
The Australian Journal of Mathematical
Analysis and Applications

AJMAA

Volume 13, Issue 1, Article 18, pp. 1-9, 2016

ON THE RAYLEIGH-LOVE ROD ACCRETING IN BOTH LENGTH AND
CROSS-SECTIONAL AREA: FORCED AND DAMPED VIBRATIONS

M.L.G. LEKALAKALA 1, M. SHATALOV2, I. FEDOTOV3, S.V. JOUBERT4

Received 21 June, 2016; accepted 15 September, 2016; published 30 November, 2016.

1DEPARTMENT OFMATHEMATICS, VAAL UNIVERSITY OF TECHNOLOGY, P.O. BOX 1889, SECUNDA, 2302,
SOUTH AFRICA.

2,3,4DEPARTMENT OFMATHEMATICS AND STATISTICS, TSHWANE UNIVERSITY OF TECHNOLOGY,
PRETORIA, SOUTH AFRICA.

glen@vut.ac.za

ABSTRACT. In this paper an elastic cylindrical rod that is subjected to forced and damped vibra-
tions is considered. The rod is assumed to be isotropic. The applied external force of excitation
is assumed to be harmonic, and the damping force is that of Kelvin-Voigt. The longitudinally
vibrating rod is fixed at the left end and free at the other end. The rod is assumed to be accreting
in length and cross-sectional area as it vibrates. The problem arising and the dynamics of the
vibrating rod are described and investigated within the Rayleigh-Love theories of the rod. A par-
tial differential equation describing the longitudinal displacement of the rod is formulated. The
formulated partial differential equation, together with the corresponding boundary conditions as
per the configuration of the rod, is solved numerically using the Galerkin-Kantorovich method.
The frequency of vibration of the harmonic exciting force is kept constant in this investigation.

It is shown that in this periodically forced viscoelastic damped vibration, all the modes of
vibration are subjected to the resonance behaviour within a proper time interval, depending on
the length of the accreting rod.
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1. I NTRODUCTION

An extensive review of the fundamental models for the longitudinal vibration of rods has
been a topic of interest to researchers, engineers, mathematicians and scientists alike. One can
immediately think of the works by Shatalov et al in [[1], 2012], Fedotov et al in [[2],2011],
and many more others in research papers and books. In most of these reviews the focus has
always been on the behavioural patterns of the longitudinally vibrating rod while its dimensions
were not accreting. While such a structural investigation may have well provided the researcher
or the design engineer with an invaluable information as to how the stress and strains of the
rod were or to be distributed, so that they can have a plan of circumventing and preventing the
immnent catastrophic situation as a result of the unexpected amplitude of vibration growth, one
critical assumption and possibility has always not featured in such discourse and investigations.
The assumption and possibility is that the longitudinally vibrating rod may be accreting in one
or several of its dimensions.

In this paper we investigate the behavioural patterns of a longitudinally vibrating rod that is
assumed to be accreting in both length and cross-sectional area. It is further assumed that the
rod is subjected to forced and damped vibrations. The rod is fixed at the left end and free at
the other end. The dynamics and the problem arising is described by the Rayleigh-Love model.
The longitudinal displacement in the Rayleigh-Love rod is described in accordance with the
assumptions made in various vibration theories.

2. THE EQUATION OF MOTION

The Rayleigh-Love rod considered in this paper is assumed to be of unit length, elastic and
isotropic. The rod is configured as in the figure below [[3], 2015]:

Figure 1: Fixed-Free Longitudinally Vibrating Rod

The equation of motion will therefore be given as derived by many authors, for example,
Shatalov et al in [[4], 2010]. In this theory the partial differential equation describing the longi-
tudinal displacementu = u (t, x) for the longitudinally vibrating rod as subjected to forced and
damped vibration is given by

(2.1)
∂

∂t

[
ρ A(t)

∂u

∂t
− ρ ν2Ip(t)

∂3u

∂t∂x2

]
− 2δ

∂3u

∂t∂x2
− E A(t)

∂2u

∂x2
= F0 sin (ω t) .

whereF0 sin (ω t) is the external harmonically varying force and2δ ∂3u
∂t∂x2 is the damping mech-

anism known as the Kelvi-Voigt damping. The associated boundary conditions, as per the
configuration of the rod, are defined as

x = 0 : u (t, x) = 0

x = 1 : u′x (t, x) = 0.(2.2)
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The cross-sectional area of the rod is assumed to be a variable function of timet such that its
growth is effected by the growth of its radius. It is further assumed that the cross-sectional area
accretes proportionally with time.(2.2). The partial differential equation (2.1) can be simplified
and re-written as

ρ A(t)
∂u

∂t
+ ρ

∂u

∂t

∂A

∂t
− ρν2Ip(t)

∂4u

∂t2∂x2
− ρν2∂Ip

∂t

∂3u

∂t∂x2
− 2δ

∂3u

∂t∂x2
−

(2.3) E A(t)
∂2u

∂x2
= F0 sin (ω t) .

