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1. I NTRODUCTION

Copulas allow to express multivariate distributions in terms of their marginal distributions
and multivariate dependence structure. Copulas are a very popular tool and are widely applied,
for example, to perform stress-tests and robustness checks in situations where extreme events
may occur, in flexible modeling of the dependence structure for portfolios of large dimensions,
in financial risk assessment and actuarial analysis, in database formulation for the reliability
analysis, in various multivariate simulation studies in engineering applications, in climate and
weather modeling research, in various simulation-based performance studies. In this paper
we consider the Marshall-Olkin [12] and Generalized Cuadras-Augé [3] bivariate copulas and
investigate some of its properties. Marshall and Olkin [12] described bivariate exponential
distribution to study complex systems in which the two components are not independent and
are subject to shocks which are fatal to one or both components.

2. M ARSHALL -OLKIN AND GENERALIZED CUADRAS-AUGÉ FAMILIES OF COPULAS

Let X andY be the lifetimes of the two components in a system. Assume that shocks to
the two components follow three independent Poisson processes with parametersλ1, λ2 and
λ12 ≥ 0, depending on whether the shock kills only component 1, only component 2 or both
components simultaneously. Hence forx, y ≥ 0, survival function is

(2.1) S(x, y) = P (X > x, Y > y) = exp [−λ1x− λ2y − λ12 max(x, y)],

and sincemax(x, y) = x + y −min(x, y),

S(x, y) = exp[(−λ1 + λ12) x− (−λ2 + λ12) y + λ12 min(x, y)

= S(x) S(y) min[exp(λ12 x), exp(λ12 y)](2.2)

The marginal survival functions forX andY are

(2.3) S(x) = exp[(−λ1 + λ12) x],

and

(2.4) S(y) = exp[(−λ2 + λ12) y].

Settingu = F (x), v = G(y), α = λ12/(λ1 + λ12) andβ = λ12/(λ2 + λ12), survival copulas
Ĉ associated with survival function is

(2.5) Ĉ(u, v) = uv min(u−α, v−β) = min(u1−αv, uv1−β).

Sinceλs are positive and bothα andβ ∈ (0, 1), survival copulas for the Marshall-Olkin
bivariate exponential distribution leads to a two- parameter family of copulas

(2.6) C(u, v) =

[
u1−αv, uα ≥ vβ,
uv1−β, uα ≤ vβ.

This copula family is known as both the two-parameter Marshall-Olkin family [12] and the
Generalized Cuadras-Augé [3] family whenα = β corresponding to the case in whichλ1 = λ2,
that is,X andY are exchangeable. For some interesting relevant readings, refer to [8, 5, 14].
In what follows now, we will refer this family of copulas as copulaC(u, v).
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3. PROPERTIES OF THE M ARSHALL -OLKIN FAMILY AND THE GENERALIZED

CUADRAS-AUGÉ FAMILY

We will present and prove some properties of copulaC(u, v) in respect of probability dis-
tributions, dependence measures and information measures. An algorithm to generate copula
C(u, v) is also given.

3.1. Copulas C(u, v) and Probability distributions. The density function associated with
copulaC(u, v) is given by

(3.1) c(u, v) =
∂2C(u, v)

∂u∂v
=

[
(1− α)u−α, uα > vβ,
(1− β)v−β, uα < vβ,

, 0 < α, β < 1.

Thus, the mass of the singular component must be concentrated on the curveuα > vβ in
[0, 1]2.

The copulasC(u, v) although have full support forα,β ∈ (0, 1), they are neither absolutely
continuous nor singular. However they have both, the absolutely continuous component

Aα,β(u, v) =

∫ u

0

∫ v

0

∂2C(s, t)

∂s∂t
dtds

= C(u, v)− αβ

α + β − αβ

[
min

(
uα, vβ

)](α+β−αβ)/αβ
,(3.2)

and the singular component [14] given by

Sα,β(u, v) = C(u, v)− Aα,β(u, v) =
αβ

α + β − αβ

[
min

(
uα, vβ

)](α+β−αβ)/αβ

=

∫ min (uα,vβ)

0

t
1
α

+ 1
β
−2dt.(3.3)

For the Marshall-Olkin copulaC(u, v) with α = 0.3 andβ = 0.75, the singular component
is shown in Figure 1.

