(p, q)-LUCAS POLYNOMIAL AND THEIR APPLICATIONS TO A CERTAIN FAMILY OF BI-UNIVALENT FUNCTIONS DEFINED BY WANAS OPERATOR

M MUSTHAFA IBRAHIM ${ }^{1}$, SALEEM AHMED ${ }^{2}$

Received 24 September, 2023; accepted 27 April, 2024; published 31 May, 2024.

College of Engineering, University of Buraimi ${ }^{1,2}$, Al Buraimi, P.O.Box 512, Oman, musthafa.i@uob.edu.om, saleem.a@uob.edu.om

Abstract

In this article, by making use of (p, q)-Lucas polynomials, we introduce and investigate a certain family of analytic and biunivalent functions associated with Wanas operator which defined in the open unit disk \mathcal{U}. Also, the upper bounds for the initial Taylor-Maclaurin coefficients and the Fekete-Szegö inequality of functions belonging to this family are obtained.

Key words and phrases: (p, q)-Lucas polynomials, Bi-univalent functions, Subordination.
2010 Mathematics Subject Classification. Primary 05A19, 30C45. Secondary 11B37, 30C50.
(c) 2024 Austral Internet Publishing. All rights reserved.

1. INTRODUCTION

In mathematics, Lucas polynomials are a polynomial sequence which can be considered as a generalization of the lucas number. Ths ploynomials are of wide spectra in a variety of branches such as Physics, Engineering, Architecture, Nature, Art, Number Theory, Combinatorics and Numerical analysis. The well-known (p, q)-Lucas polynomials are defined by the following definition:

Definition 1.1. ([9]) Let $p(x)$ and $q(x)$ be polynomials with real coefficients. The (p, q)-Lucas polynomials $L_{p, q, n}(x)$ are established by the recurrence relation

$$
L_{p, q, n}(x)=p(x) L_{p, q, n-1}(x)+q(x) L_{p, q, n-2}(x) \quad(n \geq 2)
$$

from which the first few Lucas polynomials can be found as

$$
\begin{array}{r}
L_{p, q, 0}(x)=2, \quad L_{p, q, 1}(x)=p(x), \quad L_{p, q, 2}(x)=p^{2}(x)+2 q(x), \\
L_{p, q, 3}(x)=p^{3}(x)+3 p(x) q(x), \cdots . \tag{1.1}
\end{array}
$$

Remark 1.1. By selecting the particular values of (p, q)-Lucas polynomials reduces to several polynomials. Some of these special cases are recorded below.
(1) Taking $p(x)=x$ and $q(x)=1$, we obtain the Lucas polynomials $L_{n}(x)$.
(2) Taking $p(x)=2 x$ and $q(x)=1$, we obtain the Pell-Lucas polynomials $D_{n}(x)$.
(3) Taking $p(x)=1$ and $q(x)=2 x$, we obtain the Jacobsthal-Lucas polynomials $j_{n}(x)$.
(4) Taking $p(x)=3 x$ and $q(x)=-2$, we obtain the Fermat-Lucas polynomials $f_{n}(x)$.
(5) Taking $p(x)=2 x$ and $q(x)=-1$, we obtain the Chebyshev polynomials first kind $T_{n}(x)$.

Theorem 1.1. (see [9]) Let $\mathcal{S}_{\left\{L_{p, q, n}(x)\right\}}(z)$ the generating function of the (p, q)-Lucas polynomial sequence $L_{p, q, n}(x)$.Then

$$
\begin{equation*}
\mathcal{S}_{L_{p, q, n}(x)}(z)=\sum_{n=0}^{\infty} L_{p, q, n}(x) z^{n}=\frac{2-p(x) z}{1-p(x) z-q(x) z^{2}} . \tag{1.2}
\end{equation*}
$$

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.3}
\end{equation*}
$$

consisting of functionas which are holomorphic and univalent in the unit disk \mathcal{U}. Let f^{-1} be inverse of the function $f(z)$, then we have

$$
f^{-1}[f(z)]=z ;(z \in \mathcal{U})
$$

and

$$
f\left[f^{-1}(w)\right]=w ; \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right) .
$$

