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2 D.L. FERNANDEZ AND E.B. SILVA

1. I NTRODUCTION

Bilinear operators appear naturally in several branches of classical harmonic analysis and
functional analysis. Several singular bilinear operators have been intensively studied and re-
search on bilinear Hilbert transform (see [12]) have shown the need for new results for bilinear
operators. In the paper by L. Grafakos and N. Kalton ([9]) more details about this subject may
be found. Another important topic is the theory of ideals of operators ands-numbers in Banach
spaces, where important definitions and results may not be adapted for the bilinear case from
the linear case. The results in [8], [18] and [21] are references on this subject.

Positive and regular linear operators play a fundamental role in mathematics and their study
form a very active research area. The bilinear counterpart of these operators were less stud-
ied. Some results giving connections between positive bilinear operators, function spaces and
interpolation theory were explored in [7], [11] and [13].

Quasi-Banach spaces appear in a natural way as a generalization of Banach spaces, where
the triangular inequality of the norm is changed by a weaker condition. From a geometrical
point of view, the convex unitary ball of the Banach space case is replaced in the quasi-Banach
case by a non convex unitary ball. Besides the classical works by Aoki ([4]), Rolewicz ([19]
and [20]) and Kalton et al. ([10]), the study of geometrical aspects is one of the main issues for
these spaces, with several results obtained recently, as may be seen in [1], [2] and [14].

On the other hand, connections between quasi-normed spaces, positive and regular bilinear
operators were not properly studied in the literature. In current work positive and regular bilin-
ear operators on quasi-normed functional spaces are introduced and their main properties and
characterizations on lattices and quasi-normed lattices are proved. We also introduce a variant
definition of functional quasi-norm (see [16]) and prove several theorems characterizing the
compactness of bilinear operators. Finally, using a very interesting and powerful definition of
adjoint of a bilinear mapping (see [18]), relations between compactness of bilinear operators
and their adjoints in quasi-normed function spaces are also proved.

2. L ATTICES TERMINOLOGY

The basic concepts and results about ordered sets and vector lattices are introduced in this
section. The book [3] is a very good reference.

Definition 2.1. An ordered set is a setX endowed with a binary relation, denoted by≤, which
is supposed to be transitive (x ≤ y & y ≤ z =⇒ x ≤ y), reflexive (x ≤ x, for all x ∈ X) and
anti-symmetric (x ≤ y &y ≤ x =⇒ y = x).

Let (X,≤) be an ordered set. We writey ≥ x to indicatex ≤ y, andx < y to expressx ≤ y
andx 6= y.

Definition 2.2. A subsetB ⊂ X is maximized (minimized) if there existsx0 ∈ X such that
b ≤ x0, for all b ∈ B (respectively,x0 ≤ b, for all b ∈ B); x0 is called an upper bound
(respectively, lower bound) ofB in X.

Definition 2.3. For x, y ∈ X, the interval[x, y] as the set of allz ∈ X such thatx ≤ z ≤ y; a
setB ⊂ X is bounded order if it is contained in a interval[x, y].

Definition 2.4. Let B be a maximized bounded ordered subset ofX. If there exists an upper
bound ofB which is a lower bound for all upper bounds ofB (in X), such element is unique,
and it is called supremum ofB and denoted bysup B. Analogously, we define the infimum of
B (inf B).
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BILINEAR REGULAR OPERATORS 3

Definition 2.5. An ordered set(R,≤) is a lattice if, for allx, y ∈ R, the elementsx ∨ y =
sup{x, y} andx ∧ y = inf{x, y} exist inR.

Definition 2.6. A vector spaceE overR, endowed with an order relation≤, is a ordered vector
space if, for allx, y, z ∈ E andλ ≥ 0, the conditions are verified:

(EVO1) x ≤ y =⇒ x + z ≤ y + z,

(EVO2) x ≤ y =⇒ λx ≤ λy,.

If E is an ordered vector space, the subset

E+ := {x ∈ E ; x ≥ 0 }

is called the positive cone ofE and the elementsx ∈ E+ are called positives.

Definition 2.7. A vector lattice is an ordered vector spaceE, such thatx ∨ y = sup{x, y} and
x ∧ y = inf{x, y} exist inE, for all x, y ∈ E.

Proposition 2.1. In a vector latticeE one hasx+sup A = sup(x+A), x+inf A = inf(x+A)
andsup A = − inf(−A) for all x ∈ E andA ⊂ E.

