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2 D.L. FERNANDEZ AND E.B. SLVA

1. INTRODUCTION

Bilinear operators appear naturally in several branches of classical harmonic analysis and
functional analysis. Several singular bilinear operators have been intensively studied and re-
search on bilinear Hilbert transform (sé€e![12]) have shown the need for new results for bilinear
operators. In the paper by L. Grafakos and N. Kalton ([9]) more details about this subject may
be found. Another important topic is the theory of ideals of operators-andnbers in Banach
spaces, where important definitions and results may not be adapted for the bilinear case from
the linear case. The results in [€], [18] and|[21] are references on this subject.

Positive and regular linear operators play a fundamental role in mathematics and their study
form a very active research area. The bilinear counterpart of these operators were less stud-
ied. Some results giving connections between positive bilinear operators, function spaces and
interpolation theory were explored in [7], [11] and [13].

Quasi-Banach spaces appear in a natural way as a generalization of Banach spaces, where
the triangular inequality of the norm is changed by a weaker condition. From a geometrical
point of view, the convex unitary ball of the Banach space case is replaced in the quasi-Banach
case by a non convex unitary ball. Besides the classical works by Aoki ([4]), Rolewicz ([19]
and [20]) and Kalton et al.[([10]), the study of geometrical aspects is one of the main issues for
these spaces, with several results obtained recently, as may be s€eriin [1], [2] and [14].

On the other hand, connections between quasi-normed spaces, positive and regular bilinear
operators were not properly studied in the literature. In current work positive and regular bilin-
ear operators on quasi-normed functional spaces are introduced and their main properties and
characterizations on lattices and quasi-normed lattices are proved. We also introduce a variant
definition of functional quasi-norm (see |16]) and prove several theorems characterizing the
compactness of bilinear operators. Finally, using a very interesting and powerful definition of
adjoint of a bilinear mapping (see [18]), relations between compactness of bilinear operators
and their adjoints in quasi-normed function spaces are also proved.

2. LATTICES TERMINOLOGY

The basic concepts and results about ordered sets and vector lattices are introduced in this
section. The book |3] is a very good reference.

Definition 2.1. An ordered set is a séf endowed with a binary relation, denoted ¥ywhich
is supposed to be transitive € y & y < z = x < y), reflexive ¢ < z, for all x € X) and
anti-symmetric{ <y &y <z = y = x).

Let (X, <) be an ordered set. We write> x to indicater < y, andz < y to express < y
andzx # .

Definition 2.2. A subsetB C X is maximized (minimized) if there exists, € X such that
b < =z, for all b € B (respectively,zy, < b, for all b € B); z, is called an upper bound
(respectively, lower bound) ab in X.

Definition 2.3. Forz,y € X, the intervallx, y] as the set of alt € X such thatr < z < y; a
setB C X is bounded order if it is contained in a interyal y|.

Definition 2.4. Let B be a maximized bounded ordered subseKoflf there exists an upper
bound of B which is a lower bound for all upper bounds Bf(in X), such element is unique,
and it is called supremum @ and denoted byup B. Analogously, we define the infimum of
B (inf B).
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Definition 2.5. An ordered setR, <) is a lattice if, for allx,y € R, the elements: vV y =
sup{z,y} andz A y = inf{z, y} existinR.

Definition 2.6. A vector space” overRR, endowed with an order relation, is a ordered vector
space if, for allz, y, = € E and\ > 0, the conditions are verified:

EVOl)z<y=—z+2<y+z
(EVO2) x <y = Az < \y,.

If Eis an ordered vector space, the subset
E,={z€eFE;z2>0}
is called the positive cone d and the elements € E, are called positives.

Definition 2.7. A vector lattice is an ordered vector spa€esuch that: V y = sup{z, y} and
x Ay = inf{z,y} existinE, forall z,y € E.

Proposition 2.1. In a vector latticeE' one hast +sup A = sup(x+ A), +inf A = inf(z+ A)
andsup A = —inf(—A) forall z € FandA C E.

Definition 2.8. Let E be a vector lattice. For al € E, we define
=2V 0, v = —(zA0), |z| == 2V (—x).

The elements™ andx~ are called the positive and negative parts ofespectively, andc| the
modulus ofz.