Two functions closely related to copulas and survival copulas, but which are not the copulas,
are dual of a copula and the co-copula [15]. The dual of copulaC(u, v) is the function

C̃(u, v) = u + v − C(u, v)

=

[
u + v(1− u1−α), uα ≥ vβ,
v + u(1− v1−β), uα ≤ vβ,

(3.4)

and the co-copula is the function given by

C∗(u, v) = 1− C(1− u, 1− v)

=

[
1− (1− u)1−α(1− v), uα ≥ vβ,
1− (1− u)(1− v)1−β, uα ≤ vβ,

(3.5)

The dual of copula and the co-copula both express probability of eventsX and Y . For
P (X ≤ x, Y ≤ y) = C(u, v) and P (X > x, Y > y) = Ĉ(1− u, 1− v), it is noted that
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Figure 1: Singular component ofC(u, v) for α = 0.3 andβ = 0.75.

(3.6) P (X ≤ x or Y ≤ y) = C̃(u, v) andP (X > x or Y > y) = C∗(1− u, 1− v) .

The Marshall-Olkin copulaC(u, v), dual of copulaC̃(u, v) and co-copulaC∗(u, v) for α =
0.3 andβ = 0.75, are shown in Table 1 from the left to the right, respectively.

Table 3.1: Marshal-Olkin copula(C(u, v), its dualC̃(u, v), an co-copulaC∗(u, v) for α = 0.3 andβ = 0.75.
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3.2. CopulasC(u, v) and Dependence measures.Dependence or association between vari-
ables is one of the most studied concept in probability and statistics. The nature of dependence
can take a variety of forms and unless some specific assumptions are made about the depen-
dence, no meaningful statistical model can be contemplated [9, 10]. Several copula dependence
properties and measures are scale invariant, that is, they remain unchanged under strictly in-
creasing transformations of the variables [7, 18]. Copulas have been explored extensively in the
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study of dependence. Schweizer and Wolff [17] noted, "It is precisely the copula which cap-
tures those properties of the joint distribution which are invariant under almost surely strictly
increasing transformations." Most widely used scale-invariant measures of association are the
Kendall’sτ and Spearman’sρ both of which measure a form of dependence known as concor-
dance. We now present some results of copulasC(u, v) related to dependence measures.

Theorem 3.1. Let C(u, v) be a member of two parameter Marshall-Olkin family of copulas
with 0 < α, β < 1. Then Kendall’sτ can be expressed as

τ = 4

∫∫
[0,1]2

C(u, v) dC(u, v)− 1

= 1− 4

∫∫
[0,1]2

∂C(u, v)

∂u

∂C(u, v)

∂v
du dv

= αβ/(α + β − αβ).(3.7)

Theorem 3.2. Let C(u, v) be a member of two parameter Marshall-Olkin family of copulas
with 0 < α, β < 1. Then Spearman’sρ can be expressed as

ρ = 12

∫∫
[0,1]2

uv dC(u, v)− 3

= 12

∫∫
[0,1]2

C(u, v) du dv − 3

= 3αβ/(2α + 2β − αβ) .(3.8)

Blomqvist [1] proposed a measure of association known as the medical correlation coefficient
which we denote byB

(3.9) B = P [(X −Xd)(Y − Yd) > 0]− P [(X −Xd)(Y − Yd) < 0].

Theorem 3.3. Let C(u, v) be a member of two parameter Marshall-Olkin family of copulas
with 0 < α, β < 1.Then

(3.10) B = 4C(
1

2
,
1

2
)− 1 = 4(2)min(α,β)−2 − 1.

Proof. Since0 ≤ u, α, β ≤ 1, it may be noted

C(u, u) = min(u2−α, u2−β) = umax(2−α,2−β) = u2−min(α,β),

hence the proof.

For the proofs of Theorems 3.1 and 3.2, reference is made to pages 165 and 168 in Nelson
[14].

Gini introduced a measure of associationγ which he called theindice di cograduazione
seplice. Now we prove a theorem expressing Marshall-Olkin copula parameters in terms of
association parameterγ.

Theorem 3.4. Let C(u, v) be a member of two parameter Marshall-Olkin family of copulas
with 0 < α, β < 1. Then Gini’s measure of associationγ can be expressed as
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γ = 2

∫∫
[0,1]2

(|u + v − 1| − |u− v|) dC(u, v)

= 4

[∫
[0,1]

C(u, 1− u) du−
∫

[0,1]

{u− C(u, u)} du

]
=

4

3−min(α, β)
− 2 + 4

[ 1

3− α
u3−α

0 +
1

3− β
(1− u0)

3−β − 1

2− α
u2−α

0

− 1

2− β
(1− u0)

2−β +
1

2− α
+

1

2− β
− 1

3− α
− 1

3− β

]
.(3.11)

Proof. Consider

(3.12) γ = 4[

∫
[0,1]

C(u, 1− u) du−
∫

[0,1]

{u− C(u, u) du}]

expressed as

(3.13) γ = 4

∫
[0,1]

C(u, 1− u) du− 2 + 4

∫
[0,1]

C(u, u) du

Since u ∈ [0, 1] andα, β ∈ (0, 1), we have

(3.14) C(u, u) = min(u2−α, u2−β) = umax(2−α,2−β) = u2−min(α,β).

