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2 HARK-MAHN KIM, SANG-BAEK LEE AND EUNYOUNG SON

1. INTRODUCTION

In 1940, S.M. Ulam([2B3] gave a talk before the Mathematics Club of the University of Wis-
consin in which he discussed a number of unsolved problems. Among these was the following
question concerning the stability of homomorphisms.

We are given a groud’ and a metric grougs’ with metricp(-, ). Givene > 0, does there
existad > 0 such that iff : G — G’ satisfieso(f(zy), f(z)f(y)) < d forall z,y € G, then a
homomorphism : G — G’ exists withp(f(x), h(z)) < eforall z € G?

In 1941, D.H. Hyerd[9] considered the case of approximately additive mappings— E’,
whereFE andE’ are Banach spaces aricatisfies thelyers inequality

[f(x+y) = flz) = fy)ll <€

forall x,y € E. It was shown that the limit(x) = lim,, f%:‘”) exists for allx € F and that
L : E — FE'is the unique additive mapping satisfying

[f(z) = L(z)| < e

In 1978, Th.M. Rassias [17] proved a theorem for the stability of the linear mapping, which
allows the Cauchy difference to be controlled by a sum of powers of normg. Let— E’ be
a mapping from a normed vector spaceénto a Banach spack’ subject to the inequality

(1.1) 1z +y) — ) = FW) < e(ll=]” + [lyl”)

for all z,y € FE, wheree andp are constants with > 0 andp < 1. Then the limitL(z) =

lim,, o, 1272 exists for allz € FandL : E — E'is the unique additive mapping which
satisfies
2¢

(1.2) If () = L)l < 5—;,

for all z € E. Further, if for eachx € E the mapping — f(tzx) is continuous irt € R, thenL
is linear. Ifp < 0 then inequality[(1]1) holds for, y # 0 and [1.2) forz # 0.

In 1990, Th.M. Rassias during the 27th International Symposium on Functional Equations
asked the question whether such a theorem can also be proved for all real vaiubsitodre
greater than or equal to one. In 1991, Z. Gajda [7], following the same approach as in the Th.M.
Rassias stability theorem, provided an affirmative solution to the question for all real vajues of
that are strictly greater than one. This was made possible by just reptabyngn throughout
the proof of Th.M. Rassias’ theorem. The inequality(1.1) that was introduced by Th.M.Rassias
has provided much influence in the development of a generalization of the Hyers—Ulam stability
concept. This new concept of stability is known today as the generalized Hyers—Ulam stability
or Hyers—Ulam—Rassias stability or Cauchy—Rassias stability of functional equations (cf. the
books of S. Czerwik [6], D.H. Hyers, G. Isac and Th.M. Rassias [12]). It was shown by Z.
Gajda[7], as well as by Th.M. Rassias and P. Semil [18] that one cannot prove a Th.M. Rassias’
type theorem whep = 1. P. Gavruta [8] provided a further generalization of Th.M. Rassias’
Theorem. During the last two decades a number of papers and research monographs have been
published on various generalizations and applications of the generalized Hyers—Ulam stability
to a number of functional equations and mappings (see [2/3] 6, 10,112, 20]).

Now, a square norm on an inner product space satisfies the important parallelogram equality

[l]]”

lz + yll* + llz = yll* = 2(ll<1* + [ly]I*)
for all vectorsz, y. The following functional equation, which was motivated by the last identity,

(1.3) Qlx+y)+Qz —y) =2Q(x) +2Q(y)
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is called a quadratic functional equation, and every solution of the equption (1.3) is said to be
a quadratic mapping. In 1983 F. Skof [22] was the first author to solve the Ulam problem for
additive mappings on a restricted domain. In 1998 S. Jurig [13] and in 2002 J.M. Rassias [15] in-
vestigated the Hyers—Ulam stability for additive and quadratic mappings on restricted domains.
The stability problems of several quadratic functional equations have been extensively inves-
tigated by a number of authors and there are many interesting results concerning this problem
[1,14,[10/11] 14, 19, 21].