Definition 2.8. Let E be a vector lattice. For allx ∈ E, we define

x+ := x ∨ 0, x− := −(x ∧ 0), |x| := x ∨ (−x).

The elementsx+ andx− are called the positive and negative parts ofx, respectively, and|x| the
modulus ofx.

Theorem 2.2.LetE be a vector lattice. For allx, y, x1, y1 ∈ E andλ ≥ 0, one has

(2.1) x = x+ − x−;

(2.2) |x| = x+ + x−;

(2.3) |x| = 0 ⇐⇒ x = 0; |λx| = |λ| |x|; |x + y| ≤ |x|+ |y|;

(2.1) is the unique representation ofx as a difference of disjoint elements ofE (that is,
|x| ∧ |y| = 0).

3. POSITIVE OPERATORS

In this section it is defined the bilinear operators which are the subject of this work.

Definition 3.1. Let X, Y andZ be vector lattices. An bilinear operatorT : X × Y → Z is
positive if givenx ∈ X+ andy ∈ Y+, one hasT (x, y) ∈ Z+.

Remark 3.1. The Definition 3.1 above is not the same definition of positive bilinear operator
given in [6].

Proposition 3.1. Let X, Y andZ be vector lattices andT : X × Y → Z a bilinear positive
operator. Then,

|T (x, y)| ≤ T (|x|, |y|),
for all (x, y) ∈ X × Y .
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4 D.L. FERNANDEZ AND E.B. SILVA

Proof.

|T (x, y)| = |T (x+ − x−, y+ − y−)|
≤ |T (x+, y+)− T (x+, y−)|+ |T (x−, y+)− T (x−, y−)|
≤ T (x+, y+) + T (x+, y−) + T (x−, y+) + T (x−, y−)

= T (x+ + x−, y+ + y−)

= T (|x|, |y|) .

Thus,

(3.1) |T (x, y)| ≤ T (|x|, |y|) ,

for positiveT and(x, y) ∈ X × Y .

Definition 3.2. Let X, Y andZ be ordered vector spaces. An bilinear operatorT : X×Y → Z
is regular if it may be written as

T = T1 − T2,

whereT1 andT2 are positive bilinear operators.

Theorem 3.2. Let X, Y and Z be vector lattices. A bilinear operatorT : X × Y → Z is
regular if, and only if, there exists a positive bilinear operatorS : X × Y → Z, such that

(3.2) |T (x, y)| ≤ S(|x|, |y|),
for all (x, y) ∈ X×Y . The bilinear operatorS is called a positive upper bound of the operator
T .

Proof. If T is regular, there existA1 andA2 positive bilinear operators withT = A1 − A2 and

|T (x, y)| = |(A1 − A2)(x, y)| = |A1(x, y)− A2(x, y)|
≤ |A1(x, y)|+ |A2(x, y)| ≤ A1(|x|, |y|) + A2(|x|, |y|)
= (A1 + A2)(|x|, |y|) .

TakingS = A1 + A2, we obtain the desired operator.
On the other hand, if there isS satisfying (3.2), one has forx ∈ X+ andy ∈ Y+ that

T (x, y) ≤ |T (x, y)| ≤ S(|x|, |y|) = S(x, y).

Thus,S(x, y) − T (x, y) = (S − T )(x, y) ≥ 0, soonS − T is a positive operator. Finally,
T = S − (S − T ). Therefore,T is regular.

Definition 3.3. An ordered setX is Dedekind complete if every non-empty subset ofX that is
bounded above admits a supremum (inX).

Theorem 3.3. Let X andY be vector lattices andZ a Dedekind-complete vector lattice. If a
bilinear operatorT : X × Y → Z is regular, then for each(u, v) ∈ X+ × Y+, there exists
ω ∈ Z+, such that

T (x, y) ≤ ω,

for all (x, y) ∈ X+ × Y+ with 0 ≤ x ≤ u and0 ≤ y ≤ v.

Proof. SinceT is regular, there is a positive bilinear upper boundS of T . For each positive pair
(u, v) ∈ X+× Y+ let us defineω(t) = S(u(t), v(t)). Then, for each0 ≤ x ≤ u and0 ≤ y ≤ v,
by Theorem 3.2 one has

(3.3) T (x, y) ≤ |T (x, y)| ≤ S(|x|, |y|) = S(x, y) .
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Sinceu− x ≥ 0, S(u− x, y) ≥ 0, implying

(3.4) S(u, y) ≥ S(x, y).

