13 above, one can use induction on the dimensiéd\ to prove the claim (ii).
For the complete proof we refer ta [J.

Remark 1.2. LetA andZ, C Cx as above. Thek . (Z,) = K.(C), * =0, 1, if the dimension
n of Ais even and<,(Z,) = K.(Cy(0,1)), * = 0, 1, if the dimensiom of A is odd.

2. K-THEORY OF NONCOMMUTATIVE CIRCLE

K-theory of noncommutative circle was introduced first by [5]. In this article we introduce
this algebras as a 1-dimensional simplicial complexes and and it's skeleton filtration. Basic
definitions and facts of*-algebras, universal*-algebras and theik -theory which we will
use in this article can be found inl [1],[3]/[4]./[7]and [8]

Lemma 2.1. S7¢/I, = C*.
Proof. Let h; denote the image of a generatgrfor S7¢/1;. One has the following relations :

Y hi=1, hih;=0, i#j.

For everyh, in S7¢/I;, we have
hi = hi(>_ hi) = 3.
HenceS7</I, is generated by different orthogonal projections and therefotes /1, = C*. g
Lemma 2.2. In S7¢, we have an isomorphism
LI, = 1%/ 18P,
specially inS7¢/ I, we havel, /I, = Cy(0,1)*.

Proof. In S¢°

[lab/]2ab ~ @Ung'

L/L= 1,
where the direct sum is taken over all thesimplexess in Xs:1. Z, is the ideal generated by
products of generators containihg andh, in the universatC*-algebraC’ which is generated
by positive elements,, h,, such that,; + hy = 1. ThisC*-algebra is commutative. Therefore
IO' = CO(Oa ]-)

and the mag, — Z% is an isomorphism. In the algebgi¢ , there are fout-simplexes . So
we havell/IQ = C()(O, 1)4 [ |

And in S7¢

Lemma2.3.Cx, is commutative.
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Proof. An easy computation shows théﬁsl/lg is commutative. Since in the algebtfgs1
the the product of any three different generators is zero, so the ideal 0. ThenCs, is
commutative g

Lemma 2.4. 57¢/I, is isomorphic tcCs, , .
Proof. Consider
¢:Cs, — St/ I, hi — by, i€ {07,017, 17},
The elements$; in Coy satisfy the relations of th; in Spe/ Iy, so¢ is a well defined homo-

morphism. Itis evident that is surjective. It remains to prove thats injective.
Let

p:Csy — B(H), hi— g
be a unital representation. Sof#i), we have

Zgz' = Zp(hi) = p(z hi) =p(1) =1

and allg; commute sincé,’gs1 is commutative. Now, define

w87 — B(H), n(hi) = gi-
Thenw annihilates/; and therefore factors as
Sme s Sme /T, s B(H)
wherer’ is a well defined homomorphism such that 7’ o ¢.
|
Proposition 2.5. S7¢/ [, & S,
Proof. By,S{w/]Q is isomorphic to the commutative algeltka,, . ThusSy/ I, is an abelian
C*-algebra. Consider the following commutative diagram
0 — ]1/]2 — S{LC/IQ — S?C/Il — 0
! | |

0 — IP/I — SP/I — SP/I — 0.

Since

Spe/I, = S/ = C*
from Lemmg 2.1L. And
Ii/1, = I I3
from lemmg 2.P. By five-lemma, we get
St/ = St/ 15!
In S¢°, we havel¢® = 0. So

Sre /I, 22 §9b = C/(SY).
|

Remark 2.1. We have that
C(IZs]) = C(SY),
since|Xs:| andS* are homeomorphic spaces .

We now consider the simplicial flag compléxwith 3 vertices{1, 2, 3} such thaf1, 3} ¢ A.
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Lemma 2.6. The universaC*-aIgebraC,{ generated by positive generatars, hs, hs with sum
equal to one and, h3 = 0 is homotopy equivalent 6.

Proof. Let « : C{—><C be the homomorphism which sentigto 1 andhq, h3 to 0. And let
3 : C—CJ be the natural homomorphism which sends C to the the identity element i@ .
It's clear that o 5 = id¢. Define

907‘/ : C/{ - C/{?
by mappinghs to he+(1—1t)(hi+hs) andh, toth; fori = 1, 3. They,(h;) satisfy the following
relations :
(1) ¢, (h;) = 0Vi € {1,2,3}.
(7) @i (h1) + @, (ha) + @y (h3) = thy + (he + (1 — t)(h1 + h3)) + thy = hy + hy + hy = 1.
(ZZZ) @t(hl)@t(hg) = thlthg = t2h1h3 =0.
Since the elements, (h;) satisfy the relations of thi; in C, ¢, is well defined.
It is obvious thatp, = idcg andy, = [ oa. This means that o « is homotopic to[dci. Hence

it follows thatC{ is homotopy equivalent tQ. &

Lemma 2.7. In the previous lemma, léf, be the ideal irﬂ,{ generated by the products con-
taining all generatorsh, hs, hs . ThenZ, is homotopy equivalent to zero.