In fact, the inverse function f^{-1} is given by

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots, \tag{1.4}
\end{equation*}
$$

analytic in the open unit disk \mathcal{U}. Also we let Σ denote the class of all function in \mathcal{A} which are univalent in \mathcal{U}. The well known example in this class is the Koebe function $k(z)$, defined by

$$
k(z)=\frac{z}{(z-1)^{2}}=z+\sum_{n=2}^{\infty} n z^{n} .
$$

The Bieberbach conjecture about the coefficient of the univalent functions in the unit disk was formulated by Bieberbach [3] in the year 1916. The conjecture states that for every function $f \in S$ given by (1.1), we have $\left|a_{n}\right| \leq n$, for every n. Strictly inequality holds for all n unless f is the Koebe function or one of its rotation. For many years, this conjecture remained as a challenge to mathematicians. After the proof of $\left|a_{3}\right| \leq 3$ by Lowner in 1923, Fekete-Szegö[6] surprised the mathematicians with the complicated inequality

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq 1+2 \exp \left(\frac{-2 \mu}{1-\mu}\right)
$$

which holds good for all values $0 \leq \mu \leq 1$. Note that this inequality region was thoroughly investigated by Schaefer and Spencer [13].

For a class functions in \mathcal{A} and a real (or more generally complex) number μ, the FeketeSzegö problem is all about finding the best possible constant $C(\mu)$ so that $\left|a_{3}-\mu a_{2}^{2}\right| \leq C(\mu)$ for every function in \mathcal{A}. For a brief history and interesting examples in the class Σ, (see [15]) (see also [7], [4], [5], [8]).

Recently, Wanas (see [17]) introduced the following operator (so-called Wanas operator) $\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma}: \mathcal{A} \rightarrow \mathcal{A}$ de
fined by

$$
\begin{equation*}
\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)=z+\sum_{n=2}^{\infty}\left[\chi_{n}(\kappa, \alpha, \beta)\right]^{\gamma} a_{n} z^{n} \tag{1.5}
\end{equation*}
$$

Where

$$
\begin{gathered}
\chi_{n}(\kappa, \alpha, \beta)=\sum_{m=1}^{k} \frac{k!}{m!(k-m)!}(-1)^{m+1} \frac{\alpha^{m}+n \beta^{m}}{\alpha^{m}+\beta^{m}} \\
\left(\alpha \in \mathbb{R} ; \beta \geq 0 \quad \text { with } \alpha+\beta>0 ; m, \gamma \in \mathbb{N}_{0}=\mathbb{N} \cup 0\right) .
\end{gathered}
$$

In the present paper, by using the $L_{p, q, n}(x)$ functions, our methodology intertwine to yield the Theory of Geometric Functions and that of Special Functions, which are usually considered as very different fields. Thus, we aim at introducing a new class of bi-univalent functions defined through the (p, q)-Lucas polynomials. Furthermore, we derive coefficient inequalities and obtain Fekete-Szegö problem for this new function class.
Definition 1.2. For $0 \leq \lambda \leq 1$, A function $f \in \Sigma$ is said to be in the class $T_{\Sigma}(\lambda, \alpha, \beta, \kappa, \gamma ; x)$ if it fullfills the subordinations:

$$
\begin{array}{r}
1+\frac{z\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)\right)^{\prime}}{\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)}+\frac{z\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)\right)^{\prime \prime}}{\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)\right)^{\prime}}-\frac{\lambda z^{2}\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)\right)^{\prime \prime}+z\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)\right)^{\prime}}{\lambda z\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)\right)^{\prime}+(1-\lambda) \mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)} \tag{1.6}\\
\\
\prec \mathcal{S}_{\left\{L_{p, q, n}(x)\right\}}(z)-1,
\end{array}
$$

