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ABSTRACT. In this article we investigate the universalC∗-algebras associated to certain 1- di-
mensional simplicial flag complexes which describe the noncommutative circle. We denote it by
Snc

1 . We examine theK-theory of this algebra and the subalgebrasSnc
1 /Ik, Ik . WhereIk, for

eachk, is the ideal inSnc
1 generated by all products of generatorshs containing at leastk + 1

pairwise different generators. Moreover we prove that such algebra divided by the idealI2 is
commutative.
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2 SALEH OMRAN

1. I NTRODUCTION

J. Cuntz in [2] associate to every simplicial complex a universalC∗-algebra with generators
and relations. In the following we give some examples and properties of such algebras see also
[6].

Definition 1.1. A simplicial complexΣ consists of a set of verticesVΣ and a set of non-empty
subsets ofVΣ, the simplexes inΣ, such that:

• If s ∈ VΣ, then{s} ∈ Σ.
• If F ∈ Σ and∅ 6= E⊂ F thenE ∈ Σ.

Σ is called locally finite if every vertex ofΣ is contained in only finitely many simplexes
of Σ, and finite-dimensional (of dimension6 n) if it contains no simplexes with more than
n + 1-vertices.
For a simplicial complexΣ one can define the topological space|Σ| associated to this complex.
It is called the "geometric realization" of the complex and can be defined as the space of maps
f : VΣ −→ [0, 1] such that

∑
s∈VΣ

f(s) = 1 andf(s0).....f(si) = 0 whenever{s0, ..., si} /∈ Σ.
If Σ is locally finite, then|Σ| is locally compact.

• CΣ is the universalC∗-algebra with positive generatorshs, s ∈ VΣ, satisfying the rela-
tions

hs0hs1 ...hsn = 0 whenever{s0, s1, ..., sn} /∈ Σ,∑
s∈VΣ

hsht = ht ∀ t ∈ VΣ.

Here the sum is finite, becauseΣ is locally finite.
• Cab

Σ is the abelian version of the universalC∗-algebra above, i.e. satisfying in addition
hsht = hths forall s, t ∈ VΣ.

Remark 1.1. There exists a canonical surjective mapCΣ −→ Cab
Σ .

A simplicial map between two simplicial complexesΣ andΣ
′
is a mapϕ : VΣ −→ VΣ′ such

that, whenever(t0, ..., tn) is a simplex inΣ this implies that(ϕ(t0), ..., ϕ(tn)) is a simplex inΣ
′
.

Proposition 1.1. Every simplicial mapϕ : Σ−→Σ
′

between two simplicial complexesΣ and
Σ
′
induces a∗- homomorphismϕ∗ : CΣ′ −→ CΣ.

Proof. Defineϕ∗ : CΣ′−→CΣ by hs 7−→ gs :=
∑

ϕ(t)=sht andhs mapped to0 if s is not in the
image ofϕ. We verify that the sum of allgs overs is equal to if one the sum of allht overt is
equal to one and the productsgs0 .....gsn = 0 wheneverhs0 .....hsn = 0.

For the first condition, we have∑
s
gs =

∑
s
(
∑

ϕ(t)=s
ht) =

∑
t
ht = 1,

and for the second condition

gs0 .....gsn =
∑

ϕ(t0)=s0

ht0 .....
∑

ϕ(tn)=sn

htn

=
∑

ϕ(t0)=s0

.....
∑

ϕ(tn)=sn

htnht0 ......htn = 0

becauseϕ is a simplicial map.

It has been shown in [2] that theK-theory ofCΣ coincides with theK-theory ofCab
Σ (which in

turn is isomorphic toC0(|Σ|). In the sequel we will study theK-theory of anotherC∗-algebra
that can be associated with certain complexes.
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Definition 1.2. A simplicial complexΣ is called flag or full, if it is determined by its1-
simplexes in the sense that
{s0, ..., sn} ∈ Σ⇐⇒ {si, sj} ∈ Σ for all 0 ≤ i < j ≤ n.