The radius of the cross-sectional area of the rod, which necessarily effects the growth of the
rod is defined by

(2.4) r (t) = r0 + εη
√

t,

whereε andη are small parameters to effect the slow growth rate of the cross-sectional area.
It is further assumed that the longitudinally vibrating rod is accreting linearly by the algebraic
rule [[5], 2015]

(2.5) f (t) = t,

and the linear growth of the rod in its longitudinal direction be

(2.6) l(t) = 1 + ε.f (t) .

The change of variables(t = τ , andx = y (1 + ε.f (t))) is introduced so that equation (2.3)
together with the accompanying boundary conditions (2.2) can now be converted into a standard
boundary-value problem as:

∂2∼u

∂τ 2
+

εη√
τ (r0 + εη

√
τ)

∂
∼
u

∂τ
− ν2 (r2

0 + 2r0εη
√

τ)

2 (1 + ετ)2

∂4∼u

∂τ 2∂y2
− 2yε

(1 + ετ)

∂2∼u

∂τ∂y
−

2δ

ρπ (r0 + εη
√

τ)
2
(1 + ετ)2

∂3∼u

∂τ∂y2
+

εην2r0√
τ (r0 + εη

√
τ)

2

∂3∼u

∂τ∂y2
+

2εν2r2
0

(1 + ετ)3

∂3∼u

∂τ∂y2
+

(2.7)
yεν2r2

0

(1 + ετ)3

∂4∼u

∂τ∂y3
− c2

(1 + ετ)2

∂2∼u

∂y2
≈ F0

ρπ (r0 + εη
√

τ)
2 sin (ω t) .

The equation (2.7) was obtained after intentionally and deliberately neglecting the terms of
orderO (ε2) and/orO (εδ), since the two parameters have already been defined to be arbitrarily
small. The associated boundary conditions of the partial differential equation (2.7) in new
variables are given as

y = 0 :
∼
u (τ , 0) = 0

y = 1 :
∼
uy

′
(τ , 1) = 0.(2.8)

Thus the equations (2.7) and (2.8) form a boundary value problem which is solved numerically
using the Galerkin-Kantorovich method.
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3. NUMERICAL SOLUTION

The following linear combination of functions is chosen as an approximate solution of the
boundary-value problem (2.7) and (2.8) [[6], 2002]:

(3.1) u = u (τ , y) =
∞∑

m=1

Cm (τ) sin

[
(2m− 1) π

2
y

]
.

The unknown coefficientsCm (τ) are determined in the process of solving the boundary-
value problem. In order to determine these coefficients, a sequence of linearly independent
functions of the form

(3.2) u (y) = 2 sin

[
(2n− 1) π

2
y

]
, n = 1, 2, 3, ...,

is considered. Equation (3.1) is substituted into equation (2.7), such that the transformed partial
differential equation is multiplied by equation (3.2). The result hereof is then integrated over
the region0 ≤ y ≤ 1. The derived integrals are then each equated to zero, since for the exact
solution, these integrals must equal zero. The following system of coupled ordinary differential
equations is obtained using Mathematica

R©
software:(

1 +
π2εην2

√
τr2

0

4 (1 + ετ)2

)
d2C1

dτ 2
−

ε

(1 + ετ)
− π2εην2r0

4
√

τ (1 + ετ)2 +
3π2εν2r2

0

8 (1 + ετ)2−

πδ

2ρ (1 + ετ)2 (r0 + εη
√

τ)
2 −

εη√
τ (εη

√
τ + r0)

)
dC1

dτ
+

c2π2

4 (1 + ετ)2C1 +

(
9ε

2 (1 + ετ)
+

81επ2ν2r2
0

16 (1 + ετ)3

)
dC2

dτ

−
(

25ε

6 (1 + ετ)
+

625επ2ν2r2
0

48 (1 + ετ)3

)
dC3

dτ
+(

49ε

12 (1 + ετ)
+

2401επ2ν2r2
0

96 (1 + ετ)3

)
dC4

dτ

(3.3) −
(

81ε

20 (1 + ετ)
+

6561επ2ν2r2
0

160 (1 + ετ)3

)
dC5

dτ
=

F0

ρπ (r0 + εη
√

τ)
2 sin (ω t)(

1 +
9π2εην2

√
τr2

0

4 (1 + ετ)2

)
d2C2

dτ 2
−

ε

(1 + ετ)
− 9π2εην2r0

4
√

τ (1 + ετ)2 +
27π2εν2r2

0

8 (1 + ετ)2−

9πδ

2ρ (1 + ετ)2 (r0 + εη
√

τ)
2 −

εη√
τ (εη

√
τ + r0)

)
dC2

dτ
+

9c2π2

4 (1 + ετ)2C2 −
(

ε

2 (1 + ετ)
+

επ2ν2r2
0

16 (1 + ετ)3

)
dC1

dτ
+(

25ε

4 (1 + ετ)
+

625επ2ν2r2
0

32 (1 + ετ)3

)
dC3

dτ
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−
(

49ε

10 (1 + ετ)
+

2401επ2ν2r2
0

80 (1 + ετ)3

)
dC4

dτ

(3.4) +

(
9ε

2 (1 + ετ)
+

729επ2ν2r2
0

16 (1 + ετ)3

)
dC5

dτ
=

4F0

3ρπ (r0 + εη
√

τ)
2 sin (ω t)(

1 +
25π2εην2

√
τr2

0

4 (1 + ετ)2

)
d2C3

dτ 2
−(

ε

(1 + ετ)
− 25π2εην2r0

4
√

τ (1 + ετ)2 +
75π2εν2r2

0

8 (1 + ετ)3−
)