Theorem 2.2.Let F be a vector lattice. For alk, y, x1,y; € E and)\ > 0, one has

(2.1) r=x" —a;
(2.2) |z =2 +27;
(2.3) 2] = 0=z = 0; [Az| = [Al|z[; |z +y| < [z + |y[;

(2.7) is the unique representation ofas a difference of disjoint elements bf (that is,
|z A Jy| = 0).

3. PosITIVE OPERATORS

In this section it is defined the bilinear operators which are the subject of this work.

Definition 3.1. Let X, Y and Z be vector lattices. An bilinear operatér: X x Y — Zis
positive if givenz € X, andy € Y, one had'(z,y) € Z,.

Remark 3.1. The Definition 3.1l above is not the same definition of positive bilinear operator
given in [6].

Proposition 3.1. Let X, Y and Z be vector lattices and” : X x Y — Z a bilinear positive
operator. Then,

T(x, y)| < T(|], |y]),
forall (z,y) € X x Y.

AJMAA Vol. 14, No. 1, Art. 5, pp. 1-13, 2017 AJMAA


http://ajmaa.org

4 D.L. FERNANDEZ AND E.B. SLVA

Proof.
T ()| = T(@" =27, y" —y7)
<|T(a®,y") =Ty )| +|T(e,y") =T,y
<T@ty )+ Ty )+ T, y") +T(x,y7)
:T(x +ao,yt +y )
= T(|zl,[yl) -
Thus,
(3.1) T (x,y)] < T(|zl,]y]),

for positiveT and(z,y) € X x Y. 1

Definition 3.2. Let X, Y andZ be ordered vector spaces. An bilinear operdtorX xY — Z
is regular if it may be written as

T = Tl - T27
whereT; and7; are positive bilinear operators.

Theorem 3.2.Let X, Y and Z be vector lattices. A bilinear operatd : X xY — Zis
regular if, and only if, there exists a positive bilinear operator X x Y — Z, such that

(3.2) Tz, y)| < S(lxl, [yl),
forall (z,y) € X xY. The bilinear operatofS is called a positive upper bound of the operator
T.

Proof. If T is regular, there exis; and A, positive bilinear operators with = A; — A, and
T (z,y)| = [(A1 — A2)(z,y)| = |As(2,y) — Aa(z,y)|
< [Ai(z, y)| + [Aa(z, )| < Ai(|z], |y]) + Az(|2], y])
= (A1 + A2) (], [y]) -

TakingS = A, + A,, we obtain the desired operator.
On the other hand, if there s satisfying [3.2), one has far € X, andy € Y, that

T(z,y) <[T(x,y)] < S(|z], |yl) = S(z,y).
Thus, S(z,y) — T(xz,y) = (S — T)(z,y) > 0, soonS — T is a positive operator. Finally,
T=S5—(S—T). ThereforeI is regular.p

Definition 3.3. An ordered se is Dedekind complete if every non-empty subsekothat is
bounded above admits a supremumXin

Theorem 3.3.Let X andY be vector lattices and a Dedekind-complete vector lattice. If a
bilinear operatorT : X x Y — Z is regular, then for eachiu,v) € X, x Y,, there exists
w € Z., such that

T(z,y) <w
forall (z,y) € Xy x Y, with0 <z <wand0 <y <w.

Proof. SinceT is regular, there is a positive bilinear upper bowhdf 7. For each positive pair
(u,v) € Xy x Y, letus definev(t) = S(u(t),v(t)). Then, foreacl) < z < uwand0 <y < v,
by Theoreny 3]2 one has

(3.3) T(x,y) < |T(x,y)] < Sl lyl) = S(z,y) -
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Sinceu — x > 0, S(u — x,y) > 0, implying

(3.4) S(u,y) > S(x,y).
In a similar way, since — y > 0, one hasS(u,v — y) > 0, thus
(3.5) S(u,v) > S(u,y).

Putting [3.4) and (3]5) in (3.3),
T(z,y) < S(z,y) < S(u,y) < S(u,v) =w(?),

proving the result.
|

Remark 3.2. The converse of Theorgm 8.3 is not true. A counterexample can be found in [15],
where it is considered a bounded bilinear operator whose range is the real numbers and the
domain isty x ¢s.