Definition 1.3. LetΣ be a locally finite flag complex. Denote byV the set of its vertices. Define
Cflag

Σ as the universalC∗-algebra with positive generatorshs, s ∈ V , satisfying the relations∑
s∈V

hsht = ht, t ∈ V

and
hsht = 0 for {s, t} /∈ Σ.

Denote byIk the ideal inCflag
Σ generated by products containing at leastn + 1 different gener-

ators. The filtration(Ik) of Cflag
Σ is called the skeleton filtration.

For simplicity we denoteCflag
Σ by Cf

Σ. This algebra is an interesting example of a noncom-
mutativeC∗- algebra described by a simplicial complex. If we consider the flag complexΣS1

with vertices{0−, 0+, 1−, 1+} and the condition that exactly the edges{i−, i+} do not belong
to ΣS1, the geometric realization ofΣS1 is the noncommutative circleS1. We consider the uni-
versalC∗-algebra with4 positive generatorshi, i ∈ VΣS

:= {0−, 0+, 1−, 1+} and satisfying the
relations ∑

i

hi+ +
∑

i

hi− = 1, hi+hi− = 0 ∀i ∈ {0, 1}.

The algebra described above is exactly the algebraCf
ΣS1

. We will denote it bySnc
1 . The

abelianization of thisC∗-algebra is isomorphic to the algebra of continuous functions on the
circleS1 as shown in [2]. TheK-theory ofSnc

1 is described by the following theorem.

Theorem 1.2. [2] The evaluation mapev : Snc
1 −→ C at the vertex1+, which maps the

generatorh1+ to 1 and all the other generators to0, induces an isomorphism inK-theory. (The
same is true for the evaluation maps, corresponding to the other vertices.)

Let

∆ := {(t0, ..., tn) ∈ Rn+1 | 0 ≤ ti ≤ 1,
n∑

i=1

ti = 1}

be the standardn-simplex. Denote byC∆ the associated universalC∗-algebra with generators
hs, s ∈ {t0, ..., tn}, such thaths ≥ 0 and

∑
s hs = 1. Denote byI∆ the ideal inC∆ generated

by products of generators containing all thehti , i = 0, ..., n. For eachk, denote byIk the ideal
in C∆ generated by all products of generatorshs containing at leastk + 1 pairwise different
generators. We also denote byIab

k the image ofIk in Cab
∆ . We have the following lemma.

Lemma 1.3. [2] LetΣ be a locally simplicial complex andIn be an ideal inCΣ defined above.
Then isomorphism

Ik/Ik+1
∼=

⊕
4

I4,

where the sum is taken over alln-simplexes4 in Σ.

For any vertext in ∆ there is a natural evaluation mapC4 −→ C mapping the generatorsht

to 1 and all the other generators to0.
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Proposition 1.4. (i) The evaluation mapC4 −→ C defined above induces an isomorphism in
K-theory.
(ii) The surjective mapI4 −→ Iab

4 induces an isomorphism inK-theory, whereIab
4 is the

abelianization ofI4 .

Proof. For (i) it is enough to prove thatC4 is homotopy equivalent toC. Consider the∗-
homomorphismsα : C −→ C4, λ 7→ cλ := λ.1 and β : C4 −→ C, hi 7→ 1

n+1
, i ∈

{0, 1, ..., n}. It is clear thatβ ◦ α = idC. Defineϕt : C4 −→ C4 by ϕt(hi) = 1−t
n+1

+ thi, t ∈
[0, 1]. It is obvious thatϕ1 = idC4 andϕ0 = α ◦ β. Soα ◦ β ∼ idC4. This implies thatC4 is
homotopy equivalent toC.
Using Lemma 1.3 above, one can use induction on the dimensionn of4 to prove the claim (ii).
For the complete proof we refer to [2].

Remark 1.2. Let∆ andI4 ⊂ C4 as above. ThenK∗(I4) ∼= K∗(C), ∗ = 0, 1, if the dimension
n of4 is even andK∗(I4) ∼= K∗(C0(0, 1)), ∗ = 0, 1, if the dimensionn of4 is odd.

