

The Australian Journal of Mathematical Analysis and Applications

http://ajmaa.org

Volume 10, Issue 1, Article 7, pp. 1-8, 2013

$C^{\ast}\text{-}\mathbf{ALGEBRAS}$ ASSOCIATED NONCOMMUTATIVE CIRCLE AND THEIR $K\text{-}\mathbf{THEORY}$

SALEH OMRAN

Received 24 September, 2012; accepted 11 February, 2013; published 2 May, 2013.

TAIF UNIVERSITY, FACULTY OF SCIENCE, TAIF, KSA

SOUTH VALLEY UNIVERSITY, FACULTY OF SCIENCE, MATH. DEP. QENA, EGYPT salehomran@yahoo.com

ABSTRACT. In this article we investigate the universal C^* -algebras associated to certain 1- dimensional simplicial flag complexes which describe the noncommutative circle. We denote it by S_1^{nc} . We examine the K-theory of this algebra and the subalgebras S_1^{nc}/I_k , I_k . Where I_k , for each k, is the ideal in S_1^{nc} generated by all products of generators h_s containing at least k + 1 pairwise different generators. Moreover we prove that such algebra divided by the ideal I_2 is commutative.

Key words and phrases: Operator Algebras, C^* -algebra, K-theory for C^* -algebra.

2000 Mathematics Subject Classification. 19 K 46.

ISSN (electronic): 1449-5910

^{© 2013} Austral Internet Publishing. All rights reserved.

1. INTRODUCTION

J. Cuntz in [2] associate to every simplicial complex a universal C^* -algebra with generators and relations. In the following we give some examples and properties of such algebras see also [6].

Definition 1.1. A simplicial complex Σ consists of a set of vertices V_{Σ} and a set of non-empty subsets of V_{Σ} , the simplexes in Σ , such that:

- If $s \in V_{\Sigma}$, then $\{s\} \in \Sigma$.
- If $F \in \Sigma$ and $\emptyset \neq E \subset F$ then $E \in \Sigma$.

 Σ is called locally finite if every vertex of Σ is contained in only finitely many simplexes of Σ , and finite-dimensional (of dimension $\leq n$) if it contains no simplexes with more than n + 1-vertices.

For a simplicial complex Σ one can define the topological space $|\Sigma|$ associated to this complex. It is called the "geometric realization" of the complex and can be defined as the space of maps $f: V_{\Sigma} \longrightarrow [0,1]$ such that $\sum_{s \in V_{\Sigma}} f(s) = 1$ and $f(s_0)....f(s_i) = 0$ whenever $\{s_0, ..., s_i\} \notin \Sigma$. If Σ is locally finite, then $|\Sigma|$ is locally compact.

C_Σ is the universal C^{*}-algebra with positive generators h_s, s ∈ V_Σ, satisfying the relations

$$\begin{split} h_{s_0}h_{s_1}...h_{s_n} &= 0 \text{ whenever } \{s_0, s_1, ..., s_n\} \notin \Sigma, \\ &\sum_{s \in V_{\Sigma}} h_s h_t = h_t \quad \forall \ t \in V_{\Sigma}. \end{split}$$

Here the sum is finite, because Σ is locally finite.

• C_{Σ}^{ab} is the abelian version of the universal C^* -algebra above, i.e. satisfying in addition $h_s h_t = h_t h_s$ for all $s, t \in V_{\Sigma}$.

Remark 1.1. There exists a canonical surjective map $\mathcal{C}_{\Sigma} \longrightarrow \mathcal{C}_{\Sigma}^{ab}$.

A simplicial map between two simplicial complexes Σ and Σ' is a map $\varphi : V_{\Sigma} \longrightarrow V_{\Sigma'}$ such that, whenever $(t_0, ..., t_n)$ is a simplex in Σ this implies that $(\varphi(t_0), ..., \varphi(t_n))$ is a simplex in Σ' .