In a similar way, sincev − y ≥ 0, one hasS(u, v − y) ≥ 0, thus

(3.5) S(u, v) ≥ S(u, y).

Putting (3.4) and (3.5) in (3.3),

T (x, y) ≤ S(x, y) ≤ S(u, y) ≤ S(u, v) = ω(t) ,

proving the result.

Remark 3.2. The converse of Theorem 3.3 is not true. A counterexample can be found in [15],
where it is considered a bounded bilinear operator whose range is the real numbers and the
domain is̀ 2 × `2.

4. QUASI-NORMED L ATTICES

Definition 4.1. A quasi-norm in a vector spaceX is an application||.|| of X in [0,∞[ such
that, forx, y ∈ X andλ ∈ R, verifies the conditions

QN1) ||x|| = 0 ⇐⇒ x = 0;

QN2) ||λx|| = |λ| ||x||;
QN3) ||x + y|| ≤ C (||x||+ ||y||),
for someC ≥ 1.
A vector spaceX endowed with a quasi-norm is called aquasi-normed space.

A quasi-Banach spaceis a quasi-normed space which is complete in the topology generated
by

d(x, y) = ||x− y||.
A classic result of Aoki-Rolewicz gives the following:

Theorem 4.1. If X is a quasi-normed space endowed with a quasi-norm||.||, there exists a
constantρ, 0 < ρ ≤ 1, such that

||x1 + ... + xn||ρ ≤ 4 (||x1||ρ + ... + ||xn||ρ) ,

for all finite sequencex1, ..., xn emX.

Definition 4.2. If a quasi-normed space is also a vector lattice(X,≤), we sayX is a quasi-
normed lattice if

|x| ≤ |y| =⇒ ||x|| ≤ ||y||.
Besides, if a quasi-normed lattice is complete, we say it is aquasi-Banach lattice.

Theorem 4.2.LetX andY be quasi-Banach lattices andZ a quasi-normed lattice. If a bilinear
operatorT : X × Y → Z is positive, then it is bounded.

Proof. Let us show that there exists a constantM > 0, such that

(4.1) ||T (x, y)|| ≤ M ||x||||y|| ,

for all positive(x, y) ∈ X+ × Y+.
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6 D.L. FERNANDEZ AND E.B. SILVA

Suppose (4.1) is not true, that is, there exists a sequence of positive functions(xn, yn) ∈
X+ × Y+ with ||(xn, yn)||X+×Y+ ≤ 1, such that

(4.2) ||T (xn, yn)|| > n22n .

for all n. Let us consider the series
∑∞

n=1
1
2n xn and

∑∞
n=1

1
2n yn. We claim

∑∞
n=1

1
2n xn is

convergent inX. Indeed, letρ, 0 < ρ ≤ 1 be the constant given in Aoki-Rolewicz’s Theorem.
One has

||
n+p∑

k=n+1

1

2k
xk||ρX ≤ 4

n+p∑
k=n+1

1

2ρk
||xk||ρX ≤ 4

n+p∑
k=n+1

1

2ρk
.

Since2ρ > 1, the series verifies the Cauchy criterium; and sinceX is complete it follows that
it is convergent. In the same way, it may be proved

∑∞
n=1

1
2n yn is convergent inY . We define

u0 =
∑∞

n=1
1
2n xn andv0 =

∑∞
n=1

1
2n yn and then,(u0, v0) ∈ X × Y .

Now, sinceu0 ≥ xn

2n andv0 ≥ yn

2n andT is positive, one hasT (u0− xn

2n , v0) ≥ 0 which implies

(4.3) T (u0, v0) ≥
1

2n
T (xn, v0) ,

and fromT (xn, v0 − yn

2n ) ≥ 0,

(4.4) T (xn, v0) ≥
1

2n
T (xn, yn) .

