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ABSTRACT. In this article, by making use dfp, ¢) -Lucas polynomials, we introduce and in-
vestigate a certain family of analytic and biunivalent functions associated with Wanas operator
which defined in the open unit digk. Also, the upper bounds for the initial Taylor-Maclaurin
coefficients and the Fekete-Szegd inequality of functions belonging to this family are obtained.
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1. INTRODUCTION

In mathematics, Lucas polynomials are a polynomial sequence which can be considered as a
generalization of the lucas number. Ths ploynomials are of wide spectra in a variety of branches
such as Physics, Engineering, Architecture, Nature, Art, Number Theory, Combinatorics and
Numerical analysis. The well-knowfp, q) -Lucas polynomials are defined by the following
definition:

Definition 1.1. ([9]) Let p(x) andg(x) be polynomials with real coefficients. Tk, ¢) -Lucas
polynomialsL, , (=) are established by the recurrence relation

Lpgn(z) = p(x)Lpgn-1(2) + ¢(@) Lpgn-2(z) (n>2)
from which the first few Lucas polynomials can be found as
Lp,q,o(‘r) =2, Lp,q7l($) = p(fl?), Lp,q,2($) = pQ(x) + QQ(ZE),
Lyg3(x) = p*(2) + 3p(a)q(a), - .

Remark 1.1. By selecting the particular values ©f, ¢) -Lucas polynomials reduces to several
polynomials. Some of these special cases are recorded below.

(1) Takingp(z) = = andq(z) = 1, we obtain the Lucas polynomials,(z).

(1.1)

(2) Takingp(z) = 2z andq(z) = 1, we obtain the Pell-Lucas polynomial, (z).
1

andg(x) = 2z, we obtain the Jacobsthal-Lucas polynomigler).

()
(3) Takingp(z)
(4) Takingp(z) = 3z andg(z) = —2, we obtain the Fermat-Lucas polynomiglgz).

(5) Takingp(z)
T, (z).

2z andg(x) = —1, we obtain the Chebyshev polynomials first kind

Theorem 1.1. (see[9]) LetSy;, , .(2)1(2) the generating function of thigp, ¢) -Lucas polyno-
mial sequencé,, , ,(x).Then

> 2 —p(z)z
. St z)\%) = Lp,q,n = ’
(1 2) paan( )( ) nZ:O (x) 1-— p(‘r)z - Q(I)Z2

Let A denote the class of functions of the form

(1.3) f(z)=z+ Zan 2",

consisting of functionas which are holomorphic and univalent in the unitldisket f~! be
inverse of the functiorf (z), then we have

@ =2:(z€U)

and
S =ws (el <o)l 2 )
In fact, the inverse functiori—! is given by
(1.4) fHw) = w — ayw?® + (2a3 — az)w® — (5a3 — bagas + ag)w* + - - -
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analytic in the open unit dislkd. Also we let>: denote the class of all function iA which are
univalent ini{. The well known example in this class is the Koebe functi¢r), defined by

k(z) = o1 = z—i-;nz”.

The Bieberbach conjecture about the coefficient of the univalent functions in the unit disk was
formulated by Bieberbach [3] in the year 1916. The conjecture states that for every function
f € S given by (1.1), we havé,| < n, for everyn. Strictly inequality holds for alk unless
f is the Koebe function or one of its rotation. For many years, this conjecture remained as a
challenge to mathematicians. After the proof@fl < 3 by Lowner in 1923, Fekete-Sze(o[6]
surprised the mathematicians with the complicated inequality

|a3 —,uag‘ <1+ 2exp (ﬁ) ,
IL—p

which holds good for all value < 1 < 1. Note that this inequality region was thoroughly
investigated by Schaefer and Spencer [13].

For a class functions itd and a real (or more generally complex) numberthe Fekete-
Szegt problem is all about finding the best possible constémt so thataz — a3 < C(u)
for every function ind. For a brief history and interesting examples in the ckasésee [15])

(see alsa 7], 14],[I6].I8]).

Recently, Wanas (see [17]) introduced the following operator (so-called Wanas operator)

Wy A— Ade

fined by
w9 WEBF) = 2+ 3 ol O ™
Where . -
ke s =Y By

m=1
(o eR; >0 with a4+ >0;m,y €Ny =NUO).
In the present paper, by using the, ,,(x) functions, our methodology intertwine to yield the
Theory of Geometric Functions and that of Special Functions, which are usually considered
as very different fields. Thus, we aim at introducing a new class of bi-univalent functions
defined through thép , ¢) -Lucas polynomials. Furthermore, we derive coefficient inequalities
and obtain Fekete-Szeg0o problem for this new function class.