Proposition 1.1. Every simplicial map $\varphi : \Sigma \longrightarrow \Sigma'$ between two simplicial complexes Σ and Σ' induces a *- homomorphism $\varphi^* : \mathcal{C}_{\Sigma'} \longrightarrow \mathcal{C}_{\Sigma}$.

Proof. Define $\varphi^* : \mathcal{C}_{\Sigma'} \longrightarrow \mathcal{C}_{\Sigma}$ by $h_s \longmapsto g_s := \sum_{\varphi(t)=s} h_t$ and h_s mapped to 0 if s is not in the image of φ . We verify that the sum of all g_s over s is equal to if one the sum of all h_t over t is equal to one and the products $g_{s_0}, \dots, g_{s_n} = 0$ whenever $h_{s_0}, \dots, h_{s_n} = 0$.

For the first condition, we have

$$\sum_{s} g_s = \sum_{s} (\sum_{\varphi(t)=s} h_t) = \sum_{t} h_t = 1,$$

and for the second condition

$$g_{s_0}....g_{s_n} = \sum_{\varphi(t_0)=s_0} h_{t_0}....\sum_{\varphi(t_n)=s_n} h_{t_n}$$

=
$$\sum_{\varphi(t_0)=s_0}....\sum_{\varphi(t_n)=s_n} h_{t_n} h_{t_0}....h_{t_n} = 0$$

because φ is a simplicial map.

It has been shown in [2] that the K-theory of C_{Σ} coincides with the K-theory of C_{Σ}^{ab} (which in turn is isomorphic to $C_0(|\Sigma|)$). In the sequel we will study the K-theory of another C^* -algebra that can be associated with certain complexes.

Definition 1.2. A simplicial complex Σ is called flag or full, if it is determined by its 1-simplexes in the sense that $\{s_0, ..., s_n\} \in \Sigma \iff \{s_i, s_j\} \in \Sigma$ for all $0 \le i < j \le n$.

Definition 1.3. Let Σ be a locally finite flag complex. Denote by V the set of its vertices. Define C_{Σ}^{flag} as the universal C^* -algebra with positive generators $h_s, s \in V$, satisfying the relations

$$\sum_{s \in V} h_s h_t = h_t, \quad t \in V$$

and

$$h_s h_t = 0$$
 for $\{s, t\} \notin \Sigma$

Denote by I_k the ideal in C_{Σ}^{flag} generated by products containing at least n + 1 different generators. The filtration (I_k) of C_{Σ}^{flag} is called the skeleton filtration.

For simplicity we denote C_{Σ}^{flag} by C_{Σ}^{f} . This algebra is an interesting example of a noncommutative C^* - algebra described by a simplicial complex. If we consider the flag complex Σ_{S^1} with vertices $\{0^-, 0^+, 1^-, 1^+\}$ and the condition that exactly the edges $\{i^-, i^+\}$ do not belong to Σ_{S^1} , the geometric realization of Σ_{S^1} is the noncommutative circle S^1 . We consider the universal C^* -algebra with 4 positive generators $h_i, i \in V_{\Sigma_S} := \{0^-, 0^+, 1^-, 1^+\}$ and satisfying the relations

$$\sum_{i} h_{i^{+}} + \sum_{i} h_{i^{-}} = 1, h_{i^{+}} h_{i^{-}} = 0 \quad \forall i \in \{0, 1\}.$$

The algebra described above is exactly the algebra $C_{\Sigma_{S^1}}^f$. We will denote it by S_1^{nc} . The abelianization of this C^* -algebra is isomorphic to the algebra of continuous functions on the circle S^1 as shown in [2]. The K-theory of S_1^{nc} is described by the following theorem.

Theorem 1.2. [2] The evaluation map $ev : S_1^{nc} \longrightarrow \mathbb{C}$ at the vertex 1^+ , which maps the generator h_{1^+} to 1 and all the other generators to 0, induces an isomorphism in K-theory. (The same is true for the evaluation maps, corresponding to the other vertices.)