Thus, (4.3) and (4.4) impliesT (u0, v0) ≥ 1
22n T (xn, yn) and, from the properties of the quasi-

norm inZ, ||T (u0, v0)|| ≥ 1
22n ||T (xn, yn)||, for all n. From (4.2) one has

||T (u0, v0)|| ≥
1

22n
||T (xn, yn)|| ≥ 1

22n
n22n = n ,

for all n. But, this is a contradiction, sinceT (u0, v0) ∈ Z and we obtain (4.1).
Finally, let(x, y) ∈ X × Y arbitrary. From Proposition (3.1) and (4.1),

||T (x, y)|| = || |T (x, y)| || ≤ ||T (|x|, |y|)||
≤ M || |x| |||| |y| || ≤ M ||x||||y|| .

Thus,T is a bounded operator.

Remark 4.1. For the case of quasi-Banach spaces, it must be noted that the operator may
be trivial, since already for linear operators between quasi-Banach spaces (even not necessary
positive) such triviality can occurs.

Corollary 4.3. In the conditions of Theorem 4.2, if the bilinear operatorT : X × Y → Z is
regular, it is also bounded.

5. OPERATORS AND FUNCTION SPACES

In this section the function spaces which we will dealt with are introduced. In Definition 5.1
next, we define a variant general concept of functional quasi-norm which allows us to general-
ize several function spaces.

Let (Ω, µ) be a measure space. We denote byL0
+ = L0

+(Ω, µ) the cone of realµ-measurable,
non negative and finiteµ-a.e. functions onΩ.

Definition 5.1. An applicationρ : L0
+ → [0,∞] is a functional quasi-norm if, for all f, g ∈

L0
+, for all λ > 0 and for all subsetD ⊂ Ω, with µ(D) < ∞, the following conditions are

verified:

C1) ρ(f) = 0 ⇐⇒ f = 0, µ− q.s.;
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C2) ρ(λf) = λρ(f);

C3) ρ(f + g) ≤ C (ρ(f) + ρ(g)), for some C ≥ 1.

C4) 0 ≤ g ≤ f µ− q.s. =⇒ ρ(g) ≤ ρ(f);

C5) ρ(χD) < ∞;
C6) λ µ({x ∈ D ; |f(x)| ≥ λ})1/p ≤ C ′ ρ(f),

for somep > 0 and constantC ′ > 0, dependent ofD andρ, and independent off .

We denote byL0 = L0(Ω, µ) the class of realµ-measurable functions with extended scalar
values andµ-a.e finite. Endowed with the topology of convergence in measure over finite
measure sets,L0 is a metric vector topological space.

The spaceL∞ = L∞(Ω, µ) is defined as the set of all measurable functions fromΩ to R
which are essentially bounded, i.e. bounded up to a set of measure zero. Two such functions
are identified if they are equal almost everywhere. Forf ∈ L∞, its norm is given by:

||f || = inf{a ∈ R : µ({t : f(t) > a}) = 0} .

We denote byS = S(Ω, µ) the subclass of simple functions.

Definition 5.2. Let ρ be a functional quasi-norm inL0
+(Ω, µ). The class of the functionsf ∈ L0

such thatρ(|f |) < ∞ is denoted byX = X(Ω, µ, ρ).

Remark 5.1. Assumption (C5) means thatL∞ ↪→ X and assumption (C6) thatX ↪→ Lp,∞ for
somep > 0, whereLp,∞ is a weak-Lp space. Therefore one has the following theorem.

Theorem 5.1.Letρ be a functional norm andX = X(Ω, µ, ρ). For f ∈ X let

||f ||X = ρ(|f |).

Then,X is a quasi-normed vector subspace verifying the inclusions

S ⊂ X ↪→ L0 .

In particular, if fn → f in X, thenfn → f in measure over the sets with finite measure, thus
there is a subsequencefk(n) convergingµ-a.e.

Definition 5.3. Let X = X(Ω, µ, ρ) be a quasi-normed functional space. A functionf ∈ X
hasabsolutely continuous quasi-normif, given ε > 0, there definitionexistsδ > 0, such that
µ(D) < δ implies

||fχD|| < ε.

We denote byXa the subspace ofX of all absolutely continuous quasi-norms functions .
X has absolutely continuous quasi-norms ifX = Xa.

Definition 5.4. A family M ⊂ X hasequi-absolutely continuous quasi-normif, for all ε > 0,
there existsδ > 0 such thatµ(D) < δ implies

||PDf || < ε,

for all f ∈ M , wherePDf = fχD
.
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8 D.L. FERNANDEZ AND E.B. SILVA

6. COMPACTNESS THEOREMS

Next we will give several characterizations of compact bilinear operators on the quasi-normed
functional spaces defined in Section 5 and we are assuming thatX = X(Ω1, µ, ρ1), Y =
Y (Ω2, ν, ρ2) andZ = Z(Ω3, υ, ρ3) are quasi-normed functional spaces. We denote byBil(X×
Y, Z) the family of all bounded bilinear operators fromX × Y to Z.