Now we are going to extend the equatipn [1.3) to a more generalized equation with several
(d + 1)-variables. For this purpose, we employ the opergdor f (1) as follows

L"jf(wl) = flz1 4 x2) + f(21 — 22)

for a given mapping’ : £, — E, between vector spaces. Similarly, we de@gm f(z) =
W,, (W,, f(z1)) and inductively

d d—1
W re)=4 ( ¥ f(l’l))

L2;5e-e, Td41 Td41 25009 T4
for all natural numberd. Here, we consider the following new functional equation,

d+1

(1.4) > (Hf@) | = 2de<xz->

1<i<j<d+1 \ z;

forall (d + 1)-variablesry, ..., z41 € E1, whered > 1is a natural number. As a special case,

the equatior (1]4) reduces to the equatjon| (1.3) for thecase. In this paper, it will be verified

that the general solutions of the above functional equatjong (1.4) are quadratic mappings in the
class of functions between vector spaces. In addition, we establish new theorems about the
Hyers—Ulam—Rassias stability for general equations and apply our results on restricted domains
to the asymptotic behavior of functional equations. Thus, we may obtain the stability result of
the equation (1]4) utilizing independently direct methods without using the fixed point theorem
of the alternative for contractions.

2. APPROXIMATELY QUADRATIC MAPPINGS

Lemma 2.1. Let F; and E; be vector spaces. A mappifg £ — F, satisfies the functional
equation[(1.4) if and only if the mappinfgsatisfies the functional equatidn (IL.3).

Proof. We first assume that is a solution of the functional equatidn (IL.4). Set= 0 in (1.4)
foralli =1,...,d+ 1togetf(0) = 0. Puttingz; := 0in (1.4) foralli = 3,...,d + 1, we get
f(ill'l + l’g) + f(.]?l — 33'2) = 2[]”(5131) -+ f(l’g)] for all T1,T2 € E;.

Conversely, assume that the mappjhsgatisfies the functional equatidn ([L.3). By induction,
we first assume that satisfies the equation

d

(2.1) S sy | =20d -1 flx)

1<i<j<d \ i=1
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for all d-variablesry, ..., x4 € E;. Then we get
22 > |Wfa@)| = ) £ () F@i 4 wa) + f (i — 2a41)]
1<i<j<d+1 \ z; 1<z<]<d T

d
=2(d—1) Zf$l+22fxz+2fxd+l)]
= =1

d+1

=24y f(w)

for all (d + 1)-variableszy, ..., zq41 € Ei. Thusf satisfies the equatiop (1.4). This completes
the proof of the lemmag

From now on, letX be a normed space anta Banach space unless otherwise specified.
Let R* denote the set of all nonnegative real numbers @dpositive integer withi > 1.
Now before taking up the main subject, givén X — Y, we define the difference operator
Df: X =Y by

d+1

Df(xy,x0,...,2441) = Z L—ljf(xl) —Qde(:L‘

1<i<j<d+1 \ x;

for all (d 4 1)-variableszy, ..., z441 € X, which acts as a perturbation of the equatjon|(1.4).
We now investigate the generalized Hyers—Ulam stability problem for the equatipn (1.4). Thus
we give conditions in order for a true mapping near an approximate mapping of the equation

(1.4) to exist.

Theorem 2.2. Assume that there exists a mapping X' — [0, co) for which a mapping
f : X — Y satisfies the functional inequality

(2.3) |Df(z1,x9,...,xa01)|| <e(x1,...,Ta41)

for all (d + 1)-variablesz,...,z4.; € X. If there exists a real numbet(0 < L < 1) such
that the mapping satisfies

(2.4) e(2xy, ..., 2xq41) < A4Le(1,...,%441)

forall zq,...,z4.1 € X, then there exists a unique quadratic mappigg X — Y which
satisfies the equatiop (1.4) and the inequality

f(0) e(z,...,7)
(2:5) Hf(x) N Q(x)H S 2+ (=1
for all x € X. The mapping) is defined by
O) = tim 120

n—00 22n

for all x € X. Moreover, if f is measurable orf (¢x) is continuous it € R for each fixed
x € X, then the mapping is homogeneous of degreeverR.

Proof. It follows from (2.4) that

g2y, ..., 2411) < (AL)'e(x1, ..., Tq41)
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forallz € X. If we take(z, ..., z) instead of(zy, ..., z44+1) in (2.11), we obtain

26 ("3 " )ireo) + 00 - 2ata + 10

<e(z,...,x),

which can be rewritten in the form

2.7) Hpmm-x%?]—4P@ﬂ_f$qugdu+1)
‘F@@

e(z,...,x),

or, T q(z)]| < ma(x, )

for all = € X, whereq(z) == f(z) — {¥, 2 € X. We claim that a sequence defined by

{M} , x € X, is Cauchy in the Banach spake By ), we get

4”