Let

$$\Delta := \{ (t_0, ..., t_n) \in \mathbb{R}^{n+1} \mid 0 \le t_i \le 1, \ \sum_{i=1}^n t_i = 1 \}$$

be the standard *n*-simplex. Denote by C_{Δ} the associated universal C^* -algebra with generators $h_s, s \in \{t_0, ..., t_n\}$, such that $h_s \ge 0$ and $\sum_s h_s = 1$. Denote by \mathcal{I}_{Δ} the ideal in C_{Δ} generated by products of generators containing all the $h_{t_i}, i = 0, ..., n$. For each k, denote by I_k the ideal in C_{Δ} generated by all products of generators h_s containing at least k + 1 pairwise different generators. We also denote by I_k the image of I_k in C_{Δ}^{ab} . We have the following lemma.

Lemma 1.3. [2] Let Σ be a locally simplicial complex and I_n be an ideal in C_{Σ} defined above. Then isomorphism

$$I_k/I_{k+1}\cong \bigoplus_{\bigtriangleup} \mathcal{I}_{\bigtriangleup},$$

where the sum is taken over all *n*-simplexes \triangle in Σ .

For any vertex t in Δ there is a natural evaluation map $\mathcal{C}_{\Delta} \longrightarrow \mathbb{C}$ mapping the generators h_t to 1 and all the other generators to 0.

AJMAA

Proposition 1.4. (*i*) The evaluation map $\mathcal{C}_{\triangle} \longrightarrow \mathbb{C}$ defined above induces an isomorphism in *K*-theory.

(ii) The surjective map $\mathcal{I}_{\bigtriangleup} \longrightarrow \mathcal{I}_{\bigtriangleup}^{ab}$ induces an isomorphism in K-theory, where $\mathcal{I}_{\bigtriangleup}^{ab}$ is the abelianization of $\mathcal{I}_{\bigtriangleup}$.

Proof. For (i) it is enough to prove that $\mathcal{C}_{\bigtriangleup}$ is homotopy equivalent to \mathbb{C} . Consider the *homomorphisms $\alpha : \mathbb{C} \longrightarrow \mathcal{C}_{\bigtriangleup}, \ \lambda \mapsto c_{\lambda} := \lambda.1$ and $\beta : \mathcal{C}_{\bigtriangleup} \longrightarrow \mathbb{C}, \ h_i \mapsto \frac{1}{n+1}, \ i \in \{0, 1, ..., n\}$. It is clear that $\beta \circ \alpha = id_{\mathbb{C}}$. Define $\varphi_t : \mathcal{C}_{\bigtriangleup} \longrightarrow \mathcal{C}_{\bigtriangleup}$ by $\varphi_t(h_i) = \frac{1-t}{n+1} + th_i, \ t \in [0, 1]$. It is obvious that $\varphi_1 = id_{\mathcal{C}_{\bigtriangleup}}$ and $\varphi_0 = \alpha \circ \beta$. So $\alpha \circ \beta \sim id_{\mathcal{C}_{\bigtriangleup}}$. This implies that $\mathcal{C}_{\bigtriangleup}$ is homotopy equivalent to \mathbb{C} .

Using Lemma 1.3 above, one can use induction on the dimension n of \triangle to prove the claim (ii). For the complete proof we refer to [2].

Remark 1.2. Let Δ and $\mathcal{I}_{\Delta} \subset \mathcal{C}_{\Delta}$ as above. Then $K_*(\mathcal{I}_{\Delta}) \cong K_*(\mathbb{C})$, * = 0, 1, if the dimension n of Δ is even and $K_*(\mathcal{I}_{\Delta}) \cong K_*(C_0(0, 1))$, * = 0, 1, if the dimension n of Δ is odd.

2. K-THEORY OF NONCOMMUTATIVE CIRCLE

K-theory of noncommutative circle was introduced first by [5]. In this article we introduce this algebras as a 1-dimensional simplicial complexes and and it's skeleton filtration. Basic definitions and facts of C^* -algebras, universal C^* -algebras and their *K*-theory which we will use in this article can be found in [1],[3] [4], [7] and [8]

Lemma 2.1. $S_1^{nc}/I_1 \cong \mathbb{C}^4$.