and

$$
\begin{array}{r}
1+\frac{w\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)\right)^{\prime}}{\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)}+\frac{w\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)\right)^{\prime \prime}}{\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)\right)^{\prime}}-\frac{\lambda w^{2}\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)\right)^{\prime \prime}+z\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)\right)^{\prime}}{\lambda w\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)\right)^{\prime}+(1-\lambda) \mathcal{W}_{\alpha, \beta}^{\kappa \kappa \gamma} g(w)} \tag{1.7}\\
\\
\prec \mathcal{S}_{\left\{L_{p, q, n}(x)\right\}}(w)-1,
\end{array}
$$

where $g=f^{-1}$ given by 1.3 .
It is interesting to note that the special values of λ, γ lead the class $T_{\Sigma}(\lambda, \alpha, \beta, \kappa, \gamma ; x)$ to various subclasses, we illustrate the following subclasses:
(1) For $\lambda=\gamma=0$, a function $f(z) \in \mathcal{A}$ is in the family $T_{\Sigma}(0, \alpha, \beta, \kappa, 0 ; x)=: T_{\Sigma}(x)$ which was considered recently by Magesh et al. in [1], if the following conditions are satisfied:

$$
1+\frac{z f^{\prime \prime}(x)}{f^{\prime}(x)} \prec \Pi(x, y)+1-a
$$

and

$$
1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)} \prec \Pi(x, y)+1-a
$$

Where $z, w \in \mathcal{U}$ and the function g is described in (1.3).
(2) For $\lambda=1$ and $\gamma=0$, a function $f(z) \in \mathcal{A}$ is in the family $T_{\Sigma}(1, \alpha, \beta, \kappa, 0 ; x)=: \mathcal{W}_{\Sigma}(x)$ which was considered recently by Srivastava et al. in [14], if the following conditions are satisfied:

$$
\frac{z f^{\prime}(x)}{f(x)} \prec \Pi(x, y)+1-a
$$

and

$$
\frac{w g^{\prime}(w)}{g(w)} \prec \Pi(x, y)+1-a
$$

Where $z, w \in \mathcal{U}$ and the function g is described in (1.3).

2. Coefficient bounds

In this section, we shall make use of the (p, q)-Lucas polynomials to get the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in the class $T_{\Sigma}(\lambda, \alpha, \beta, \kappa, \gamma ; x)$ proposed by Definition (1.2).

Theorem 2.1. Let the function f given by (1.3) be in the $\operatorname{class}_{\Sigma}(\lambda, \alpha, \beta, \kappa, \gamma ; x)$. Then

$$
\begin{equation*}
\left|a_{2}\right|=\frac{|p(x)| \sqrt{|p(x)|}}{\sqrt{\left|\left[\vartheta(\lambda, \gamma, \kappa, \alpha, \beta,)-(2-\lambda)^{2} \chi_{2}^{2 \gamma}(\kappa, \alpha, \beta)\right] p(x)^{2}-2(2-\lambda)^{2} \chi_{2}^{2 \gamma}(\kappa, \alpha, \beta) q(x)\right|}}, \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\left|p(x)^{2}\right|}{(2-\lambda)^{2} \chi_{2}^{2 \gamma}(\kappa, \alpha, \beta)}+\frac{|p(x)|}{(3-2 \lambda) \chi_{3}^{\gamma}(\kappa, \alpha, \beta)} \tag{2.2}
\end{equation*}
$$

Where

$$
\vartheta(\lambda, \gamma, \kappa, \alpha, \beta,)=2(3-2 \lambda) \chi_{3}^{\gamma}(\kappa, \alpha, \beta)-\left(5-(\lambda+1)^{2}\right) \chi_{2}^{2 \gamma}(\kappa, \alpha, \beta) .
$$