Hence

(3.15) 4

∫
[0,1]

C(u, u) du = 4

∫
[0,1]

u2−min(α,β) du =
4

3−min(α, β)
.

Now

(3.16) C(u, 1− u) = min(u1−α(1− u), u(1− u)1−β) = u1−α(1− u)1−β min((1− u)β, uα).

Let u0 be the solution of(1 − u)β = uα. With our conditions onu, α, andβ there is unique
such solution. Then

(3.17) min((1− u)β, uα) =

{
uα u ≤ u0,

(1− u)β u > u0.

Hence

(3.18) C(u, 1− u) =

{
u(1− u)1−β u ≤ u0,

u1−α(1− u) u > u0.
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∫
[0,1]

C(u, 1− u) du =

∫
[0,u0]

u(1− u)1−β du +

∫
[u0,1]

u1−α(1− u) du

=
1

3− α
u3−α

0 +
1

3− β
(1− u0)

3−β − 1

2− α
u2−α

0

− 1

2− β
(1− u0)

2−β +
1

2− α
+

1

2− β
− 1

3− α
− 1

3− β
.(3.19)

We can replace1 − u0 by u
α/β
0 if this seems more elegant. Finally we reach at the result of

the theorem.

Remark 3.1. Concerningu0, it is the solution of(1−u)β = uα, or equivalentlyuα/β+u−1 = 0.
Thusu0 is a function ofα/β and can be tabulate via Maple for example. We can get also an
idea ofu0(α/β) by plotting its inverseα/β = u−1

0 = log(1−u)
log u

.

Corollary 3.5. In case ofα = β, for the single parameter (α) Marshall-Olkin copulaC(u, v),
dependence measures

τ =
α

2− α2
,(3.20)

ρ =
3α

4− α
,(3.21)

γ =
2(2 + 3α− α2)− (4− α)2α

(2− α)(3− α)
.(3.22)

The relationship between the Marshall-Olkin copula parameter concordance measures of
Kendall, Spearman and Gini are plotted in Figure 2.

Figure 2: CopulaC(u, v) parameterα and concordant measures.
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3.3. CopulasC(u, v) and Tail dependence.Dependence measure in general are used in de-
scribing how large (small) values of one variable appear with large(small) values of the other
variable. Concept of tail dependence in a copulaC(u, v) measures the dependence between the
variablesu andv in the upper-right quadrant and lower-left quadrant of[0, 1]2. Tail dependence
can be used to analyze the dependence among extreme random events. Joe [9] defined the upper
and lower tail dependence as

λU = lim
t→1−

P
[
Y > G−1(t)|X > F−1(t)

]
= lim

t→1−

1− 2t + C(t, t)

1− t

= 2− lim
t→1−

1− C(t, t)

1− t
,

λL = lim
t→0+

P
[
Y ≤ G−1(t)|X ≤ F−1(t)

]
= lim

t→1+

C(t, t)

t
.(3.23)

These parameters are nonparametric and depend only on copulaC(u, v). Copula has lower
(upper) tail dependence forλU (λL) ∈ (0, 1] and no lower (upper) tail dependence forλU(λL) =
0. This tail dependence measure is the probability that one variable is extreme given that other
is extreme. Tail dependence measures are copula-based and copula is related to the full distrib-
ution via quantile transformations, i.e.,

(3.24) C(u, v) = F
(
F−1 (u), G−1(v)

)
.

The tail dependence for Marshall-Olkin copulas are given in the following theorem:

Theorem 3.6. Let C(u, v) be a member of two parameter Marshall-Olkin family of copulas
with 0 < α, β < 1. Then the copulaC(u, v) has lower and upper tail dependence parameters
λL = 0 andλU = min(α, β).