4. QUASI-NORMED L ATTICES

Definition 4.1. A quasi-norm in a vector spaceX is an applicatiorj|.|| of X in [0, co[ such
that, forz,y € X and\ € R, verifies the conditions

QN1) l|z|]| = 0 <=z = 0;
QN2)  [|Azf| = [l [[[;
QN3) [z +yll < C (|l + llylD,

for someC' > 1.
A vector spaceX endowed with a quasi-norm is calledjaasi-normed space

A quasi-Banach spacés a quasi-normed space which is complete in the topology generated
by
d(z,y) = |z —yll.
A classic result of Aoki-Rolewicz gives the following:

Theorem 4.1.1f X is a quasi-normed space endowed with a quasi-ngrjh there exists a
constantp, 0 < p < 1, such that

1 + o+ 2] < 4 (|| + oo+ [[2a]]?)
for all finite sequence, ..., z,, emX.

Definition 4.2. If a quasi-normed space is also a vector lattide <), we say.X is aquasi-
normed lattice if

=] < Jyl = ll=l| < [lyll.
Besides, if a quasi-normed lattice is complete, we say iggasi-Banach lattice

Theorem 4.2.Let X andY be quasi-Banach lattices arifla quasi-normed lattice. If a bilinear
operatorT : X x Y — Z is positive, then it is bounded.

Proof. Let us show that there exists a constafit> 0, such that
(4.1) T (z,y)|| < M|zl|[|yl[,
for all positive(z,y) € X, x Y.
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Suppose[(4]1) is not true, that is, there exists a sequence of positive functions) €
X4 x Yy with ||(z,, yn) || x, xv,. < 1, such that

(4.2) 1T (@, yn)l| > n2*".

for all n. Let us consider the seri€s,- | 5zz, and > >~ 5=y,. We claim) > Lz, is
convergent inX. Indeed, lefp, 0 < p < 1 be the constant given in Aoki-Rolewicz’s Theorem.
One has

n+p n+p n+p
> —xk||x<4 Z k||xk||x—4 > pk
k= n+1 k= n+1 k=n+1

Since2” > 1, the series verifies the Cauchy criterium; and siAces complete it follows that
it is convergent In the same way, it may be proved: , Q%yn is convergent irt”. We define
Uy = fo . 2nxn andvy = > > ' 2nyn and then{ug,vp) € X x Y.

Now, sinceu, > 52 andv, > %= andT is positive, one ha®'(u, — 52, vo) > 0 which implies

2n7
1
(4.3) T (ug, vo) > Q—nT(xn, Vo) ,

and fromT'(z,,,vo — 5%) > 0,
1
(44) T('xna UU) > 2_nT(xm yn) :

Thus, [4.8) and (4]4) implie® (ug,v0) > 55=T(xn, yn) and, from the properties of the quasi-
norminZ, ||T (ug, vo)|| > 22L,LHT(gcn,yn)H for all n. From [4.2) one has

1
170, )| 2 3 1T 3)l| = F 2" =n,

22n
for all n. But, this is a contradiction, siné&(u, vy) € Z and we obtain[ (4]1).
Finally, let(z,y) € X x Y arbitrary. From Propositio (3.1) arid (4.1),

T (z, )|l = [| [T (@, )] | < [1T(|=, [yD]]
< M|z [[[[ 1yl [} < M{[[[[[y]]
Thus,T is a bounded operator.

Remark 4.1. For the case of quasi-Banach spaces, it must be noted that the operator may
be trivial, since already for linear operators between quasi-Banach spaces (even not necessary
positive) such triviality can occurs.

Corollary 4.3. In the conditions of Theorem 4.2, if the bilinear operafor X x Y — Z is
regular, it is also bounded.

5. OPERATORS AND FUNCTION SPACES

In this section the function spaces which we will dealt with are introduced. In Defifitipn 5.1
next, we define a variant general concept of functional quasi-norm which allows us to general-
ize several function spaces.

Let (€2, ) be a measure space. We denotd By= LY (2, ;1) the cone of regli-measurable,
non negative and finite-a.e. functions of.