Proof. Let $f \in T_{\Sigma}(\lambda, \alpha, \beta, \kappa, \gamma ; x)$ From Definition (1.2), for some analytic function Φ and Ψ such that $\Phi(0)=\Psi(0)=0$ and $|\Phi(x)|<1$ and $|\Psi(x)|<1$ for all $z, w \in \mathcal{U}$, we can write

$$
\begin{array}{r}
1+\frac{z\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)\right)^{\prime}}{\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)}+\frac{z\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)\right)^{\prime \prime}}{\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)\right)^{\prime}}-\frac{\lambda z^{2}\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)\right)^{\prime \prime}+z\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)\right)^{\prime}}{\lambda z\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)\right)^{\prime}+(1-\lambda) \mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)} \tag{2.3}\\
=\mathcal{S}_{\left\{L_{p, q, n}(x)\right\}}(\Phi(z))-1,
\end{array}
$$

and

$$
\begin{array}{r}
1+\frac{w\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)\right)^{\prime}}{\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)}+\frac{w\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)\right)^{\prime \prime}}{\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)\right)^{\prime}}-\frac{\lambda w^{2}\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)\right)^{\prime \prime}+z\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)\right)^{\prime}}{\lambda w\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)\right)^{\prime}+(1-\lambda) \mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)} \tag{2.4}\\
=\mathcal{S}_{\left\{L_{p, q, n}(x)\right\}}(\Psi(w))-1,
\end{array}
$$

or equivalently

$$
\begin{align*}
1+\frac{z\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)\right)^{\prime}}{\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)} & +\frac{z\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)\right)^{\prime \prime}}{\left(\mathcal{W}_{\alpha, \beta}^{\kappa \kappa \gamma} f(z)\right)^{\prime}}-\frac{\lambda z^{2}\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)\right)^{\prime \prime}+z\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)\right)^{\prime}}{\lambda z\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)\right)^{\prime}+(1-\lambda) \mathcal{W}_{\alpha, \beta}^{\kappa \kappa \gamma} f(z)} \tag{2.5}\\
& =-1+L_{p, q, 0}(x)+L_{p, q, \boldsymbol{p}}(x) \Phi(z)+L_{p, q, 2}(x) \Phi^{2}(z)+\cdots,
\end{align*}
$$

and

$$
\begin{align*}
1+\frac{w\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)\right)^{\prime}}{\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)} & +\frac{w\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)\right)^{\prime \prime}}{\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)\right)^{\prime}}-\frac{\lambda w^{2}\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)\right)^{\prime \prime}+z\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)\right)^{\prime}}{\lambda w\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)\right)^{\prime}+(1-\lambda) \mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)} \tag{2.6}\\
& =-1+L_{p, q, 0}(x)+L_{p, q, 1}(x) \Psi(z)+L_{p, q, 2}(x) \Psi^{2}(z)+\cdots,
\end{align*}
$$

From the equalities (2.5) and (2.6), we obtain that

$$
\begin{align*}
1+\frac{z\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)\right)^{\prime}}{\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)} & +\frac{z\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)\right)^{\prime \prime}}{\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)\right)^{\prime}}-\frac{\lambda z^{2}\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)\right)^{\prime \prime}+z\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)\right)^{\prime}}{\lambda z\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)\right)^{\prime}+(1-\lambda) \mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} f(z)} \tag{2.7}\\
= & 1+L_{p, q, 1}(x) c_{1} z+\left\{L_{p, q, 2}(x) c_{2}+L_{p, q, 1}(x) c_{1}^{2}\right\} z^{2}+\cdots,
\end{align*}
$$

and

$$
\begin{align*}
& 1+\frac{w\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)\right)^{\prime}}{\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma}} g(w)+\frac{w\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)\right)^{\prime \prime}}{\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)\right)^{\prime}}-\frac{\lambda w^{2}\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)\right)^{\prime \prime}+z\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)\right)^{\prime}}{\lambda w\left(\mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)\right)^{\prime}+(1-\lambda) \mathcal{W}_{\alpha, \beta}^{\kappa, \gamma} g(w)} \tag{2.8}\\
&=1+L_{p, q, 1}(x) d_{1} w+\left\{L_{p, q, 2}(x) d_{2}+L_{p, q, 1}(x) d_{1}^{2}\right\} w^{2}+\cdots .
\end{align*}
$$

It is fairly well known that if

$$
\begin{gathered}
|\phi(z)|=\left|c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots\right|<1, \quad(z \in \mathcal{U}) \\
|\varphi(z)|=\left|d_{1} w+d_{2} w^{2}+d_{3} w^{3}+\cdots\right|<1, \quad(w \in \mathcal{U})
\end{gathered}
$$

and it is well known that

$$
\begin{equation*}
\left|c_{n}\right| \leq 1,\left|d_{n}\right| \leq 1, n \in \mathcal{N} \tag{2.9}
\end{equation*}
$$