Proof. Let \dot{h}_i denote the image of a generator h_i for S_1^{nc}/I_1 . One has the following relations :

$$\sum_{i} \dot{h_i} = 1, \quad \dot{h_i} \dot{h_j} = 0, \quad i \neq j.$$

For every $\dot{h_i}$ in S_1^{nc}/I_1 we have

$$\dot{h_i} = \dot{h_i}(\sum_i \dot{h_i}) = \dot{h}_i^2.$$

Hence S_1^{nc}/I_1 is generated by 4 different orthogonal projections and therefore $S_1^{nc}/I_1 \cong \mathbb{C}^4$. **Lemma 2.2.** In S_1^{nc} , we have an isomorphism

$$I_1/I_2 \cong I_1^{ab}/I_2^{ab}.$$

specially in S_1^{nc}/I_1 we have $I_1/I_2 \cong C_0(0,1)^4$. Proof. In S_1^{ab}

$$I_1{}^{ab}/I_2{}^{ab} \cong \bigoplus_{\sigma} \mathcal{I}_{\sigma}^{ab}.$$

And in S_1^{nc}

$$I_1/I_2 \cong \bigoplus_{\sigma} \mathcal{I}_{\sigma}$$

where the direct sum is taken over all the 1-simplexes σ in Σ_{S^1} . \mathcal{I}_{σ} is the ideal generated by products of generators containing h_1 and h_2 in the universal C^* -algebra \mathcal{C}^f_{σ} which is generated by positive elements h_1 , h_2 , such that $h_1 + h_2 = 1$. This C^* -algebra is commutative. Therefore

$$\mathcal{I}_{\sigma} \cong C_0(0,1)$$

and the map $\mathcal{I}_{\sigma} \longrightarrow \mathcal{I}_{\sigma}^{ab}$ is an isomorphism. In the algebra S_1^{nc} , there are four 1-simplexes. So we have $I_1/I_2 \cong C_0(0,1)^4$.

Lemma 2.3. $C_{\Sigma_{S^1}}$ is commutative.

Proof. An easy computation shows that $C_{\Sigma_{S^1}}/I_2$ is commutative. Since in the algebra $C_{\Sigma_{S^1}}$ the the product of any three different generators is zero, so the ideal $I_2 = 0$. Then $C_{\Sigma_{S^1}}$ is commutative.

Lemma 2.4. S_1^{nc}/I_2 is isomorphic to $\mathcal{C}_{\Sigma_{S1}}$.

Proof. Consider

$$\phi: \mathcal{C}_{\Sigma_{S^1}} \longrightarrow S_1^{nc}/I_2, h_i \longmapsto \dot{h}_i, \ i \in \{0^-, 0^+, 1^-, 1^+\}.$$

The elements h_i in $C_{\Sigma_{S^1}}$ satisfy the relations of the h_i in S_1^{nc}/I_2 , so ϕ is a well defined homomorphism. It is evident that ϕ is surjective. It remains to prove that ϕ is injective. Let

$$o: \mathcal{C}_{\Sigma_{S^1}} \longrightarrow \mathcal{B}(\mathcal{H}), \ h_i \longmapsto g_i$$

be a unital representation. So in $\mathcal{B}(\mathcal{H})$, we have

$$\sum_{i} g_{i} = \sum_{i} \rho(h_{i}) = \rho(\sum_{i} h_{i}) = \rho(1) = 1$$

and all g_i commute since $\mathcal{C}_{\Sigma_{S^1}}$ is commutative. Now, define

$$\pi: S_1^{nc} \longrightarrow \mathcal{B}(\mathcal{H}), \ \pi(\dot{h_i}) = g_i.$$

Then π annihilates I_2 and therefore factors as

$$S_1^{nc} \longrightarrow S_1^{nc} / I_2 \xrightarrow{\pi'} \mathcal{B}(\mathcal{H})$$

where π' is a well defined homomorphism such that $\rho = \pi' \circ \phi$.

Proposition 2.5. $S_1^{nc}/I_2 \cong S_1^{ab}$.