Proof. From the definition of tail dependence parameters,

(3.25) λL = lim
t→0+

C(t, t)

t
= lim

t→0+

t2 −min(α, β)

t
= 0,

This is because1−min(α, β) > 0. Further,

(3.26) λU = 2− lim
t→1−

1− C(t, t)

1− t
= lim

t→1−

1− t2−min(α,β))

1− t
,

and by the l’Hospital’s rule,

(3.27) λU = 2− lim
u→1−

−(2−min(α, β))u1−min(α,β)

−1
= min(α, β).

Thus, Marshall-Olkin copulas have no lower tail dependence but have the upper tail depen-
dence which is qual tomin(α, β).
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3.4. CopulasC(u, v) and the Mutual information. Uncertainty prevails in several forms and
various kinds of uncertainties may arise from random fluctuations, incomplete information, im-
precise perception, vagueness etc. Probabilistic uncertainty may be viewed as one associated
with a random outcome of an experiment or which is associated with the manner in which
data are collected and analyzed following statistical designs. Often such type of uncertainty
is summarized in terms of bias, standard error, and measures based on the statistical probabil-
ity distributions. Shannon [16] laid the mathematical foundation of information theory in the
context of communication theory and defined a probabilistic measure of uncertainty referred
to as entropy. However earlier contributions in this direction have been noted due to Nyquist
[15] and Hartley [6]. The entropy measures the expected uncertainty in a variableX and is
H(X) = −

∫
f(x) log f(x) dx. For two continuous random variablesX andY having the

marginal density functionsf(x) andf(y) and jointly distributed according to the joint density
functionf(x, y), then

Definition 3.1. The joint entropy of two random variablesX andY having the joint density
functionf(x, y) is

(3.28) H(X, Y ) = −
∫∫

f(x, y) log f(x, y) dx dy,

and the conditional entropy is

(3.29) H(X|Y ) = −
∫∫

f(x, y) log f(x|y) dx dy,

wheref(x|y) is the conditional density function ofX givenY .

The conditional entropy is a measure of how much uncertainty remains aboutX when we
know the value ofY .

The mutual information or information transmission (distance from statistical independence)
betweenX andY in terms of the Kullback-Liebler divergence [11] is:

Definition 3.2. The mutual information between two random variablesX andY with joint
density functionf(x, y) and marginal density functionsf(x) andf(y) is

(3.30) I(X, Y ) = −
∫∫

f(x, y) log
f(x, y)

f(x)f(y)
dx dy.

Definition 3.3. The joint probability density functionf(x, y) can be expressed in terms of
copula density functionc(u, v) as

(3.31) f(x, y) = c(u, v)f(x)f(y),

where copula density functionc(u, v) is

(3.32) c(u, v) =
∂2C(u, v)

∂u∂v
.

We thus have the following theorem about the Marshall-Olkin copulaC(u, v):

Theorem 3.7. Let C(u, v) be a member of two parameter Marshall-Olkin family of copulas
with 0 < α, β < 1. Then the mutual information between two random variablesX andY is
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I(X, Y ) = −
∫∫

c(u, v) log c(u, v) du dv

= −
[
(1− α)β log(1− α) + (1− β)α log(1− β)

α− αβ + β
+

αβ(α− 2αβ + β)

(α− αβ + β)2

]
.(3.33)

Proof. For the Marshall-Olkin copulaC(u, v)

(3.34) C(u, v) =

[
u1−αv, uα ≥ vβ,
uv1−β, uα ≤ vβ,

we get

(3.35) c(u, v) =

{
u−α(1− α), uα ≥ vβ,

v−β(1− β), uα ≤ vβ.

Let [0, 1]2 = E ∪ F, where

(3.36) E = {(u, v) | 0 ≤ u ≤ 1, 0 ≤ v ≤ u
α
β },

(3.37) F = {(u, v) | 0 ≤ u ≤ 1, u
α
β ≤ v ≤ 1} = {(u, v) | 0 ≤ v ≤ 1, 0 ≤ u ≤ v

β
α}.

Thus,

(3.38) c(u, v) = u−α(1− α) onE andv−β(1− β) onF.

E andF overlap only on the boundary, but it is clear from the calculations that we can ignore
that fact. Set

(3.39) I(X, Y ) = −
∫∫

[0,1]2
c(u, v) log c(u, v) du dv = − (I1 + I2) ,

where

I1 =

∫∫
E

c(u, v) log c(u, v) du dv =

∫ 1

0

∫ u
α
β

0

u−α(1− α) log(u−α(1− α)) dv du,

I2 =

∫∫
F

c(u, v) log c(u, v) du dv =

∫ 1

0

∫ v
β
α v−β

0

(1− β) log(v−β(1− β)) du dv.