¢(2'z)  q(2"z)
4n

q(2'z)  q(2"x)
4 4i

o

n—1
33
1=l

1 e(2'z,...,2)
< A
ST ETD D

1=l

n—1
1 .
= — L' e

for all integers withn > [ > 0. Hence a mappin@ : X — Y given by the formula

Q(z) = lim a(2"7) = lim ACED)

n—oo n n—o00 22n

is well defined for allz € X. In addition it is clear from[(2]3) that the following inequality

1 1
4_n ||Df(2nl‘17 R 2n$d+1)|| < _8(2nx17 BRI and-i-l)

S
< L 5(1‘1, s ,l’d_t,_l)
holds for allzy, ..., x4.1 € X and alln € N. Taking the limitn — oo, we see that the mapping

() satisfies the equatiop (1.4) and @ds quadratic. Lettind := 0 in the inequality[(2.B) and
taking the limitn — oo, we find that there exists a quadratic mappipg X — Y satisfying

the inequality[(2.).
To prove the afore-mentioned uniqueness, we assume that there exists a quadratic mapping
(1 : X — Y which satisfies the equation (IL.4) and the inequality

f(0)
3

(2.9) Hﬂ@_ _QM@H< e(z, ..., )

= 2d(d+ 1)(1 - L)

for all € X. Since@ and Q, are quadratic, we see the identiti@sz) = 27*"Q(2"x),
Q1(z) = 272"Q;(2"z) hold for allz € X and alln € N. Thus it follows from inequalitieg (2|5)
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and [2.9) that

1Q(z) — Qu(2)]l

= e - Qi)
£(0)

2 om0

e(2"x,...,2"x) < Lre(x,. .. x)
“dd+1)(1—-L)2%" —dd+1)(1—-1L)
for all z € X and alln € N. Therefore letting: — oo, one has)(z) — Q;(z) = 0 for all
x € X, completing the proof of uniqueness.

The proof of last assertion in the theorem follows in the same manner as the proof of Theorem
3in [5]. The proof is completex

Theorem 2.3. Assume that there exists a mapping X' — [0, co) for which a mapping
f : X — Y satisfies the functional inequality

||Df(l'1,[)’)2, cee 7Id+1)|| < 5(1‘17 s 7xd+1)

for all (d + 1)-variablesz,...,z41 € X. If there exists a real numbei(0 < L < 1) such
that the mapping satisfies

T x L
(2.10) e (?1 d;) < Felwn, s aa)
forall x1,...,24.1 € X, then there exists a unique quadratic mappigg X — Y which
satisfies the equatiop (1.4) and the inequality

Le(z,... x)
— <

1@ = QI < 575D
forall z € X. The mappind) is defined by

Q) = Jim 41 (55)

for all z € X. Moreover, if f is measurable orf(¢z) is continuous it € R for each fixed
r € X, then the mapping) is homogeneous of degre@verR.

Proof. We note that(0,...,0) = 0 implies f(0) = 0 and

T Td+1 L !
8(?7"') Q:F > < (Z) E(xla"'v'xd-‘rl)

for all z € X. It follows from (2.7) that for all integers with > [ > 0

n—1
1 (z) s @ =Xl (3) -4 (=)
n—1

2 : T T
< 2N (E )
— d(d + 1) Z € 9i+1 9i+1

1=l

n—1

1 )
— N Lt e(a,

1=l
forall z € X.
The rest of the proof is similar to that of Theorgm| 2.
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If we apply Theorem 2|2 and Theorém|2.3 to each dase %, p < 2 andL :=
we have the following corollary.

2,,,p>2

Corollary 2.4. Suppose that there exist a real numker 0 and a realp # 2 such that a
mappingf : X — Y satisfies

IDf (@1, w2, s xapa) | < e(lfenll” + - 4 [[zas]]”)

for all (d 4+ 1)-variableszy,..., 241 € X. Then there exists a unique quadratic mapping
Q : X — Y which satisfies the equati.4) and the inequality

) < 2=l
Jro- 5 - e < 22
forall z € X, wherex £ 0if p <0andf(0) = 0if p > 0. The mappingd) is defined by
o Jij&%, if p<2,
€Tr) =
lim 4" f (2%) , if p>2,

n—oo

forall z € X.

Further, we establish other theorems about the Ulam stability problem of the eqfiatjon (1.4)
as follows.