25πδ

2ρ (1 + ετ)2 (r0 + εη
√

τ)
2 −

εη√
τ (εη

√
τ + r0)

)
dC3

dτ
+

25c2π2

4 (1 + ετ)2C3 +

(
ε

6 (1 + ετ)
+

επ2ν2r2
0

48 (1 + ετ)3

)
dC1

dτ
−(

9ε

4 (1 + ετ)
+

81επ2ν2r2
0

32 (1 + ετ)3

)
dC3

dτ

+

(
49ε

6 (1 + ετ)
+

2401επ2ν2r2
0

48 (1 + ετ)3

)
dC4

dτ

(3.5) −
(

81ε

14 (1 + ετ)
+

6561επ2ν2r2
0

112 (1 + ετ)3

)
dC5

dτ
=

4F0

5ρπ (r0 + εη
√

τ)
2 sin (ω t)(

1 +
49π2εην2

√
τr2

0

4 (1 + ετ)2

)
d2C4

dτ 2
−

ε

(1 + ετ)
− 49π2εην2r0

4
√

τ (1 + ετ)2 +
147π2εν2r2

0

8 (1 + ετ)3 −

49πδ

2ρ (1 + ετ)2 (r0 + εη
√

τ)
2 −

εη√
τ (εη

√
τ + r0)

)
dC4

dτ
+

49c2π2

4 (1 + ετ)2C4 −
(

ε

12 (1 + ετ)
+

επ2ν2r2
0

96 (1 + ετ)3

)
dC1

dτ
+(

9ε

10 (1 + ετ)
+

81επ2ν2r2
0

80 (1 + ετ)3

)
dC2

dτ

−
(

25ε

6 (1 + ετ)
+

625επ2ν2r2
0

48 (1 + ετ)3

)
dC3

dτ

(3.6) +

(
81ε

8 (1 + ετ)
+

6561επ2ν2r2
0

64 (1 + ετ)3

)
dC5

dτ
=

4F0

7ρπ (r0 + εη
√

τ)
2 sin (ω t)(

1 +
81π2εην2

√
τr2

0

4 (1 + ετ)2

)
d2C5

dτ 2
−(

ε

(1 + ετ)
− 81π2εην2r0

4
√

τ (1 + ετ)2 +
243π2εν2r2

0

8 (1 + ετ)3 −
)

81πδ

2ρ (1 + ετ)2 (r0 + εη
√

τ)
2 −

εη√
τ (εη

√
τ + r0)

)
dC5

dτ
+
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81c2π2

4 (1 + ετ)2C4 +

(
ε

20 (1 + ετ)
+

επ2ν2r2
0

160 (1 + ετ)3

)
dC1

dτ
−(

ε

2 (1 + ετ)
+

9επ2ν2r2
0

16 (1 + ετ)3

)
dC2

dτ

+

(
25ε

14 (1 + ετ)
+

625επ2ν2r2
0

112 (1 + ετ)3

)
dC3

dτ

(3.7) −
(

49ε

8 (1 + ετ)
+

2401επ2ν2r2
0

64 (1 + ετ)3

)
dC4

dτ
=

4F0

9ρπ (r0 + εη
√

τ)
2 sin (ω t) .

The system of equations (3.3) through to (3.7) is solved numerically by the use of the com-
puter software Mathematica

R©
. The solutions, as given graphically in the figures below, are

obtained at the following assumed values of the parameters:c = 1; ε = 0.05; r0 = 0.1; η =
0.05; δ = 0.05; ω = 0.4π; F0 = 1; ρ = 0.33.

Figure 2: Rayleigh-Love Vibration: First Mode
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Figure 3: Rayleigh-Love Vibration: Second Mode

Figure 4: Rayleigh-Love Vibration: Third Mode
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Figure 5: Rayleigh-Love Vibration: Fourth Mode

Figure 6: Rayleigh-Love Vibration: Fifth Mode
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4. DISCUSSION AND CONCLUSION

The graphical solutions in this model exhibit a tendency that in the periodically forced vis-
coelastically damped case, all the modes of vibration are subjected to the resonance behaviour
within a proper time interval depending on the length of the growing rod. At the first mode of
vibration the amplitude is higher and decreases with time. This behaviour can be explained by
the effect of the damping force. The same phenomenon can be seen at the second mode of vi-
bration, albeit at a lower amplitude of vibration than in the first mode of vibration. As from the
third mode of vibration, the exciting force dominates the damping force, hence the occurence of
resonance phenomenon throughout the vibration. The decrease in amplitude of vibration from
one mode to the other can still be attested to the slight influence of the damping force as the rod
increase in both length and cross-sectional area.
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