Thus, upon comparing the corresponding coefficients in (2.7) and (2.8), we have

$$
\begin{equation*}
(2-\lambda) \chi_{2}^{\gamma}(\kappa, \alpha, \beta) a_{2}=L_{p, q, 1}(x) c_{1}, \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
2(3-2 \lambda) \chi_{3}^{\gamma}(\kappa, \alpha, \beta) a_{3}-\left(5-(\lambda+1)^{2}\right) \chi_{2}^{2 \gamma}(\kappa, \alpha, \beta) a_{2}^{2}=L_{p, q, 1}(x) c_{2}+L_{p, q, 2}(x) c_{1}^{2} \tag{2.11}
\end{equation*}
$$

$$
-(2-\lambda) \chi_{2}^{\gamma}(\kappa, \alpha, \beta) a_{2}=L_{p, q, 1}(x) d_{1}
$$

$2(3-2 \lambda) \chi_{3}^{\gamma}(\kappa, \alpha, \beta)\left(2 a_{2}^{2}-a_{3}\right)-\left(5-(\lambda+1)^{2}\right) \chi_{2}^{2 \gamma}(\kappa, \alpha, \beta) a_{2}^{2}=L_{p, q, 1}(x) d_{2}+L_{p, q, 2}(x) d_{1}^{2}$.
From the equations (2.10) and (2.12) we can easily see that

$$
\begin{equation*}
c_{1}=-d_{1} \tag{2.14}
\end{equation*}
$$

and From the equations (2.10) and (2.12) we can easily see that

$$
\begin{equation*}
2(2-\lambda)^{2} \chi_{2}^{2 \gamma}(\kappa, \alpha, \beta) a_{2}^{2}=L_{p, q, 1}^{2}(x)\left(c_{1}^{2}+d_{1}^{2}\right) . \tag{2.15}
\end{equation*}
$$

If we add (2.11) and (2.13), we get

$$
\begin{array}{r}
2\left[2(3-2 \lambda) \chi_{3}^{\gamma}(\kappa, \alpha, \beta)-\left(5-(\lambda+1)^{2}\right) \chi_{2}^{2 \gamma}(\kappa, \alpha, \beta)\right] a_{2}^{2}=L_{p, q, 1}(x)\left(c_{2}+d_{2}\right)+ \\
L_{p, q, 2}(x)\left(c_{1}^{2}+d_{1}^{2}\right) . \tag{2.16}
\end{array}
$$

Clearly, by using (2.15) in the equality (2.16) , we have

$$
\begin{equation*}
a_{2}^{2}=\frac{L_{p, q, 1}^{3}(x)\left(c_{2}+d_{2}\right)}{2\left[L_{p, q, 1}^{2}(x) \vartheta(\lambda, \gamma, \kappa, \alpha, \beta)-L_{p, q, 2}(2-\lambda)^{2} \chi_{2}^{2 \gamma}(\kappa, \alpha, \beta)\right]}, \tag{2.17}
\end{equation*}
$$

Where

$$
\vartheta(\lambda, \gamma, \kappa, \alpha, \beta,)=2(3-2 \lambda) \chi_{3}^{\gamma}(\kappa, \alpha, \beta)-\left(5-(\lambda+1)^{2}\right) \chi_{2}^{2 \gamma}(\kappa, \alpha, \beta) .
$$

Which gives

$$
\left|a_{2}\right|=\frac{|p(x)| \sqrt{|p(x)|}}{\sqrt{\left|\left[\vartheta(\lambda, \gamma, \kappa, \alpha, \beta,)-(2-\lambda)^{2} \chi_{2}^{2 \gamma}(\kappa, \alpha, \beta)\right] p(x)^{2}-2(2-\lambda)^{2} \chi_{2}^{2 \gamma}(\kappa, \alpha, \beta) q(x)\right|}} .
$$