Proof. By 2.4, S_1^{nc}/I_2 is isomorphic to the commutative algebra $C_{\Sigma_{S^1}}$. Thus S_1^{nc}/I_2 is an abelian C^* -algebra. Consider the following commutative diagram

Since

$$S_1^{nc}/I_1 \cong S_1^{ab}/I_1 \cong \mathbb{C}^4$$

from Lemma 2.1. And

$$I_1/I_2 \cong I_1^{ab}/I_2^{ab}$$

from lemma 2.2. By five-lemma, we get

$$S_1^{nc}/I_2 \cong S_1^{ab}/I_2^{ab}$$

In S_1^{ab} , we have $I_2^{ab} = 0$. So

$$S_1^{nc}/I_2 \cong S_1^{ab} = C(S^1).$$

Remark 2.1. We have that

$$C(|\Sigma_{S^1}|) \cong C(S^1),$$

since $|\Sigma_{S^1}|$ and S^1 are homeomorphic spaces .

We now consider the simplicial flag complex Λ with 3 vertices $\{1, 2, 3\}$ such that $\{1, 3\} \notin \Lambda$.

Lemma 2.6. The universal C^* -algebra C^f_{Λ} generated by positive generators h_1, h_2, h_3 with sum equal to one and $h_1h_3 = 0$ is homotopy equivalent to \mathbb{C} .

Proof. Let $\alpha : \mathcal{C}^f_{\Lambda} \longrightarrow \mathbb{C}$ be the homomorphism which sends h_2 to 1 and h_1, h_3 to 0. And let $\beta : \mathbb{C} \longrightarrow \mathcal{C}^f_{\Lambda}$ be the natural homomorphism which sends 1 in \mathbb{C} to the the identity element in \mathcal{C}^f_{Λ} . It's clear that $\alpha \circ \beta = id_{\mathbb{C}}$. Define

$$\varphi_t: \mathcal{C}^f_\Lambda \longrightarrow \mathcal{C}^f_\Lambda,$$

by mapping h_2 to $h_2 + (1-t)(h_1 + h_3)$ and h_i to th_i for i = 1, 3. The $\varphi_t(h_i)$ satisfy the following relations :

 $\begin{array}{l} (i) \ \varphi_t(h_i) \ge 0 \ \forall i \in \{1, 2, 3\}. \\ (ii) \ \varphi_t(h_1) + \varphi_t(h_2) + \varphi_t(h_3) = th_1 + (h_2 + (1 - t)(h_1 + h_3)) + th_3 = h_1 + h_2 + h_3 = 1. \\ (iii) \ \varphi_t(h_1)\varphi_t(h_3) = th_1 th_3 = t^2 h_1 h_3 = 0. \end{array}$

Since the elements $\varphi_t(h_i)$ satisfy the relations of the h_i in \mathcal{C}^f_{Λ} , φ_t is well defined. It is obvious that $\varphi_1 = id_{\mathcal{C}^f_{\Lambda}}$ and $\varphi_0 = \beta \circ \alpha$. This means that $\beta \circ \alpha$ is homotopic to $Id_{\mathcal{C}^f_{\Lambda}}$. Hence it follows that \mathcal{C}^f_{Λ} is homotopy equivalent to \mathbb{C} .

Lemma 2.7. In the previous lemma, let \mathcal{I}_{Λ} be the ideal in C_{Λ}^{f} generated by the products containing all generators h_{1}, h_{2}, h_{3} . Then \mathcal{I}_{Λ} is homotopy equivalent to zero.

Proof. We have from the previous lemma that

$$\varphi_t: \mathcal{C}^f_\Lambda \longrightarrow \mathcal{C}^f_\Lambda$$

is well defined .