Definition 6.1. A bounded bilinear operatorT : X×Y → Z is compact in measure if the image
{T (un, vn)}, of any bounded sequence{(un, vn)} of X×Y contains a Cauchy subsequence with
regard to the measureυ, that is, ifmax{‖un‖X , ‖vn‖Y } ≤ C, then there exists a subsequence
{(unk

, vnk
)}, such that, givenε > 0 andδ > 0, there existsN = N(ε, δ) with

υ({s ∈ Ω3 : |T (unk
, vnk

)(s)− T (umk
, vmk

)(s)| > ε}) < δ

for all nk, mk > N .

Theorem 6.1. Let X and Y be quasi-normed functional spaces and suppose thatZ has ab-
solutely continuous quasi-norms, i.eZ = Za. Let T : X × Y → Z be a bounded bilinear
operator. Then,T is compact if, and only if,T is compact in measure and the functions in the
set{T (f, g) : ||f ||X ≤ 1 , ||g||Y ≤ 1} have equi-absolutely continuous quasi-norms.

Proof. Let T be compact. Since convergence implies convergence in measure, it is enough to
verify the equi-absolutely continuity quasi-norms of the set{T (f, g) : ||f ||X ≤ 1 , ||g||Y ≤ 1}.
Suppose this is not true: there exists a sequence(fn, gn) ∈ X×Y , with ||fn||X ≤ 1, ||gn||Y ≤ 1
and a sequence of setsEn ⊂ Z, such thatυ(En) → 0, whenn →∞, but

||PEnT (fn, gn)||Z ≥ ε0,

for all n ∈ N. By the compactness ofT , there exists a subsequence{(fk(n), gk(n)} of {(fn, gn)}
andh ∈ Z, such that||T (fk(n), gk(n))− h||Z < ε0/2C, for n > N1, and||PEk(n)

h||Z < ε0/2C,
for n > N2. Thus, forn > max{N1, N2}, one has

||PEk(n
T (fk(n), gk(n))||Z ≤ C ||PEk(n)

h||Z + C ||Pk(n)h||Z < ε0,

which is a contradiction.
Reciprocally, supposeT is compact in measure and{T (f, g) : ||f ||X ≤ 1 , ||g||Y ≤ 1} has

equi-absolutely continuous quasi-norms. Givenε0 > 0, let 0 < ε < ε0/(2C
2 + C||χZ ||Z). For

this givenε there existsδ = δ(ε) > 0, such that, for all setE ⊂ Z, with υ(E) < δ, one has
||PET (f, g)||Z < ε, for all ||f ||X ≤ 1 , ||g||Y ≤ 1. Let

Em,n(ε) = { z ∈ Z ; |T (fm, gm)(z)− T (fn, gn)(z)| > ε }.
From the compactness in measure ofT , there exists{(fk(n), gk(n)} andN = N(ε, δ) such that

ν(Ek(m),k(n)(ε)) < δ,

for m,n > N . DefiningEc
k(m),k(n)(ε) = Y \ Ek(m),k(n)(ε), one has

||T (fk(m), gk(m))− T (fk(n), fk(n))||Z =

= ||(PEk(m),k(n)
(ε) + PEc

k(m),k(n)
(ε))T (fk(m), gk(m))− T (fk(n), fk(n))||Z

≤ C ||PEk(m),k(n)(ε)T (fk(m), gk(m))− T (fk(n), fk(n))||Z
+ C ||PEc

k(m),k(n)
(ε)T (fk(m), gk(m))− T (fk(n), fk(n))||Z

≤ C2 ||PEk(m),k(n)(ε)T (fk(m), gk(m))||Z + C2 ||PEk(m),k(n)(ε)T (fk(n), gk(n))||Z + ε C ||χZ ||Z
≤ ε (2C2 + C ||χZ ||Z) < ε0,

and the theorem is proved.
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Theorem 6.2. Let X, Y and Z be quasi-normed functional spaces. Moreover, suppose that
Z has absolutely continuous quasi-norms, i.eZ = Za, andυ(Ω3) < ∞. A bounded bilinear
operatorT : X × Y → Z is compact if, and only if,T is compact in measure and satisfies

(6.1) lim
υ(E)→0

‖PET‖Bil(X×Y,Z) = 0 .