Moreover, if we subtract (2.13) from (2.11), we obtain

$$
\begin{equation*}
4(3-2 \lambda) \chi_{3}^{\gamma}(\kappa, \alpha, \beta)\left(a_{3}-a_{2}^{2}\right)=L_{p, q, 2}(x)\left(c_{1}^{2}-d_{1}^{2}\right)+L_{p, q, 1}(x)\left(c_{2}-d_{2}\right) \tag{2.18}
\end{equation*}
$$

Then, in view of (2.14) and (2.15), (2.18) becomes

$$
\left|a_{3}\right|=\frac{L_{p, q, 1}^{2}(x)\left(c_{1}^{2}+d_{1}^{2}\right)}{2(2-\lambda)^{2} \chi_{2}^{2 \gamma}(\kappa, \alpha, \beta)}+\frac{L_{p, q, 1}(x)\left(c_{2}-d_{2}\right)}{4(3-2 \lambda) \chi_{3}^{\gamma}(\kappa, \alpha, \beta)} .
$$

Thus applying (1.1) we obtain

$$
\left|a_{3}\right| \leq \frac{\left|p(x)^{2}\right|}{(2-\lambda)^{2} \chi_{2}^{2 \gamma}(\kappa, \alpha, \beta)}+\frac{|p(x)|}{(3-2 \lambda) \chi_{3}^{\gamma}(\kappa, \alpha, \beta)} .
$$

This completes the proof of Theorem 1.
Corollary 2.2. (see [1]) By taking $\lambda=\gamma=0$ in theorem 1, we state

$$
\begin{equation*}
\left|a_{2}\right|=\frac{|p(x)| \sqrt{|p(x)|}}{\sqrt{\mid-4 p(x)^{2}-8 q(x)} \mid} \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\left|p(x)^{2}\right|}{4}+\frac{|p(x)|}{6} . \tag{2.20}
\end{equation*}
$$

Corollary 2.3. (see [16]) By taking $\lambda=1$ and $\gamma=0$ in theorem 1, we state

$$
\begin{equation*}
\left|a_{2}\right|=\frac{|p(x)| \sqrt{|p(x)|}}{\sqrt{\mid-2 q(x)} \mid} \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq\left|p(x)^{2}\right|+\frac{|p(x)|}{2} \tag{2.22}
\end{equation*}
$$

3. Fekete-Szegö

In the next theorem, the Fekete-Szegö inequality for the family $T_{\Sigma}(\lambda, \alpha, \beta, \kappa, \gamma ; x)$ is obtain.
Theorem 3.1. For $0 \leq \lambda \leq 1$ and $x, \mu \in \mathbb{R}$, let $f \in \mathcal{A}$ be in the family $T_{\Sigma}(\lambda, \alpha, \beta, \kappa, \gamma ; x)$. Then
(3.1)

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{l}
\frac{|p(x)|}{2(3-2 \lambda) \chi_{3}^{3}(\kappa, \alpha, \beta)}, \\
|(1-\mu)| \leq\left|\vartheta(\lambda, \gamma, \kappa, \alpha, \beta)+(2-\lambda)^{2} \chi_{2}^{2 \gamma}(\kappa, \alpha, \beta)\left(1+\frac{2 q(x)}{p(x)}\right)\right| \\
\frac{|p(x)||(1-\mu)|}{\left|\left(\vartheta(\lambda, \gamma, \kappa, \alpha, \beta)-(2-\lambda)^{2} \chi_{2}^{2 \gamma}(\kappa, \alpha, \beta)\right) p^{2}(x)-2(2-\lambda)^{2} \chi_{2}^{2 \gamma}(\kappa, \alpha, \beta) q(x)\right|}, \\
|(1-\mu)| \geq\left|\vartheta(\lambda, \gamma, \kappa, \alpha, \beta)+(2-\lambda)^{2} \chi_{2}^{2 \gamma}(\kappa, \alpha, \beta)\left(1+\frac{2 q(x)}{p(x)}\right)\right|
\end{array}\right\} .
$$