Definition 5.1. An applicationp : LY — [0, oo] is afunctional quasi-norm if, for all f,g €
LY, for all A > 0 and for all subseD C ©, with (D) < oo, the following conditions are
verified:

Cl) p(f)=0+=[f=0, p—gqs;
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C2)  p(Af) = Ap(f);
C3)  p(f+9) <C(p(f)+plg), forsome C=1.

C4) 0<g<f p—as = plg) <p(f);

C5) p(Xp) < 00;
C6)  Au({zeD;|f(x)] = ANYP < Cp(f),

for somep > 0 and constant” > 0, dependent ob andp, and independent of.

We denote byi.? = L°(Q, u) the class of reak-measurable functions with extended scalar
values andu-a.e finite. Endowed with the topology of convergence in measure over finite
measure setd,’ is a metric vector topological space.

The spacel>™ = L>(, u) is defined as the set of all measurable functions fforto R
which are essentially bounded, i.e. bounded up to a set of measure zero. Two such functions
are identified if they are equal almost everywhere. Far L°°, its norm is given by:

Al = nf{a € R: p({t: f(t) > a}) = 0} .

We denote bys = S(€2, 1) the subclass of simple functions.

Definition 5.2. Let p be a functional quasi-norm ib (2, i). The class of the functions € L°
such thap(|f]) < oo is denoted byX = X (Q, u, p).

Remark 5.1. Assumption (C5) means that® — X and assumption (C6) thaf — L» for
somep > 0, whereLP> is a weak{? space. Therefore one has the following theorem.

Theorem 5.1. Let p be a functional norm an&” = X (Q, u, p). For f € X let
1£1lx = p(I£D).

Then,X is a quasi-normed vector subspace verifying the inclusions
ScX— I,

In particular, if f, — fin X, thenf,, — f in measure over the sets with finite measure, thus
there is a subsequengg,,) convergingu-a.e.

Definition 5.3. Let X = X (Q, u, p) be a quasi-normed functional space. A functjore X
hasabsolutely continuous quasi-normif, givene > 0, there definitionexistd > 0, such that
u(D) < o0 implies

1 xpll <e.

We denote byX, the subspace oX of all absolutely continuous quasi-norms functions .
X has absolutely continuous quasi-norm&(it= X,.

Definition 5.4. Afamily M C X hasequi-absolutely continuous quasi-normif, for all € > 0,
there exist$ > 0 such thaf(D) < § implies

1Pofll <e,

forall f € M,wherePpf = f, .
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6. COMPACTNESS THEOREMS

Next we will give several characterizations of compact bilinear operators on the quasi-normed
functional spaces defined in Sectioh 5 and we are assumingkthat X (4, i, p;), ¥ =
Y (Q9,v, py) andZ = Z(Q23, v, p5) are quasi-normed functional spaces. We denotB#yX x
Y, Z) the family of all bounded bilinear operators frakhx Y to Z.

Definition 6.1. A bounded bilinear operat@r : X xY — Z is compactin measure if the image
{T(u,,v,)}, of any bounded sequen¢g.,,, v,,) } of X xY contains a Cauchy subsequence with
regard to the measure that is, ifmax{||u,| x, [|[v.|]y} < C, then there exists a subsequence
{(un,,vn,)}, such that, givem > 0 ando > 0, there existsV = N (e, ) with

v({s € Q3¢ [T (uny, vn, )(5) = T(timy, vm, ) (5)| > €}) <6
for all ny, m; > N.
Theorem 6.1. Let X andY be quasi-normed functional spaces and suppose fhaas ab-
solutely continuous quasi-norms, i2= Z,. LetT : X x Y — Z be a bounded bilinear

operator. Then/" is compact if, and only if/" is compact in measure and the functions in the
set{T(f,q9) : ||fllx <1,|lglly <1} have equi-absolutely continuous quasi-norms.

Proof. Let 7" be compact. Since convergence implies convergence in measure, it is enough to
verify the equi-absolutely continuity quasi-norms of the{s&€( f, g) : ||f||lx < 1,]lglly < 1}.
Suppose this is not true: there exists a sequéfice,) € X x Y, with || f,||x < 1, [|gnlly <1

and a sequence of sefy C Z, such thav(E,,) — 0, whenn — oo, but

| P, T (fns 9n)llz > €0,

for all n € N. By the compactness f, there exists a subsequen@es ), grmx) } of {(fr, gn)}
andh € Z, such that|T'( fin), grn)) — hllz < €0/2C, forn > Ny, and||PE,m hl|z < e0/2C,
for n > N,. Thus, forn > maX{Nl, N>}, one has

[Pey T (frmys k)l z < C [Py, bz + C || Prgyhl| 2z < €0,

which is a contradiction.