2. K- THEORY OF NONCOMMUTATIVE CIRCLE

K-theory of noncommutative circle was introduced first by [5]. In this article we introduce
this algebras as a 1-dimensional simplicial complexes and and it’s skeleton filtration. Basic
definitions and facts ofC∗-algebras, universalC∗-algebras and theirK-theory which we will
use in this article can be found in [1],[3] [4], [7]and [8]

Lemma 2.1. Snc
1 /I1

∼= C4.

Proof. Let ḣi denote the image of a generatorhi for Snc
1 /I1. One has the following relations :∑

i

ḣi = 1, ḣiḣj = 0, i 6= j.

For everyḣi in Snc
1 /I1 we have

ḣi = ḣi(
∑

i

ḣi) = ḣ2
i .

HenceSnc
1 /I1 is generated by4 different orthogonal projections and thereforeSnc

1 /I1
∼= C4.

Lemma 2.2. In Snc
1 , we have an isomorphism

I1/I2
∼= Iab

1 /Iab
2 .

specially inSnc
1 /I1 we haveI1/I2

∼= C0(0, 1)4.

Proof. In Sab
1

I1
ab/I2

ab ∼=
⊕

σ
Iab

σ .

And in Snc
1

I1/I2
∼=

⊕
σ
Iσ

where the direct sum is taken over all the1-simplexesσ in ΣS1. Iσ is the ideal generated by
products of generators containingh1 andh2 in the universalC∗-algebraCf

σ which is generated
by positive elementsh1, h2, such thath1 + h2 = 1. ThisC∗-algebra is commutative. Therefore

Iσ
∼= C0(0, 1)

and the mapIσ −→ Iab
σ is an isomorphism. In the algebraSnc

1 , there are four1-simplexes . So
we haveI1/I2

∼= C0(0, 1)4.

Lemma 2.3. CΣS1 is commutative.
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Proof. An easy computation shows thatCΣS1/I2 is commutative. Since in the algebraCΣS1

the the product of any three different generators is zero, so the idealI2 = 0. ThenCΣS1 is
commutative.

Lemma 2.4. Snc
1 /I2 is isomorphic toCΣS1 .

Proof. Consider

φ : CΣS1 −→ Snc
1 /I2, hi 7−→ ḣi, i ∈ {0−, 0+, 1−, 1+}.

The elementshi in CΣS1 satisfy the relations of thėhi in Snc
1 /I2, soφ is a well defined homo-

morphism. It is evident thatφ is surjective. It remains to prove thatφ is injective.
Let

ρ : CΣS1 −→ B(H), hi 7−→ gi

be a unital representation. So inB(H), we have∑
i

gi =
∑

i

ρ(hi) = ρ(
∑

i

hi) = ρ(1) = 1

and allgi commute sinceCΣS1 is commutative. Now, define

π : Snc
1 −→ B(H), π(ḣi) = gi.

Thenπ annihilatesI2 and therefore factors as

Snc
1 −→ Snc

1 /I2
π′−→ B(H)

whereπ′ is a well defined homomorphism such thatρ = π′ ◦ φ.

Proposition 2.5. Snc
1 /I2

∼= Sab
1 .

Proof. By 2.4,Snc
1 /I2 is isomorphic to the commutative algebraCΣS1 . ThusSnc

1 /I2 is an abelian
C∗-algebra. Consider the following commutative diagram

0 −→ I1/I2 −→ Snc
1 /I2 −→ Snc

1 /I1 −→ 0
↓ ↓ ↓

0 −→ Iab
1 /Iab

2 −→ Sab
1 /Iab

2 −→ Sab
1 /Iab

1 −→ 0.

Since

Snc
1 /I1

∼= Sab
1 /I1

∼= C4

from Lemma 2.1. And
I1/I2

∼= Iab
1 /Iab

2

from lemma 2.2. By five-lemma, we get

Snc
1 /I2

∼= Sab
1 /Iab

2

In Sab
1 , we haveIab

2 = 0. So

Snc
1 /I2

∼= Sab
1 = C(S1).

Remark 2.1. We have that
C(|ΣS1|) ∼= C(S1),

since|ΣS1 | andS1 are homeomorphic spaces .