We show that φ_t maps \mathcal{I}_{Λ} to \mathcal{I}_{Λ} and therefore induces by restriction a homomorphism

$$\varphi_t|_{\mathcal{I}_{\Lambda}} := \hat{\varphi}_t : \mathcal{I}_{\Lambda} \longrightarrow \mathcal{I}_{\Lambda}.$$

Let $x = ...h_1 h_2^k h_3...$ be a typical element in \mathcal{I}_{Λ} . We have

$$\hat{\varphi}_t(h_1 h_2^k h_3) = \varphi_t(h_1)\varphi_t(h_2^k)\varphi_t(h_3)$$

= $th_1(h_2 + (1-t)(h_1 + h_3)^k)th_3 = h_1 P(h_2)h_3$

where P is polynomial without constant term. So the product is in \mathcal{I}_{Λ} . Note that we used in the equations above that $h_1h_3 = 0$.

It is clear that $\hat{\varphi}_0 = 0$ and $\hat{\varphi}_1 = i d_{\mathcal{I}_{\Lambda}}$. This yields that \mathcal{I}_{Λ} is homotopy equivalent to zero.

=

Lemma 2.8. For the skeleton filtration (I_k) in S_1^{nc} , I_2/I_3 has trivial K-theory.

Proof. Consider the skeleton filtration

$$S_1^{nc} := I_0 \supset I_1 \supset I_2 \supset I_3.$$

By Lemma 1.1, we have

$$I_2/I_3 \cong \bigoplus_{\Lambda_i} \mathcal{I}_{\Lambda_i},$$

where Λ_i is the subcomplex of Σ_{S^1} generated by $\{0^+, 0^-, 1^+, 1^-\} \setminus \{i\}$, and \mathcal{I}_{Λ_i} is the ideal generated by products containing all generators h_j , $j \in V_{\Sigma_{S^1}} \setminus \{i\}$.

There are four orthogonal ideals of this form. The orthogonality is clear, since e.g. if $x \in \mathcal{I}_{\Lambda_{0^+}}$ and $y \in \mathcal{I}_{\Lambda_{0^-}}$, the product

$$xy = (\dots h_{1^+} h_{0^-}^k h_{1^-} \dots) (\dots h_{1^+} h_{0^+}^l h_{1^-} \dots)$$

contains four different generators, so it is equal to zero in I_2/I_3 .

Using Lemma 2.7, we get that \mathcal{I}_{Λ_i} is homotopic to zero. This implies that $K_*(I_2/I_3) = 0$.

Proposition 2.9. In S_1^{nc} we have $K_*(I_2) = K_*(I_3), * = 0, 1.$

Proof. We construct the short exact sequence

$$0 \longrightarrow I_3 \longrightarrow I_2 \longrightarrow I_2/I_3 \longrightarrow 0.$$

Apply the six term-exact sequence and use the lemma above. We get two isomorphisms in K-theory $K_*(I_2) \cong K_*(I_3), * = 0, 1.$

Proposition 2.10. We have

$$K_*(S_1^{nc}/I_3) \cong K_*(S_1^{nc}/I_2) \cong K_*(C(S^1)).$$

Proof. Consider the short exact sequence

$$0 \longrightarrow I_2/I_3 \longrightarrow S_1^{nc}/I_3 \longrightarrow S_1^{nc}/I_2 \longrightarrow 0.$$

Applying the six-term exact sequence, we get

From Lemma 2.8 we have $K_*(I_2/I_3) = 0$, so that the above six-term exact sequence reduces to the following two isomorphisms

$$K_0(S_1^{nc}/I_3) \cong K_0(S_1^{nc}/I_2)$$

and

$$K_1(S_1^{nc}/I_3) \cong K_1(S_1^{nc}/I_2).$$

Note that by Lemmas 2.5 and 2.1 the C^* -algebras S_1^{nc}/I_2 and $C(S^1)$ have the same K-theory. This proves the proposition.

Proposition 2.11. *In the algebra* S_1^{nc} *, we have* $K_0(I_2) = K_0(I_3) = \mathbb{Z}$ *and* $K_1(I_2) = K_1(I_3) = 0$.