Theorem 2.5. Suppose that a mapping: X — Y satisfies

(2.12) IDf(x1, 20, .., 21| <e(xy, ..., 2q41)
forall (d+1)-variableszy, . .., z4,1 € X, and thate : X4t — R is a mapping such that the

series
= 8(2i$1,...,2i$d+1)
> o

1=0
converges for alkey, ..., 241 € X. Then there exists a unique quadratic mapping X — Y
which satisfies the equation (IL.4) and the inequality
B ) B = e(2'z 2%)

(2.12) Hf () _2dd+ Z
for all x € X. The mappind) is defined by

27’l
(2.13) Q@) = lim £ (2"z)

n—oo 22N

for all x € X. Moreover, if f is measurable orf(¢x) is continuous it € R for each fixed
x € X, then the mapping) is homogeneous of degreeverR.

Proof. Now by (2.7), we have that for any integers n with n > m > 0,

n—1 ; ;
q(2"x)  q(2"x) g2"z)  q(2'z)
. - < VA L
(2 14) H 4m 4n — ;n 4z+1 41
o — e(2iz, ..., 2')
= 2d(d+1) &~ 4
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for all z € X. Since the right hand side of the above inequality tendsdasm — oo, the se-
quence{q(i—zz)} is Cauchy inY’ and thus converges iri. Therefore, we may define a mapping

Q:X—Yas
Q(z) = lim M: lim J@2")

for all z € X, and then by letting: — oo in (2.14) withm = 0 we arrive at the formuld (2.12).
We claim that() satisfies the equation (1.4). For this purpose, we calculate the following

inequality from [(2.1]1)

: 1 n n
1DQwr,. - wa)l| = lim - |IDF (2", ., 2 as0)|

which implies thatDQ(z1, . .., x441) = 0 for all (z4,...,z41) € X. Hence the mappin@ is
quadratic by Lemma 2.1.
The rest of the proof is similar to that of Theorgm|232.

Theorem 2.6. Suppose that a mapping: X — Y satisfies

HDf(thQa .. 7xd+1)H < 5(1’1, <. aderl)

forall (d+1)-variableszy, . .., z4,1 € X, and thate : X4t — R is a mapping such that the

series
= T Td+1
E 4Z€ <_i"”’ i )
— 2 2
1=

converges for alkey, ..., z41 € X. Then there exists a unique quadratic mapping X — Y
which satisfies the equation (IL.4) and the inequality

1 > . /x T
I£@) = Q@I < gy 24 (5 5)
for all x € X. The mappind? is defined by
o= 7 (2)
for all x € X. Moreover, if f is measurable orf(¢x) is continuous int € R for each fixed
x € X, then the mapping is homogeneous of degreeverR.

Note that one hag(0) = 0 in the above theorem because, ..., 0) = 0 by the convergence
of the series.

Corollary 2.7. Suppose that there exists a nonnegative real numlder which a mapping
f: X — Y satisfies
|Df(xy, 29, .., 2q01)|| <€
for all (d + 1)-variableszy,...,z4.1 € X. Then there exists a unique quadratic mapping
@ : X — Y which satisfies the equation (IL.4) and the inequality
f(0) 2

10~ 12 - 0| < sy

forall z € X.

Remark 2.1. If d = 1 in Theoren] 2.6 and Corollari¢s 2.4 and]2.7, then the results exactly
coincide with the classical resulis [2,/17] 22].
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Corollary 2.8. A mappingf : X — Y with f(0) = 0 is quadratic if and only if
sup || Df(x1,72,.. ., 2441) ]|

Proof. Letsup,, ..., [[Df(z1,72,...,2441)|| < M < oo foralld > 1. Then for eachl > 1,
there exists a unique quadratic mappipg: X — Y which satisfies the equation (L.4) and the
inequality
2M
— < ="
1£2) = Qu)l < 35575
for all z € X by Corollary{2.7. Letn be a positive integer with. > d. Then, we obtain

2M 2M
— < <
I7(2) = Q@) = 3m(m+1) — 3d(d+ 1)
for all x € X. The uniqueness @, implies thatQ,, = @, for all m with m > d, and so
2M
_ < - -
I7(@) = Q@ < 52"
forall x € X. By lettingm — oo, we conclude thaf is itself quadratic.
The reverse assertion is trivial.

Remark 2.2. If we apply Theorem 2|5 and Theorém|2.6 to Corol[ary 2.4, then we have exactly
the same conclusion, and if we apply Theofen) 2.2 to Cordllafy 2.7 iith , then we have
exactly the same conclusion.

3. APPROXIMATELY QUADRATIC MAPPINGS ON RESTRICTED DOMAINS

In this section we investigate the Hyers—Ulam stability problem for the equation (1.4) on
an unbounded restricted domain. As results, we have corollaries concerning an asymptotic
property of the equation (1.4).