Definition 1.2. For0 < X\ < 1, A function f € X is said to be in the clasks; (A, «, 8, k, v; )
if it fullfills the subordinations:

- Wi f(2) N Wl (2)" APWaRf(2)" + 2(Wakf(2)
(1.6) Waif(2) Wasf(2) AeOWVeaf(2)) + (1= W5/ (2)

«

< Sy (2) — 1,

and
- wWigg(w)  wWiggw))"  Mw*(Wikg(w))” + 2(Wajg(w))
1.7) Wi sg(w) Wazgw))  dwWiig(w)) + (1 = W ig(w)

« o « «

= S{LPA,q,n(l")}(w) - 17
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whereg = f~* given by [1.8).
It is interesting to note that the special values of lead the clas%x(\, o, 3, k, v; x) to various
subclasses, we illustrate the following subclasses:
(1) ForA = v = 0, afunctionf(z) € Ais in the family 7% (0, o, 5, k,0; ) =: Tx(x)
which was considered recently by Magesh et all In [1], if the following conditions are

satisfied: ()
z X
1+ < I(z,y) +1—a,
fiy Y
and )
wqg" (w
1+ < Il(z,y) +1—a,
g'(w) (:9)

Wherez, w € U and the functiory is described in[ (1]3).

(2) For\ = landy = 0, afunctionf(z) € Aisinthe familyTx (1, a, 3, k, 0; x) =: Wx(x)
which was considered recently by Srivastava et all_in [14], if the following conditions
are satisfied:

2f'(a) .
f(ilj') = H(l’,y)+1 )
and ()
wg \w
g(UJ) —<H(:B,y)+1—a,

Wherez, w € U and the functiory is described in(1]3).

2. COEFFICIENT BOUNDS

In this section, we shall make use of the¢)-Lucas polynomials to get the estimates on the
coefficienty a, | and| a3 | for functions in the clas$y(\, o, 3, k, v; ) proposed by Definition

(*.2).
Theorem 2.1. Let the functiony given by[(1.B) be in the cla&s (), o, 3, k,v; ). Then

(2.1)
s |= | p(z) | V] p(2) |
\/| [19<)" Vs Ry & ﬁ?) - (2 - /\)QXS’Y(’iv a, ﬁ)] p(l’)Q - 2(2 - /\)QXgW(/{a Q, ﬁ)q(l) |
and
. [ p(x)? | | pla) |
22) o 1S G T e d) T B2 (s B)
Where

19()‘7’77 K, a?ﬁa) = 2(3 - 2)‘)Xg(’%a a>ﬁ) - (5 - (>‘ + 1)2)X§’Y(KJ7 avﬁ)'

Proof. Let f € T%(\, a, 3, k,v; x) From Definition [1.2), for some analytic functignand ¥
such that?(0) = ¥(0) = 0 and| ®(z) |< 1 and| ¥(z) |< 1 for all z,w € U, we can write

- (WS (2) N Wl (2)" APV ()" + 2(Waisf(2))
(2.3) Wi f(2) Waf ) AzWEEf(2) + (1 = Wi f(2)
= S{Lygn(@)}(2(2)) — 1,

and
- wWigg(w)  wWiggw))"  M*(Wikg(w))” + 2(Wajg(w))
(2.4) Wes9(w) Wisg(w))  dwWisg(w)) + (1 — MW g(w)
= {Lp,q,n(z)}(\p<w)) - 17
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or equivalently

- Wasf(2) N Wl (2)" APWaRS(2)" + 2(Wakf (2)
(2.5) Wash (2) Wasf(2) AeOWVeaf(2)) + (1= W5/ (2)

=—-1+ Lp,q,O(x) + Lp,q,1<x)cb(z) + Lp,q,2<$)q)2(z) +e

and
wWiigw))  wWihg(w)”  M?(Wilg(w))” + z(Wahg(w))

« « « o

(2.6) o Wesg(w) Widgw)) — dw(Wigg(w)) + (1= WWihg(w)

= —1+ Lpgo(®) + Lp g1 (2)¥(2) + Lygo(2)¥(2) + -,
From the equalities (2.5) and (2.6), we obtain that
Wl (2)  2OWVaBf(2)"  APOVRS(R)" + Wi/ ()

(2.7) West (2) Waif () AzOVZaf (2)) + (1= W5/ (2)

«

=1+ LP#],I(Z‘)CIZ + {Lp,qg(x)Cz + Lp,q,l(x)C%}Zz 4+

and
wWiigw))  wWihg(w)”  M?(Wilg(w))” +z(Wahg(w))

1+ I::X f? - K = / = K
(2.8) Wesg(w) Wagg))  dwWigg(w)) + (1 = AWeg(w)
=1 + Lp7q,1(:1:')d1w + {an’z(l')dg + Lp7q71(:c)d%}w2 4+
It is fairly well known that if

lo(2)] = |clz+02z2 te 4| <1, (z€U)

lp(2)] = |diw + dow® + dsw® + -+ | < 1, (w €U)
and it is well known that

(2.9) ol <1, 0da| <1, nEN.
Thus, upon comparing the corresponding coefficients i} (2.7)[and (2.8), we have

(2.10) (2= A3 (K, o, Baz = Lyga(z)er,

(2.11) 2(3 —20)x3(k, @ B)ag — (5 — (A + 1)*)x3" (, @, B)a3 = Lyga()es + Lyga(x)ei,
(2.12) —(2 = A)xa(k, o, B)az = Ly ga(x)ds,

(2.13)

23 — 20 (s, B)(203 — as) — (5 — A+ 1)?)Z (K, @, B)03 = Ly (0)da + Ly ga() .
From the equation$ (2.[10) arid (2.12) we can easily see that

(2.14) o1 = —dy,
and From the equations (2]10) apd (2.12) we can easily see that
(2.15) 202 = NG (8, @, B)as = L,y (w)(c] + di).