Proof. I_2 is a closed two sided ideal in S_1^{nc} . We have the following short exact sequence

$$0 \longrightarrow I_2 \xrightarrow{i} S_1^{nc} \xrightarrow{\pi} S_1^{nc}/I_2 \longrightarrow 0$$

During the rest of this section, denote $K_*(i)$ by i_* and $K_*(\pi)$ by π_* for * = 0, 1. From the above exact sequence we obtain the following six-term exact sequence.

We have from Theorem 1.2

$$K_*(S_1^{nc}) \cong K_*(\mathbb{C})$$

which is generated by $[1_{S_1^{nc}}]$, where $1_{S_1^{nc}}$ denotes the identity element in S_1^{nc} . And from the above lemma we have

$$K_*(S_1^{nc}/I_2) \cong K_*(C(S^1)).$$

It's well known that $K_*(C(S^1)) \cong \mathbb{Z}$, for * = 0, 1 So, the above six-term exact sequence reads as

With respect to the isomorphism $K_0(S_1^{nc}/I_2) \cong K_0(C(S^1))$, the image $\pi_0([1_{S_1^{nc}}])$ of the generator of $K_0(S_1^{nc})$ corresponds to the generator $[1_{C(S^1)}]$ of $K_0(C(S^1))$.

So π_0 is bijective. Then i_0 is zero, and we have $K_0(I_2) = \mathbb{Z}$ and $K_1(I_2) = 0$. By proposition 2.9, we have also $K_0(I_3) = \mathbb{Z}$ and $K_1(I_3) = 0$.

Proposition 2.12. Consider the skeleton filtration

$$S_1^{nc} = I_0 \supset I_1 \supset I_2 \supset I_3.$$

The short exact sequence

 $0 \longrightarrow I_k \stackrel{i}{\longrightarrow} I_{k-1} \stackrel{\pi}{\longrightarrow} I_{k-1}/I_k \longrightarrow 0$

induces $i_*: K_*(I_k) \longrightarrow K_*(I_{k-1})$ which is zero for $1 \le k \le 2$, and * = 0, 1.

Proof. For k = 1, we have the following six-term exact sequence

From Theorem 1.2 $K_*(S_1^{nc}) \cong K_*(\mathbb{C})$ and by Lemma 2.1 $K_0(S_1^{nc}/I_1) \cong \mathbb{Z}^4$ and $K_1(S_n^{nc}/I_1) = 0$. So there is an embedding $\mathbb{Z} \stackrel{\pi_0}{\hookrightarrow} K_0(S_n^{nc}/I_1)$, therefore $i_0 = 0$. It is already $i_1 = 0$. Moreover, it is also clear that $K_0(I_1) = 0$. For k = 2, we get the six-term exact sequence

From above $K_0(I_1) = 0$, and from proposition 2.11 $K_1(I_2) = 0$, so $i_* = 0$.

For k = 3, proposition 2.9 gives a counterexample, since i_* is an isomorphism between $K_*(I_2)$ and $K_*(I_3)$, and therefore $i_* \neq 0$ for k = 3.

REFERENCES

- [1] B. BLACKADAR, K-theory for Operator Algebras. Springer, 1986
- [2] J. CUNTZ, Non-commutative simplicial complexes and Baum-Connes-conjecture, *GAFA*, *Geom. Func. Anal. Vol.*, **12**(2002) pp. 307-329.
- [3] K. R. DAVIDSON, C*-algebras by Example, Fields Institute Monographs, 1996.
- [4] G. J. MURPHY, C*-algebras and Operator Theory, Academic Press, 1990.
- [5] G. NAGY, On the K-theory of the noncommutative circle, J. Operator Theory, 31(1994), pp. 303-309.
- [6] S. OMRAN, C*-algebras associated with higher-dimensional noncommutative simplicial complexes and their K-theory, Münster: Univ. Münster-Germany, 31(1994), pp. 303-309.
- [7] M. RORDAM, F. LARSEN, N. LAUSTSEN, *An Introduction to K-theory for C*-algebras*, London Mathematical Society Student Text, 49.
- [8] N. E. WEGGE-OLSEN, K-theory and C*-algebras, Oxford University Press, New York, (1993).