Proof. Equation (6.1) implies the image set

T (UX×Y ) = {T (x, y) : ‖x‖X ≤ 1 , ‖y‖Y ≤ 1}

has equi-absolutely continuous quasi-norms. SinceT is compact in measure, from Theorem
6.2,T (UX×Y ) is compact, thenT is a compact operator.

Now, if T is compact, thenT (UX×Y ) is compact inZ and by Theorem 6.1,T (UX×Y ) is
compact in measure and it has equi-absolutely continuous quasi-norms. Suppose (6.1) is not
true. Then, there exist functionsx1, x2, · · · ∈ X, y1, y2, · · · ∈ Y and a sequence of setsEn such
that,υ(En) → 0 for n →∞ and

‖PEnT (xn, yn)‖ ≥ ε0 > 0 ,

for all n. But, this is a contradiction with the equi-absolutely continuous quasi-norms of
T (UX×Y ), implying (6.1) is valid, and the theorem follows.

Theorem 6.3.LetX, Y andZ be quasi-normed functional spaces, whereµ(Ω1) < ∞, ν(Ω2) <
∞, υ(Ω3) < ∞ andZ has absolutely continuous quasi-norms, i.eZ = Za. A bilinear regular
operatorT : X × Y → Z is compact if, and only if,T is compact in measure and satisfies

(6.2) lim
υ(E)+µ(D1)+ν(D2)→0

‖PET (PD1 , PD2)‖Bil(X×Y,Z) = 0 .

Proof. The result will follow from Theorem 6.2 if (6.2) implies (6.1), for any regular operator.
Let C andC ′ be the constants andp the parameter inC3) andC6) in the Definition 5.1.

From (6.2), givenε0 > 0, let 0 < δ0 ≤ 1, such that, forµ(D1) + ν(D2) + υ(E) < δ0, where
D1 ⊂ X, D2 ⊂ Y andE ⊂ Z, one has

||PET (PD1 , PD2)||X×Y→Z <
ε0

2C2
.

On the other hand, since the quasi-norms inZ are absolutely continuous, we defineu ≡ 1 a.e
on Ω1 andv ≡ 1 a.e onΩ2, such that(u, v) ∈ X × Y . Then, givenε > 0, with 0 < ε < ε0,
there existsδ > 0, with 0 < δ ≤ δ0, such thatυ(E) < δ implies

||PES(u, v)||Z <
εδ

2/p
0

2K2C2
,

whereS is a positive upper bound ofT andK > C ′.
Let (f, g) ∈ X × Y , with ||f ||X ≤ 1 and||g||Y ≤ 1 and setsD1 ⊂ X, D2 ⊂ Y andE ⊂ Z

fixed, such thatµ(D1) + ν(D2) + υ(E) < δ0. We denote byDf the set of all elementsx ∈ D1

such that|f(x)| > Kδ
−1/p
0 . Let Dc

f the complement ofDf , that is, the set ofx ∈ D1 such that

|f(x)| ≤ Kδ
−1/p
0 , and moreχDc

f
|f | ≤ Kδ

−1/p
0 χDc

f
. In a similar way, we defineDg. One has

||PET (f, g)||Z ≤ C ||PET (PDc
f
f, g)||Z + C ||PET (PDf

f, g)||Z
≤ C2 ||PET (PDc

f
f, PDc

g
g)||Z + C2 ||PET (PDc

f
f, PDgg)||Z

+ C2 ||PET (PDf
f, PDc

g
g)||Z + C2 ||PET (PDf

f, PDgg)||Z .(6.3)
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Let us see each one of these norms:

||PET (PDc
f
f, PDc

g
g)||Z = ||PE|T (PDc

f
f, PDc

g
g)|||Z

≤ ||PE|S(PDc
f
f, PDc

g
g)|||Z

= ‖PES(|χDc
f
f |, |χDc

g
g|)‖Z

= ‖PES(|χDc
f
||f |u, |χDc

g
||g|v)‖Z

≤ C2K2δ
−2/p
0 ‖PES(|χDc

f
|u, |χDc

g
|v)‖Z

≤ C2K2δ
−2/p
0 ‖PES(u, v)‖Z

≤ C2K2δ
−2/p
0

εδ
2/p
0

2K2C2
=

ε

2
.(6.4)