Proof.

$$
a_{3}-\mu a_{2}^{2}=\frac{L_{p, q, 1}(x)\left(c_{2}-d_{2}\right)}{4(3-2 \lambda) \chi_{3}^{\gamma}(\kappa, \alpha, \beta)}+(1-\mu) \times
$$

$$
\begin{gather*}
\left(\frac{L_{p, q, 1}^{3}(x)\left(c_{2}+d_{2}\right)}{2\left[L_{p, q, 1}^{2}(x) \vartheta(\lambda, \gamma, \kappa, \alpha, \beta)-L_{p, q, 2}(x)(2-\lambda)^{2} \chi_{2}^{2 \gamma}(\kappa, \alpha, \beta)\right]}\right) \tag{3.2}\\
=\frac{L_{p, q, 1}(x)}{2}\left[\left(H(\mu, x)+\frac{1}{2(3-2 \lambda) \chi_{3}^{\gamma}(\kappa, \alpha, \beta)}\right) c_{2}+\right. \\
\left.\left(H(\mu, x)-\frac{1}{2(3-2 \lambda) \chi_{3}^{\gamma}(\kappa, \alpha, \beta)}\right) d_{2}\right],
\end{gather*}
$$

Where

$$
H(\mu, x)=\frac{L_{p, q, 1}^{2}(x)(1-\mu)}{L_{p, q, 1}^{2}(x) \vartheta(\lambda, \gamma, \kappa, \alpha, \beta)-L_{p, q, 2}(x)(2-\lambda)^{2} \chi_{2}^{2 \gamma}(\kappa, \alpha, \beta)} .
$$

Along the way, in view of (1.1), we conclude that

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{l}
\frac{|p(x)|}{2(3-2 \lambda) \chi_{3}^{3}(\kappa, \alpha, \beta)}, 0 \leq|H(\mu, x)| \leq \frac{1}{(3-2 \lambda) \chi_{3}^{\lambda}(\kappa, \alpha, \beta)} \tag{3.4}\\
2|p(x)||H(\mu, x)|,|H(\mu, x)| \geq \frac{1}{(3-2 \lambda) \chi_{3}^{\chi}(\kappa, \alpha, \alpha)}
\end{array}\right\}
$$

After some computations, we obtain

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{l}
\frac{|p(x)|}{2(3-2 \lambda) \chi_{3}^{3}(\kappa, \alpha, \beta)}, \tag{3.5}\\
|(1-\mu)| \leq\left|\vartheta(\lambda, \gamma, \kappa, \alpha, \beta)+(2-\lambda)^{2} \chi_{2}^{2 \gamma}(\kappa, \alpha, \beta)\left(1+\frac{2 q(x)}{p(x)}\right)\right| \\
\frac{|p(x)||(1-\mu)|}{\left|\left(\vartheta(\lambda, \gamma, \kappa, \alpha, \beta)-(2-\lambda)^{2} \chi_{2}^{2 \gamma}(\kappa, \alpha, \beta)\right) p^{2}(x)-2(2-\lambda)^{2} \chi_{2}^{2 \gamma}(\kappa, \alpha, \beta) q(x)\right|}, \\
|(1-\mu)| \geq\left|\vartheta(\lambda, \gamma, \kappa, \alpha, \beta)+(2-\lambda)^{2} \chi_{2}^{2 \gamma}(\kappa, \alpha, \beta)\left(1+\frac{2 q(x)}{p(x)}\right)\right|
\end{array}\right\} .
$$

Corollary 3.2. (see [16]) By taking $\lambda=0$ and $\gamma=0$ in theorem 1, we state

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{l}
\frac{|p(x)|}{6}, \tag{3.6}\\
|(1-\mu)| \leq\left|6\left(1+\frac{2 q(x)}{p(x)}\right)\right| \\
\frac{|p(x)||(1-\mu)|}{\left|-2 p^{2}(x)-8 q(x)\right|}, \\
|(1-\mu)| \geq\left|6\left(1+\frac{2 q(x)}{p(x)}\right)\right|
\end{array}\right\} .
$$

4. CONCLUSION

In this paper making use of Wanas operator, We introduced and investigated the bi-univalent function class $T_{\Sigma}(\lambda, \alpha, \beta, \kappa, \gamma ; x)$ related to the (p, q)-Lucas polynomials. Thus, we obtained second and third TaylorâĂŞMaclaurin coefficients of functions for this class. These results were an improvement on the estimates obtained in the recent studies.