Due to symmetry we can calculate one of these integrals, then interchangeα with β to obtain
the second.

I1 =

∫ 1

0

u
α
β
−α(1− α) log((1− α)u−α) du

= (1− α) log(1− α)

∫ 1

0

u
α
β
−α du− α(1− α)

∫ 1

0

u
α
β
−α log u du

=
(1− α)β log(1− α)

α− αβ + α
+

α(1− α)β2

(α− αβ + β)2
.(3.40)
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Hence the required result. Note that in these computations we use the fact thatlimu→0+ uδ log u =
0 for δ > 0.

Theorem3.7 results in the following corollary in case ofα = β:

Corollary 3.8. LetC(u, v) be a single parameter (α) Marshall-Olkin copula. Then the mutual
information between two random variablesX andY is

(3.41) I(X, Y ) = −2
1− α

2− α
log(1− α) +

2α(1− α)

(2− α)2
.

Mercier [13] has also arrived at this corollary result.

3.5. Algorithm to simulate Marshall-Olkin copula C(u, v). For the Marshall-Olkin bivariate
exponential distribution with parametersλ1, λ2 andλ12, the following algorithm due to Devroye
[4] simulates uniform random variablesU andV whose joint distribution function is a Marshall-
Olkin copulaC(u, v):

Step 1. Generate three independent uniform(0, 1) random variablesp, q andr.
Step 2. Letx = min(− ln p

λ1
, − ln r

λ12
) andy = min(− ln q

λ2
, − ln r

λ12
).

Step 3. The desired pair of variables(u, v) is obtained fromu = exp[−(λ1 + λ12)x] and
v = exp[−(λ2 + λ12)x].

In Figure 3, we present the scatter plot of 500 pairs of(u, v) simulated using the Marshall-
Olkin copula forα = 0.3 andβ = 0.75. The singular component is clearly seen in this figure.

Figure 3: Scatterplot of 500 pairs of(u, v) simulated usuing the marshal-Olkin copula forα = 0.3, β = 0.75.

4. APPLICATION OF THE M ARSHALL -OLKIN COPULA BASED M UTUAL

I NFORMATION

We consider the data arising in the production of nitric acid in the process of oxidizing ammo-
nia [2]. The response variable is stack loss which is expressed as the percentage of the ingoing
ammonia that escapes unabsorbed and key process variables are the airflow, the cooling water
inlet temperature in0C and the acid concentration is percent.
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Table 2. Mutual information using response variable stack loss and process variables air flow,
cooling temperature and acid concentration in the process of oxidizing ammonia.

Air flow,% Cooling
temperature,0C

Acid
concentration,%

Kendallτ 0.802 0.734 0.379
C(u, v) parameterα 0.92209 0.88852 0.61476

Mutual informationI(X, Y ) 0.7774 0.60045 0.4926

In Table 2, concordance measure Kendall’sτ between stack loss and process variables air
flow, cooling temperature and acid concentration respectively are 0.802, 0.734 and 0.379 while
the Marshall-Olkin copula with single parameterα values estimated using the Kendall’sτ for
these process variables are 0.92209, 0.88852 and 0.61476. The values of mutual information
measureI(X,Y ) in Table 2 in respect of these process variables are 0.7774, 0.60045 and 0.4926
respectively. Thus, mutual information measure indicates that the information about the amount
of decrease in stack loss caused by the knowledge of airflow is maximum followed by the
knowledge of the cooling temperature and acid concentration. Higher values of the copula
parameterα, i.e., 0.92209 and 0.88852 for air flow and cooling temperature are the indication
of the higher degree of association between stack loss and air flow and cooling temperature.
Thus, in this application, air flow and cooling temperature can serve as the best predictors in
predicting the stack loss. Based on these two predictors, the least squares prediction line for
stack loss is estimated as

Stack loss= −5.036 + 0.0674 Air flow + 0.130 Cooling temperature;

Adj. R2 = 89.9%,

where both predictor variables are highly significant at 1% significance level. For comparison,
the least squares prediction line for stack loss using all three predictors is estimated as

Stack loss= 3.614 + 0.072 Air flow

+ 0.130 Cooling temperature− 0.152 Acid concentration;

Adj. R2 = 89.8%,

where predictor variables air flow and cooling temperature are highly significant at 1% signif-
icance level however acid concentration is not significant because of itsP -value being 0.344.
It may however be noted that the Marshall-Olkin copulas model only the positive dependence
because its parameter lies on the interval(0, 1).
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