We now consider the simplicial flag complexΛ with 3 vertices{1, 2, 3} such that{1, 3} /∈ Λ.
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Lemma 2.6. The universalC∗-algebraCf
Λ generated by positive generatorsh1, h2, h3 with sum

equal to one andh1h3 = 0 is homotopy equivalent toC.

Proof. Let α : Cf
Λ−→C be the homomorphism which sendsh2 to 1 andh1, h3 to 0. And let

β : C−→Cf
Λ be the natural homomorphism which sends1 in C to the the identity element inCf

Λ.
It’s clear thatα ◦ β = idC. Define

ϕt : Cf
Λ −→ C

f
Λ,

by mappingh2 toh2+(1−t)(h1+h3) andhi to thi for i = 1, 3. Theϕt(hi) satisfy the following
relations :
(i) ϕt(hi) > 0 ∀i ∈ {1, 2, 3}.
(ii) ϕt(h1) + ϕt(h2) + ϕt(h3) = th1 + (h2 + (1− t)(h1 + h3)) + th3 = h1 + h2 + h3 = 1.
(iii) ϕt(h1)ϕt(h3) = th1th3 = t2h1h3 = 0.
Since the elementsϕt(hi) satisfy the relations of thehi in Cf

Λ, ϕt is well defined.
It is obvious thatϕ1 = idCf

Λ
andϕ0 = β ◦α. This means thatβ ◦α is homotopic toIdCf

Λ
. Hence

it follows thatCf
Λ is homotopy equivalent toC.

Lemma 2.7. In the previous lemma, letIΛ be the ideal inCf
Λ generated by the products con-

taining all generatorsh1, h2, h3 . ThenIΛ is homotopy equivalent to zero.

Proof. We have from the previous lemma that

ϕt : Cf
Λ −→ C

f
Λ

is well defined .
We show thatϕt mapsIΛ to IΛ and therefore induces by restriction a homomorphism

ϕt|IΛ
:= ϕ̂t : IΛ −→ IΛ.

Let x = ...h1h
k
2h3... be a typical element inIΛ. We have

ϕ̂t(h1h
k
2h3) = ϕt(h1)ϕt(h

k
2)ϕt(h3)

= th1(h2 + (1− t)(h1 + h3)
k)th3 = h1P (h2)h3

whereP is polynomial without constant term. So the product is inIΛ. Note that we used in the
equations above thath1h3 = 0.

It is clear that̂ϕ0 = 0 andϕ̂1 = idIΛ
.

This yields thatIΛ is homotopy equivalent to zero.

Lemma 2.8. For the skeleton filtration(Ik) in Snc
1 , I2/I3 has trivialK-theory.

Proof. Consider the skeleton filtration

Snc
1 := I0 ⊃ I1 ⊃ I2 ⊃ I3.

By Lemma 1.1, we have
I2/I3

∼=
⊕

Λi

IΛi
,

whereΛi is the subcomplex ofΣS1 generated by{0+, 0−, 1+, 1−} \ {i}, andIΛi
is the ideal

generated by products containing all generatorshj , j ∈ VΣS1 \ {i}.
There are four orthogonal ideals of this form. The orthogonality is clear, since e.g. ifx ∈ IΛ0+

andy ∈ IΛ0−
, the product

xy = (...h1+hk
0−h1− ...)(...h1+hl

0+h1− ...)

contains four different generators, so it is equal to zero inI2/I3.
Using Lemma 2.7, we get thatIΛi

is homotopic to zero. This implies thatK∗(I2/I3) = 0.
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Proposition 2.9. In Snc
1 we haveK∗(I2) = K∗(I3), ∗ = 0, 1.

Proof. We construct the short exact sequence

0 −→ I3 −→ I2 −→ I2/I3 −→ 0.

Apply the six term-exact sequence and use the lemma above. We get two isomorphisms in
K-theoryK∗(I2) ∼= K∗(I3), ∗ = 0, 1.

Proposition 2.10.We have

K∗(S
nc
1 /I3) ∼= K∗(S

nc
1 /I2) ∼= K∗(C(S1)).

Proof. Consider the short exact sequence

0 −→ I2/I3 −→ Snc
1 /I3 −→ Snc

1 /I2 −→ 0.