Theorem 3.1.Letr > 0 be fixed. Suppose that there exists a nonnegative real nuirfoer
which a mapping/ : X — Y satisfies
(31) ||Df(l‘1,l’2,...,l‘d+1)|| §€

for all (d + 1)-variableszy, ..., x4, € X with 3% ||lz;]] > 7. Then there exists a unique
quadratic mapping? : X — Y which satisfies the equation (IL.4) and the inequality

& +d—2)f(0) 3¢
2 —Q@) <5

(3.2) Hf(x) + (
forall z € X.
Proof. Taking (z1, ..., z41) as(z,y,0,...,0) in 3.1) with ||z + |jy|| > r, we obtain

1 f(z+y)+ flz—y) = 2f(x) = 2f(y) — (& +d = 2) f(0)[| <,
which yields

(3.3) lq(z +y) +q(x —y) — 2q(x) — 2q(y)[| < e,
forall z,y € X with ||z|| + |ly|| > r, where
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In particular, we havélq(0)| < § by settingy := 0 andz := ¢ with |[t|| > r in (3.3). Now,
assumé|z|| + |ly|| < r and choose &< X with ||¢|| > 2r. Then it clearly holds that

e £t =r, Nyt =r and [2¢] + [z +yl =
Therefore from[(33) and the following functional identity
2[q(z +y) +qlz —y) — 2q(x) — 2q(y) — ¢(0)]
= [g(z +y +2t) + gz — y) — 2q(x +1) — 2q(y + )]
+ [g(z +y —2t) + q(z —y) — 2q(x — 1) — 2q(y — 1)]
—q(z+y+2t) — gz +y—2t) + 2q(z + y) + 2¢(21)]

+]
+ [2¢(z + t) + 2q(z — t) — 4q(z) — 4¢(1)]
+ [29(y + 1) +29(y — t) — 4q(y) — 4q(t)]
+ [ —2q(2t) — 2¢(0) + 4q(t) + 4q(t)],
we get
(3.4) e+ ) +alx — ) — 20(x) ~ 20(0) — a(O)]| < =

forall z,y € X with ||z|| + ||y|| < r. Consequently, the last functional inequality holds for all
z,y € X inview of (3.3) and[(3.4). Now letting := = in (3.4), we obtain
9e

la(2e) — 4q(@)| < 5
Applying a standard procedure of direct methad [9] to the last inequality, we see that there exists
a unique quadratic mapping : X — Y which satisfies the equatign (1L.4) and the inequality

lg(z) — Q)] < =

forallxz € X. 1

Obviously our inequality[ (3]2) is sharper than the corresponding inequalities of Jung [13] and
J.M. Rassias [15], where the approximate estimations were eq@alandgg, respectively.

We note that if we defin€;, 1 = {(x1,...,24:1) € X4 2 ||lz|| <, Vi=1,...,d+ 1} for
some fixed- > 0, then we have

d+1
{(:pl, ) € XN | > (d + 1)7«} C XM\ Sy

=1
Thus the following corollary is an immediate consequence of Theprem 3.1.

Corollary 3.2. If a mappingf : X — Y satisfies the functional inequality (8.1) for all
(x1,...,0401) € XL\ Sy,q, then there exists a unique quadratic mappig: X — Y
which satisfies the equation (IL.4) and the inequd]ity| (3.2)

From Theoren 3]1, we have the following corollary concerning an asymptotic property of
guadratic mappings.

Corollary 3.3. Amappingf : X — Y with f(0) = 0 is quadratic if and only if
IDf(x1, .- Taga)]| — 0

asy i) [lail| — oo
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Proof. According to our asymptotic condition, there is a sequéngg decreasing to zero such
that||Df (1, ..., za11)| < em forall (d+1)-variablesry, . . ., z441 € X with S5 ||| > m.
Hence, it follows from Theorein 3.1 that there exists a unique quadratic ma@QpingX’ — Y
which satisfies the equation (IL.4) and the inequality

3Em

I#(2) - Qu@) < =5

forall x € X. Letm andl be positive integers withn > [. Then, we obtain

I£(@) — Qu@ < 5 < 5

for all z € X. The uniqueness ap, implies that®,,, = @, for all m, [, and so

3Em

I1£(@) - Q@) < 5"

for all x € X. By lettingm — oo, we conclude thaf is itself quadratic.
The reverse assertion is trivia.
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