Now, fromC6) of Definition 5.1, we have

δ
−1/p
0 µ({x ; |f(x)| ≤ Kδ

−1/p
0 })1/p < ||f ||X ≤ 1,

that is,µ(Df ) < δ0, and the same is obtained forν(Dg). Thus,||PET (PDf
, PDg)||Z <

ε

2C
and

||PET (PDc
f
f, PDgg)||Z = ||PE|T (PDc

f
f, PDgg)|||Z

≤ ||PES(|PDc
f
f |, |PDgg|)||Z

= ‖PES(|χDc
f
f |, |PDgg|)‖Z

= ‖PES(|χDc
f
||f |u, |PDgg|v)‖Z

≤ CKδ
−1/p
0 ‖PES(|χDc

f
|u, |PDgg|v)‖Z

≤ CKδ
−1/p
0 ‖PES(u, v)‖Z

≤ CKδ
−1/p
0

εδ
2/p
0

2K2C2

≤ ε

2
,(6.5)

and the same is obtained for||PET (PDf
f, PDc

g
g)||Z . Therefore,

||PET (f, g)||Z < ε,

and the theorem is proved.

7. COMPACTNESS AND ADJOINT BILINEAR OPERATORS

The present section is devoted to the relationships among the corresponding regular bilin-
ear operators and their adjoint. Let us recall that Schauder’s well-known result states that an
operatorT between Banach spaces is compact if, and only if, its adjoint,T ∗, is compact.

Ramanujan and Schock studied in [18] ideals of bilinear operators between Banach spaces,
including the ideal of bilinear compact operators, i.e.,T ∈ Bil(X×Y, Z), such thatT (UX×UY )
is relatively compact inZ. Given T ∈ Bil(X × Y, Z), the adjoint linear mapT× : Z∗ →
Bil(X × Y ) is given by

T×z∗(x, y) = z∗(T (x, y)), (x, y) ∈ X × Y.

ClearlyT× is a bounded operator, and‖T‖ = ‖T×‖. It must be noted that this notion of adjoint
differs from Arens’s definition of adjoint of a bilinear mapping (see [5]). In [18] it is proved
that the analogues of Schauder’s theorem which states that ifT ∈ Bil(X × Y, Z), thenT is
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compact if, and only ifT× is compact. And more, ifT ∈ Bil(X × Y, Z) andS ∈ L(Z,W ),
then

(ST )× = T×S∗

whereS∗ is the classical linear adjoint.

Theorem 7.1.LetX, Y andZ be normed functional spaces, whereZ has absolutely continuous
norms, i.eZ = Za andυ(Ω3) < ∞. A bounded bilinear operatorT : X × Y → Z is compact
if, and only if,(T×)∗ is compact in measure and satisfies

lim
µ(D)→0

‖T×PD‖ = 0 .

Proof. If T is compact, then
(T×)∗ : Bil(X × Y )′ → Z ′′

is also compact, and by the linear version of Theorem 7.1 (see Theorem 3.4 from [16]), it
follows (T×)∗ is compact in measure andlimµ(E)→0 ‖PE(T×)∗‖ = 0. But,

‖PE(T×)∗‖ = ‖(PE(T×)∗)∗‖ = ‖((T×)∗)∗PE‖ = ‖T×PE‖ ,

and the theorem follows.

Definition 7.1. GivenD ⊂ Ω, we definePD : Bil(X × Y ) → Bil(X × Y ), such that, for
b ∈ Bil(X × Y ), thenPD(b) ∈ Bil(X × Y ) and

PD(b)(x, y) = b(PDx, PDy)

for all (x, y) ∈ X × Y .

Remark 7.1. If T : X × Y → Z, thenT× : Z ′ −→ Bil(X × Y ). Thus, forD ⊂ Ω,

Z ′
T×
−→ Bil(X × Y )

P D−→ Bil(X × Y ) ,

which impliesZ ′
P DT×
−→ Bil(X × Y ), where forφ ∈ Z ′ and(x, y) ∈ X × Y ,

(PDT×)(φ)(x, y) = PD(T×)(φ)(x, y))

= PD(φ(T (x, y))) = PD(φT (x, y))

= φT (PDx, PDy) .