Proof. We have from the previous lemma that
Py C/{ - C/(

is well defined .
We show thatp, mapsZ, to Z, and therefore induces by restriction a homomorphism

()Ot|7:/\ = ()AOt : IA — IA.
Letx = ...hhEhs... be atypical element iffy. We have
@t(hlhghii) = Wt(hl)@t(hg)%(hi’»)
= thy(hs + (1 — t)(hy + h3)*)ths = hiP(hy)hs
whereP is polynomial without constant term. So the product iZin Note that we used in the
equations above that h; = 0.

It is clear thatp, = 0 andg, = idz,.
This yields thatZ, is homotopy equivalent to zerq.

Lemma 2.8. For the skeleton filtratiori/,) in S7¢, I5/I5 has trivial K-theory.

Proof. Consider the skeleton filtration
S{LC =1y D1 DI, DIs.
By Lemmd 1.1, we have
L)1 = @AFA“

whereA; is the subcomplex oEg: generated by{0",0~,1", 17} \ {i}, andZ,, is the ideal
generated by products containing all generatgrsj € Vs, \ {i}.

There are four orthogonal ideals of this form. The orthogonality is clear, since e.g %,
andy € 7, _, the product

xy = (..hyrhl_hy ) (. hyvhhihy )

contains four different generators, so it is equal to zerb jif;.
Using Lemma 2]7, we get thd, is homotopic to zero. This implies that, (1,/13) = 0. 1
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Proposition 2.9. In S7¢ we haveK, (I) = K.(I3),* =0, 1.
Proof. We construct the short exact sequence
0—>I3—>IQ—>IQ/[3—>O.
Apply the six term-exact sequence and use the lemma above. We get two isomorphisms in
K-theoryK,(Iy) = K.(I3),*=0,1. 1
Proposition 2.10. We have
K.(S7°/15) = K.(S°/I2) = K.(C(S")).
Proof. Consider the short exact sequence
0 — 12/13 — S{w/]g — S{LC/]Q — 0.
Applying the six-term exact sequence, we get
Ko(lo/I3) — Ko(S7°/13) — Ko(S7/I2)
T !
Ki(S7°/ L) «— Ki(S1°/15) «— Ki(l2/13).

From Lemma 2]8 we hav&., (I,/I;) = 0, so that the above six-term exact sequence reduces
to the following two isomorphisms

Ko(51°/13) = Ko(S1°/I2)
and

Ki(S7°/13) = K1 (S1¢/ I2).
Note that by Lemmas 2.5 afd P.1 the-algebrasS;¢/I, andC(S') have the samé -theory.
This proves the proposition.

Proposition 2.11. In the algebraST°, we haveK(l2) = Ko(I3) = Z and K, (2) = K (I3) =
0.

Proof. I, is a closed two sided ideal iti**. We have the following short exact sequence

0 — I, —— Spe T, gne/f, — Q.
During the rest of this section, denaté, (i) by i, and K. () by 7, for x = 0,1. From the
above exact sequence we obtain the following six-term exact sequence .

Ko%&) —=  Ko(Se) == Ko(SfC/h)
Ki(S7¢/1a) «— Ki(S7¢) «—  Ki(ly).
We have from Theorem 1.2
K, (579) = K.(C),
which is generated bj sc], wherels.. denotes the identity element .
And from the above lemma we have

K.(S7°/1I>) = K.(C(S")).

It's well known thatK, (C'(S1)) = Z, for x = 0,1 So, the above six-term exact sequence reads
as
KoL) =% 7 ™ 7
T |
Z — O «— Kl (IQ)

AJMAA Vol. 10, No. 1, Art. 7, pp. 1-8, 2013 AJMAA


http://ajmaa.org

8 SALEH OMRAN

With respect to the isomorphisii, (S7/1;) = Ko(C(S')), the imager,([1sp]) of the gener-
ator of K(S}) corresponds to the generafog (s )] of Ko(C/(S)).
Soy is bijective. Then, is zero, and we hav&(/,) = Z andK;(I,) = 0. By proposition
2.9, we have als&((I;) = Z and K (I3) = 0.
1

Proposition 2.12. Consider the skeleton filtration
St¢=1y>1 DD Is.

The short exact sequence

0— Ij = I Iy /I, — 0
inducesi, : K,(I;) — K.(Ix_1) whichis zero forl < k£ <2, andx =0, 1.
Proof. Fork = 1, we have the following six-term exact sequence

Ko(h) =% Ko(S1) =% Ko(S{e/h)
T !
Ky(Spe/I) & Ki(Sp) <= Ki(h).

From Theorerh 1], (57¢) & K, (C) and by Lemm@ 2|, (S7¢/1,) = Z* and K (Sm/I,) =

0. So there is an embeddiffy K, (5" /1I,), thereforei, = 0. Itis alreadyi, = 0. Moreover,
it is also clear thafy(/;) = 0. Fork = 2, we get the six-term exact sequence

Ko(l) - Ko(li) ™ Ko(I\/I)
T
Ki(L/L) & Ki(I) <& K(b).

From aboveK,(1;) = 0, and from propositioh 2.1K(;) = 0, soi, = 0. 1
For k = 3, proposition 2.p gives a counterexample, sificés an isomorphism between
K. (I;) andK.(I3), and therefore, # 0 for k& = 3.
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