Reciprocally, supposé is compact in measure addl’(f,¢g) : ||f||x < 1,||g|ly < 1} has
equi-absolutely continuous quasi-norms. Giggn> 0, let0 < ¢ < £¢/(2C? + C||x||z). For
this givene there exists) = d(¢) > 0, such that, for all setZ C Z, with v(E) < ¢, one has
1PeT(f,9)llz < e forall ||f]lx < 1.lglly < 1. Let

Enn(e) ={2 € Z; [T(fm; gm)(2) = T(fn, gn)(2)| > € }.
From the compactness in measurdothere existd (fi(n), gr(n)} aNdN = N (e, ) such that
V(Exm).k(m) (€)) <9,
) =Y\ Ei(m)kn)(€), One has
T (freimys Gemy) = T(frenys fre)llz =
= 1 (PByy iy (€) + Prg, k(n)(a))T<fk(m) Ir(m)) — T(fr(m)s frm)llz
< ClPey gy aioy @ T (Frmys Geim)) — T (Frimys frm))l 2
+ CllPee, @1 frm)s Grm)) — ( () fotm) )|z
< C? ||PEk<m>,k(n)(a)T(fk(m)a gz + C* N Pay v @ T (frimys G|z + € C lIx 2]z
< e (207 + Clxzllz) < <o,
and the theorem is proved.

form,n > N. Defining £, ) ;.. (€
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Theorem 6.2. Let X, Y and Z be quasi-normed functional spaces. Moreover, suppose that
Z has absolutely continuous quasi-norms,Ze= Z,, andv({2;) < oco. A bounded bilinear
operator? : X x Y — Z is compact if, and only if[" is compact in measure and satisfies

(61) lim HPETHBZ’Z(XXY,Z) =0.

v(E)—0

Proof. Equation[(6.]L) implies the image set
T(Uxxy) ={T(z,y) : [zllx < 1,[lylly <1}

has equi-absolutely continuous quasi-norms. Sifide compact in measure, from Theorem
,T(UXXY) Is compact, thefl” is a compact operator.

Now, if 7" is compact, the'(Uxy) is compact inZ and by Theorerh 6]1T'(Uxxy) is
compact in measure and it has equi-absolutely continuous quasi-norms. Suppose (6.1) is not
true. Then, there exist functions, z», - -- € X, y1,v2,--- € Y and a sequence of sei such
that,v(E,,) — 0 for n — oo and

HPEnT(xmyn>|| > €o > O,

for all n. But, this is a contradiction with the equi-absolutely continuous quasi-norms of
T(Uxxy), implying (6.3) is valid, and the theorem follows.

Theorem 6.3.Let X, Y andZ be quasi-normed functional spaces, whef®;) < oo, v(23) <
00, v(23) < oo and Z has absolutely continuous quasi-norms,4.e= Z,. A bilinear regular
operator? : X x Y — Z is compact if, and only if[" is compact in measure and satisfies

6.2 5 PLT(Py . P i o
¢ o o P (P P vz

Proof. The result will follow from Theorer 6|2 if (62) implief (6.1), for any regular operator.
Let C'andC"” be the constants andthe parameter i€3) andC6) in the Definitior 5.1.

From [6.2), givere, > 0, let0 < 6, < 1, such that, fop(D1) + v(Ds) + v(E) < &y, where
D, Cc X,D, CYandE C Z, one has

€0
[|[PET(Pp,, Pp,)||xxy -z < BYezh

On the other hand, since the quasi-normgiare absolutely continuous, we define= 1 a.e
on; andv = 1 a.e on(,, such thatu,v) € X x Y. Then, givere > 0, with 0 < ¢ < ¢,
there exist® > 0, with 0 < ¢ < §y, such thav(E) < § implies

6(53/7)
2K20?%’
whereS ' is a positive upper bound @f and K > (.