Proposition 7.2. PD : Bil(X × Y ) → Bil(X × Y ) is a bounded linear operator.

Proof. Givenb1, b2 ∈ Bil(X × Y ), one has

(PD(b1 + b2)(x, y) = (b1 + b2)(PDx, PDy))

= b1(PDx, PDy) + b2(PDx, PDy)

= (PDb1)(x, y) + (PDb2)(x, y) .

Now,

‖PD‖L(Bil(X×Y ),Bil(X×Y ))

= sup{‖PDb‖Bil(X×Y ) : ‖b‖Bil(X×Y ) ≤ 1}
= sup{sup{|(PDb)(x, y)| : ‖x‖X ≤ 1 , ‖y‖Y ≤ 1} : ‖b‖Bil(X×Y ) ≤ 1}
= sup{sup{|b(PDx, PDy)| : ‖x‖X ≤ 1 , ‖y‖Y ≤ 1} : ‖b‖Bil(X×Y ) ≤ 1}
≤ sup{sup{|b(x, y)| : ‖x‖X ≤ 1 , ‖y‖Y ≤ 1} : ‖b‖Bil(X×Y ) ≤ 1}
= sup{‖b‖‖Bil(X×Y ) : ‖b‖‖Bil(X×Y ) ≤ 1} ≤ 1 .
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Remark 7.2. (i) SincePDT× : Z ′ → Bil(X × Y ), one has

‖PDT×‖L(Z′,Bil(X×Y )

= sup{‖PDT×g‖Bil(X×Y ) : ‖g‖Z′ ≤ 1}
= sup{sup{|(PDT×g)(x, y)| : ‖x‖X ≤ 1 , ‖y‖Y ≤ 1} : ‖g‖Z′ ≤ 1} (by (6.2))

= sup{sup{|gT (PDx, PDy)| : ‖x‖X ≤ 1 , ‖y‖Y ≤ 1} : ‖g‖Z′ ≤ 1}(7.1)

= sup{sup{|g(T (PDx, PDy))| : ‖x‖X ≤ 1 , ‖y‖Y ≤ 1} : ‖g‖Z′ ≤ 1}
= sup{sup{|g(T (PDx, PDy))| : ‖g‖Z′ ≤ 1} : ‖x‖X ≤ 1 , ‖y‖Y ≤ 1}
= sup{‖(T (PD, PD))(x, y)‖Z : ‖x‖X ≤ 1 , ‖y‖Y ≤ 1}
= ‖T (PD, PD)‖Bil(X×Y,Z)

(ii) Since T : X × Y → Z is bilinear and(PD, PD) : X × Y → X × Y , it follows that
T ◦ (PD, PD) : X × Y → Z is bilinear and

T ◦ (PD, PD)(x, y) = T (PD, PD)(x, y) = T (PDx, PDy) .

(iii) Considering the sequence of operators

Z ′
PE−→ Z ′

T×
−→ Bil(X × Y )

P D−→ Bil(X × Y ) ,

then,Z ′
P DT×PE−→ Bil(X × Y ). Forφ ∈ Z ′ and(x, y) ∈ X × Y one has

(PDT×PE)(φ)(x, y) = PD((T×(PEφ))(x, y))

= PD((PEφ)(T (x, y)) = PD((φ(PDT )(x, y))

= φPDT (PDx, PDy) .

Thus, following the calculations from remarks (iii) and (iv), we obtain

(7.2) ‖PDT×PE‖L(Z′,Bil(X×Y )) = ‖PDT (PD, PD)‖Bil(X×Y,Z) .

Theorem 7.3.LetX, Y andZ be quasi-normed functional spaces, whereµ(Ω1) < ∞, ν(Ω2) <
∞, υ(Ω3) < ∞ andZ has absolutely continuous quasi-norms, i.eZ = Za. A bounded bilinear
regular operatorT : X × Y → Z is compact if, and only if,(T×)∗ is compact in measure and
satisfies

(7.3) lim
υ(E)+µ(D1)+ν(D2)→0

‖PET×(PD1 , PD2)‖X×Y,Z) = 0 .

Proof. If T is compact, from Theorem 6.3,T is compact in measure and

lim
υ(E)+µ(D1)+ν(D2)

‖PEA(PD1 , PD2)‖Bil(X×Y,Z) = 0 .

From (7.3) the theorem follows.
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