References

[1] C. ABIRAMI, N. MAGESH and J.YAMINI, Initial bounds for certain classes of bi-univalent functions defined by Horadam polynomials, Abstr. Appl. Anal. (2020), pp. 1-8 Art. ID 7391058, MR4062163
[2] ALTINKAYA and S. YALCIN, The (p, q) -Chebyshev polynomial bounds of a general bi-univalent function class, Bol. Soc. Mat. Mex. 26 (2020), no. 2, pp. 341-348. MR4110455
[3] L. BIEBERBACH, Uber die koeffinzienten derjenigen potenzreihen, welche cine schlichte Abbildung des Einheitskreises wermitteln. S.-B. Preuss. Akad. Wiss. 1 (1916), pp. 940-955.
[4] D. BRANNAN and J. CLUNIE, Aspects of contemporary complex analysis, Academic Press, Inc., London, (1980). MR0623462
[5] D. A. BRANNAN and T. S. TAHA, On some classes of bi-univalent functions, Studia Univ. BabeşBolyai Math. 31 (1986), no. 2, pp. 70-77. MR0911858
[6] M. FEKETE and G. SZEGO, Eine Bemerkung Uber Ungerade Schlichte Funktionen, J. London Math.Soc. S1-8 no. 2, (1933), pp. 85-89.
[7] K . R. KARTHIKEYAN, MUSTHAFA IBRAHIM and S. SRINIVASAN, Fractional class of analytic functions Defined Using q-Differential Operator, The Australian Journal of Mathematical Analysis and Applications, 15, Issue 1, Article 9, (2018), pp. 1-15,
[8] K. R. KARTHIKEYAN, MUSTHAFA IBRAHIM and S. SRINIVASAN, Coefficient Inequalities of a Subclass of Analytic Functions Defined Using q-Differential Operator. International Journal of Innovative Technology and Exploring Engineering, 8, Issue-7(May 2019), pp. 2278-3075.
[9] G. LEE and M. ASCI, Some properties of the (p, q) -Fibonacci and (p, q)-Lucas polynomials, J. Appl. Math. (2012), pp. 1-18, Art. ID 264842, MR2970424.
[10] J. C. MASON and D. C. HANDSCOMB, Chebyshev polynomials, Chapman \& Hall/CRC, Boca Raton, FL, (2003). MR1937591.
[11] O. T. OPOOLA, On a subclass of Univalent Functions de ned by a Generalized Differential operator, Int. J. Math. Anal. 18(11), (2017), pp. 869-876.
[12] G. Ş. SALAGEAN, Subclasses of univalent functions, in Complex analysis-fifth RomanianFinnish seminar, Part 1 (Bucharest, 1981), pp. 362-372, Lecture Notes in Math., 1013, Springer, Berlin.
[13] A. C. SCHAEFFER and D. C. SPENCER, Coefficient Regions for Schlicht Functions, American Mathematical Society Colloquium Publications, 35, Amer. Math. Soc., New York, NY, (1950).
[14] H. M. SRIVASTAVA, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A Sci. 44, (2020), no. 1, pp. 327-344. MR4064730
[15] H. M. SRIVASTAVA, A. K. MISHRA and P. GOCHHAYAT, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), no. 10, pp. 1188-1192. MR2665593
[16] H. M. SRIVASTAVA, . ALTINKAYA and S. YALCIN, Certain subclasses of bi-univalent functions associated with the Horadam polynomials, Iran. J. Sci. Technol. Trans. A Sci. 43 (2019), no. 4, pp. 1873-1879. MR3978601
[17] A. K. WANAS, New differential operator for holomorphic functions, Earthline J. Math. Sci., 2, (2019), pp. 527-537.