Let (f,g9) € X x Y, with||f||x < 1and||g||y <1landsetd), C X,D, CYandE C Z
fixed, such that(D;) + v(D2) + v(E) < §o. We denote byD, the set of all elements € D,

such that f(z)| > Kdgl/”. Let D¢ the complement oDy, that is, the set of € D, such that
|f(z)] < K657, and morex . | f| < Kdgl/”xD?. In a similar way, we defin®,. One has

|PET(f, 9)llz < C||[PeT(Pps f, 9)l|z + C||PeT(Pp, f,9)l|z
< C*||PT(Pps f, Pogg)llz + C* || PeT (P f. Pp,9)||z
(6.3) + C?||PeT(Pp, f, Ppeg)llz + C* || PeT(Pp, f, Pp,9)||z -

||[PeS(u,v)||z <
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Let us see each one of these norms:

|PET (Pps f, Ppgg)llz = | Pe|T (Pps f, Ppgg)ll| 2
< ||PelS(Pps f, Posg)ll| 2
= HPES(|XD;f|a ‘XD;Q )z
= [1PeS(Ixpellflu; Ixpellglv)llz
< C*K?6,°" || PeS (| xps |u, | x s 0) |2
< C°K*6," || PpS(u, )z

e8P e

' < C2 2572/ —
(6.4) < C*K#9, S22 3

Now, from C6) of Definition[5.], we have
0o {1 f ()] < Ko MY < || fllx < 1.

thatis,u(Dy) < 8, and the same is obtained fetD,). Thus,||PsT(Pp,, Pp,)||z < % and

|PeT (Pps f, Pp,g)llz = ||Pe|T(Pp f, Pp,g)ll|z
< [PeS(|Pps f1, 1 Pp,g])l|z
= [PS(xp: £, 1Po,9D)|l 2
= |[PeS(|xpg | I, | Po,gl0)l|2
< CK&5 """ ||PeS(|xps lu, | P,glv)|| 2

< CK8, 7 || PeS(u, )|z
2/p
KNy Ter
€
<5 )
-2
and the same is obtained foFs7'(Pp, f, Pp:g)||z. Therefore,

|PeT(f, 9)||z <e,

(6.5)

and the theorem is proved.

7. COMPACTNESS AND ADJOINT BILINEAR OPERATORS

The present section is devoted to the relationships among the corresponding regular bilin-
ear operators and their adjoint. Let us recall that Schauder’s well-known result states that an
operator]’ between Banach spaces is compact if, and only if, its adj@ihtis compact.

Ramanujan and Schock studied(in/[18] ideals of bilinear operators between Banach spaces,
including the ideal of bilinear compact operators, ilés Bil(X xY, Z), such thafl(Uy x Uy )
is relatively compact inZ. GivenT € Bil(X x Y, Z), the adjoint linear mag™: Z7* —

Bil(X x Y) is given by

77z (x,y) = 25 (T(x,y),  (z,9) € X XV

ClearlyT™ is a bounded operator, afid’|| = ||7||. It must be noted that this notion of adjoint
differs from Arens’s definition of adjoint of a bilinear mapping (sek [5]). [Inl [18] it is proved
that the analogues of Schauder’s theorem which states tiiatifBil(X x Y, Z), thenT is
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compact if, and only if"* is compact. And more, if’ € Bil(X x Y,Z) andS € L(Z,W),
then

(ST)* =T*S"
whereS* is the classical linear adjoint.

Theorem 7.1.Let X, Y andZ be normed functional spaces, wheféas absolutely continuous
norms, i.eZ = Z, andv({23) < co. A bounded bilinear operatdf’ : X x Y — Z is compact
if, and only if,(7)* is compact in measure and satisfies

lim TPy = 0.
w(D)—0

Proof. If T'is compact, then

(T*)*: Bil(X xY) — Z"
is also compact, and by the linear version of Theofem 7.1 (see Theorem 3.4 from [16]), it
follows (77)* is compact in measure atich,, )., || Pe(7)*|| = 0. But,

| Pe(T)* || = |(Pe(T)") || = |((T*)") Pe| = [T Pl ,
and the theorem follows

Definition 7.1. Given D C , we definePp : Bil(X x Y) — Bil(X x Y), such that, for
b e Bil(X xY),thenPp(b) € Bil(X x Y) and