If we add [2.711) and (2.13), we get
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o1g 22620000 = (6= A DI (5,00 0)] 6 = Lyaa()(e2 + o)+
| Lpaa(2)(& + &),

Clearly, by using[(2.15) in the equality (2]16) , we have

Ly 41(z)(c2 + do)
2 [qu 1(@)IN 7, 5y, B) — Lpga(2 — )‘)QXSW(’@ «, ﬁ)} ’

(2.17) a5 =

Where
I 7Ky 0, ,) = 23— 20)x3 (ry 0, 8) — (5 — (A + 12X (k, v, B).
Which gives

2) | /IP@ ]

IO ma ) — (2= N2E (5,0, 6)] pla)? — 202 = N2 (s, . B)g(a) |
Moreover, if we subtracf (2.13) fromh (2]11), we obtain

(2.18) A3 =203 (k, v, B)(az — a3) = Lyg2(2)(c] — di) + Ly ga(z)(c2 — da).

Then, in view of (2.174) and (2.15)[, (2/18) becomes

= Lyqa(@)(cl + di) + _Lraa(@)(c2 = dy)

| ay |=

’ " 2(2 - /\) X%W(Ra «, ﬁ) 4<3 - 2/\)Xg(’$7 «, B) .
Thus applying[(1]1) we obtain
|as |< | p(2)” | | () |

+ .
(2-22" (k0. 8) - (3= 20)x3(k, @, 6)
This completes the proof of Theoremyl.

Corollary 2.2. (see[1]) By taking\ = v = 0 in theorem 1, we state

!\/\p
2.19 as |=
. o \/I —8Q()|
and
[Ez xr
(2.20) ‘a3|§|p(4) |+|p(6)|_

Corollary 2.3. (se€[16]) By taking\ = 1 and~ = 0 in theorem 1, we state

@.21) o = L
and
(2.22) [y <] p(e)? |+ 2L
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3. FEKETE-SZEGO
In the next theorem, the Fekete-Szeg0 inequality for the failily, «, 5, x, v; ) is obtain.

Theorem 3.1.For0 < A < landz,u € R, let f € A be in the familyT:(\, o, 5, &, v; x).
Then
(3.1)

( |p(z)] )
2(3—2M\)x3 (k,2,8)

L 1A= IS0k 0 8) + 2= NG (0, 8) (14 28 |
| as — pas |< [p(@)ll(1—)
(9 7m0,8) — (2= N)2X3 (,0,8) )2 (2) —2(2—N)2XZ (k.00 8)g ()]

(L= ) 2] 907,50, 8) 4+ (2= N2 (0, 8) (1+ 222 |

+

\ p(z) /
Proof.
s Lygi(x)(ca —dy)
a3 — pad = 16 2o d) + (1 —p)x
(3.2) ( L3 1 (x)(ca + da) )
2 [L2 01 ()97, a0, 5) — Lpga(2)(2 — N3 (s, 5)]
— Lpga(x) !
(3.3) 2 [(H(“’ RREEE VI aﬁ>) o
. 1
(H(”a $) - 2(3 — 2)\>Xg(/€, «, 6)) d2:| ’
Where 12 1
Hins) — pa1 (7)1 = p)

LIZJq 1( )19()"% k, &, 5) - p,q72($)(2 - )\)2X§7</€> 0475)'
Along the way, in view of[(1.]1), we conclude that

\p(w)l 1
(3.4) | ag — pa2 |[< 4 2B20GRad)’ L0 <[ H(p,x) |< (320X (5.0.5) ’
2|p()|| (1, )||H(H7x>|2m
After some computations, we obtain
(3.5
( p(=)] 3

2(3-2)0)(%(5,0(,5) ’

| = IS0 0, B) + (2= VA (0, ) (14 22 |
| ag — paj |< [p(@)lI(1-p)
(9O m,08)— (2= N3 (me8) )92 () —2(2-N2X3 (. 8)a(x)]

(L 1) 2] 90075, ) + (2 = AP (s, ) (14 22

\

|
Corollary 3.2. (see[16]) By taking\ = 0 and~ = 0 in theorem 1, we state
Ip(@)]
6 7
[(1—p) [<l6(1+ 20 |
(3.6) a3 — pa3 [< ¢ @l
[—2p? (z)—8q(x)|’

(=) 2] 6 (1+22) |

AJMAA Vol. 21(2024), No. 1, Art. 11, 9 pp. AIMAA


https://ajmaa.org

8 M MUSTHAFA IBRAHIM, SALEEM AHMED

4. CONCLUSION

In this paper making use of Wanas operator, We introduced and investigated the bi-univalent
function classis (A, «, 5, K, v; x) related to the p, ¢) -Lucas polynomials. Thus, we obtained
second and third TayloA&SMaclaurin coefficients of functions for this class. These results were
an improvement on the estimates obtained in the recent studies.
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