Applying the six-term exact sequence, we get

K0(I2/I3) −→ K0(S
nc
1 /I3) −→ K0(S

nc
1 /I2)

↑ ↓
K1(S

nc
1 /I2) ←− K1(S

nc
1 /I3) ←− K1(I2/I3).

From Lemma 2.8 we haveK∗(I2/I3) = 0 , so that the above six-term exact sequence reduces
to the following two isomorphisms

K0(S
nc
1 /I3) ∼= K0(S

nc
1 /I2)

and
K1(S

nc
1 /I3) ∼= K1(S

nc
1 /I2).

Note that by Lemmas 2.5 and 2.1 theC∗-algebrasSnc
1 /I2 andC(S1) have the sameK-theory.

This proves the proposition.

Proposition 2.11. In the algebraSnc
1 , we haveK0(I2) = K0(I3) = Z andK1(I2) = K1(I3) =

0.

Proof. I2 is a closed two sided ideal inSnc
1 . We have the following short exact sequence

0 −→ I2
i−→ Snc

1
π−→ Snc

1 /I2 −→ 0.

During the rest of this section, denoteK∗(i) by i∗ andK∗(π) by π∗ for ∗ = 0, 1. From the
above exact sequence we obtain the following six-term exact sequence .

K0(I2)
i0−→ K0(S

nc
1 )

π0−→ K0(S
nc
1 /I2)

↑ ↓
K1(S

nc
1 /I2) ←− K1(S

nc
1 ) ←− K1(I2).

We have from Theorem 1.2
K∗(S

nc
1 ) ∼= K∗(C),

which is generated by[1Snc
1

], where1Snc
1

denotes the identity element inSnc
1 .

And from the above lemma we have

K∗(S
nc
1 /I2) ∼= K∗(C(S1)).

It’s well known thatK∗(C(S1)) ∼= Z, for ∗ = 0, 1 So, the above six-term exact sequence reads
as

K0(I2)
i0−→ Z π0−→ Z

↑ ↓
Z ←− 0 ←− K1(I2).
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With respect to the isomorphismK0(S
nc
1 /I2) ∼= K0(C(S1)), the imageπ0([1Snc

1
]) of the gener-

ator ofK0(S
nc
1 ) corresponds to the generator[1C(S1)] of K0(C(S1)).

Soπ0 is bijective. Theni0 is zero, and we haveK0(I2) = Z andK1(I2) = 0. By proposition
2.9, we have alsoK0(I3) = Z andK1(I3) = 0.

Proposition 2.12.Consider the skeleton filtration

Snc
1 = I0 ⊃ I1 ⊃ I2 ⊃ I3.

The short exact sequence

0 −→ Ik
i−→ Ik−1

π−→ Ik−1/Ik −→ 0

inducesi∗ : K∗(Ik) −→ K∗(Ik−1) which is zero for1 ≤ k ≤ 2, and∗ = 0, 1.

Proof. Fork = 1, we have the following six-term exact sequence

K0(I1)
i0−→ K0(S

nc
1 )

π0−→ K0(S
nc
1 /I1)

↑ ↓
K1(S

nc
1 /I1)

π1←− K1(S
nc
1 )

i1←− K1(I1).

From Theorem 1.2K∗(S
nc
1 ) ∼= K∗(C) and by Lemma 2.1K0(S

nc
1 /I1) ∼= Z4 andK1(S

nc
n /I1) =

0. So there is an embeddingZ π0
↪→ K0(S

nc
n /I1), thereforei0 = 0. It is alreadyi1 = 0. Moreover,

it is also clear thatK0(I1) = 0. Fork = 2, we get the six-term exact sequence

K0(I2)
i0−→ K0(I1)

π0−→ K0(I1/I2)
↑ ↓

K1(I1/I2)
π1←− K1(I1)

i1←− K1(I2).

From aboveK0(I1) = 0, and from proposition 2.11K1(I2) = 0, soi∗ = 0.

For k = 3, proposition 2.9 gives a counterexample, sincei∗ is an isomorphism between
K∗(I2) andK∗(I3), and thereforei∗ 6= 0 for k = 3.
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