Pp(b)(z,y) = b(Ppz, Ppy)
forall (z,y) € X x Y.
Remark 7.1. If T: X x Y — Z,thenT* : Z/ — Bil(X x Y'). Thus, forD C ,

7 5 Bil(X xY) 22 Bil(X x Y),
which impliesZ’ oI} Bil(X xY), where forgp € Z' and(z,y) € X x Y,
(PpT™)(¢)(x,y) = Pp(T™)(¢)(2.,y))
= Pp(¢(T(2,y))) = Pp(¢T(z,y))
= ¢T'(Ppz, Ppy) .
Proposition 7.2. Pp : Bil(X x Y) — Bil(X x Y) is a bounded linear operator.
Proof. Givenby, b, € Bil(X x Y'), one has
(Pp(bi +bo)(z,y) = (b1 +bo)(Ppa, Ppy))
= bi(Ppx, Ppy) + ba(Ppx, Ppy)
= (Ppbi)(z,y) + (Ppba)(z,y) .

Now,
Pl (pi(xxv),Bia(x<v))
= sup{||Ppb| sucxxv) : |bllBacxxy) < 1}
= sup{sup{|(Ppb)(z,y)| : [lzlx <1, llylly <1} [[bllzacxxy) < 1}
= sup{sup{|b(Ppz, Ppy)| : |z|lx < 1,[lylly <1} : ||bllBucxxy) < 1}
< sup{sup{|b(z,y)| : [lzllx <1, [lylly <1} [|bllBacxxy) < 1}
= sup{||b|||| Baxxvy : |6l Baxxyvy < 1} < 1.
|
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Remark 7.2. (i) SincePpT> : Z' — Bil(X x Y), one has
IPoT™ || 1z pit(x xv)

= sup{||PpT™gllpucxxv) : lgllz < 1}

= sup{sup{|(PpT™g)(z,y)| : =[x <1,lylly <1}:[lgllz < 1} (by (6-2))
(7.1) = sup{sup{|¢T(Ppz, Ppy)| : |z|lx <1,[lylly <1}:|gllz <1}

— sup{sup{|g(T(Ppa, Poy))| : [ellx < 1. llylly <1} : gl < 1}

= sup{sup{|g(T(Ppz, Ppy))| : lgllz <1} : [lz]lx < 1,[ylly <1}

= sup{[|(T'(Pp, Pp))(z,y)lz : [z]x <1, [lyly <1}

= HT(PDa PD)HBz‘l(XxY,Z)

(i) SinceT : X xY — Zis bilinear and(Pp, Pp) : X x Y — X x Y, it follows that
To(Pp,Pp): X xY — Zis bilinear and

T o (Pp, Pp)(x,y) =T(Pp, Pp)(x,y) = T(Ppx, Ppy) .
(i) Considering the sequence of operators
7 Pe 7 T Bi(x x V) T2 Bil(X x V),

then,z’ "2 Pz Bil(X xY). For¢ € Z’and(x,y) € X x Y one has

(PpT* Pp)(é)(z,y) = Po((T™(Pee))(x,y))
= Pp((Ped)(T(z,y)) = Pp((6(PpT)(x,y))
= ¢PpT(Ppx, Ppy).
Thus, following the calculations from remarks (iii) and (iv), we obtain
(7.2) |PoT™ Pl rz picxxvy = | PoT(Pp, Pp)|| picx xv.z) -

Theorem 7.3.Let X, Y andZ be quasi-normed functional spaces, whef®,) < oo, v({2) <
00, v(£23) < co and Z has absolutely continuous quasi-norms,4.e- Z,. A bounded bilinear
regular operator!” : X x Y — Z is compact if, and only if{7*)* is compact in measure and
satisfies

7.3 i P (p p .
9 U(E)+M(D111)I}ru(D2)—>0H el (Pp,, Pp,)llxxv,2)

Proof. If T"is compact, from Theorem 6.3, is compact in measure and

lim PrA(Pp,, P, ; —0.
U(E)+u(D1)+y(D2)H E ( Dy D2>HBI(X><Y7Z)

From (7.3) the theorem follows
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