
The Australian Journal of Mathematical
Analysis and Applications

AJMAA

Volume 6, Issue 1, Article 9, pp. 1-12, 2009

ON THE GENERALIZED STABILITY AND ASYMPTOTIC BEHAVIOR OF
QUADRATIC MAPPINGS

HARK-MAHN KIM, SANG-BAEK LEE AND EUNYOUNG SON

Special Issue in Honor of the 100th Anniversary of S.M. Ulam

Received 21 November, 2008; accepted 21 December, 2008; published 4 September, 2009.

DEPARTMENT OFMATHEMATICS

CHUNGNAM NATIONAL UNIVERSITY

DAEJEON, 305-764, REPUBLIC OFKOREA

hmkim@cnu.ac.kr

ABSTRACT. We extend the stability of quadratic mappings to the stability of general quadratic
mappings with several variables, and then obtain an improved asymptotic property of quadratic
mappings on restricted domains.

Key words and phrases:Hyers-Ulam stability, Quadratic mappings, Alternative of fixed point.

2000Mathematics Subject Classification.Primary 39B82. Secondary 39B72.

ISSN (electronic): 1449-5910

c© 2009 Austral Internet Publishing. All rights reserved.

http://ajmaa.org/
mailto: Hark-Mahn Kim <hmkim@cnu.ac.kr>
http://www.ams.org/msc/


2 HARK-MAHN K IM , SANG-BAEK LEE AND EUNYOUNG SON

1. I NTRODUCTION

In 1940, S.M. Ulam [23] gave a talk before the Mathematics Club of the University of Wis-
consin in which he discussed a number of unsolved problems. Among these was the following
question concerning the stability of homomorphisms.

We are given a groupG and a metric groupG′ with metricρ(·, ·). Givenε > 0, does there
exist aδ > 0 such that iff : G → G′ satisfiesρ(f(xy), f(x)f(y)) < δ for all x, y ∈ G, then a
homomorphismh : G → G′ exists withρ(f(x), h(x)) < ε for all x ∈ G?

In 1941, D.H. Hyers [9] considered the case of approximately additive mappingsf : E → E ′,
whereE andE ′ are Banach spaces andf satisfies theHyers inequality

‖f(x + y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ E. It was shown that the limitL(x) = limn→∞
f(2nx)

2n exists for allx ∈ E and that
L : E → E ′ is the unique additive mapping satisfying

‖f(x)− L(x)‖ ≤ ε.

In 1978, Th.M. Rassias [17] proved a theorem for the stability of the linear mapping, which
allows the Cauchy difference to be controlled by a sum of powers of norms. Letf : E → E ′ be
a mapping from a normed vector spaceE into a Banach spaceE ′ subject to the inequality

(1.1) ‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for all x, y ∈ E, whereε andp are constants withε > 0 andp < 1. Then the limitL(x) =

limn→∞
f(2nx)

2n exists for allx ∈ E andL : E → E ′ is the unique additive mapping which
satisfies

(1.2) ‖f(x)− L(x)‖ ≤ 2ε

2− 2p
‖x‖p

for all x ∈ E. Further, if for eachx ∈ E the mappingt → f(tx) is continuous int ∈ R, thenL
is linear. Ifp < 0 then inequality (1.1) holds forx, y 6= 0 and (1.2) forx 6= 0.

In 1990, Th.M. Rassias during the 27th International Symposium on Functional Equations
asked the question whether such a theorem can also be proved for all real values ofp that are
greater than or equal to one. In 1991, Z. Gajda [7], following the same approach as in the Th.M.
Rassias stability theorem, provided an affirmative solution to the question for all real values ofp
that are strictly greater than one. This was made possible by just replacingn by−n throughout
the proof of Th.M. Rassias’ theorem. The inequality (1.1) that was introduced by Th.M.Rassias
has provided much influence in the development of a generalization of the Hyers–Ulam stability
concept. This new concept of stability is known today as the generalized Hyers–Ulam stability
or Hyers–Ulam–Rassias stability or Cauchy–Rassias stability of functional equations (cf. the
books of S. Czerwik [6], D.H. Hyers, G. Isac and Th.M. Rassias [12]). It was shown by Z.
Gajda [7], as well as by Th.M. Rassias and P. Šemrl [18] that one cannot prove a Th.M. Rassias’
type theorem whenp = 1. P. Ğavruta [8] provided a further generalization of Th.M. Rassias’
Theorem. During the last two decades a number of papers and research monographs have been
published on various generalizations and applications of the generalized Hyers–Ulam stability
to a number of functional equations and mappings (see [2, 3, 6, 10, 12, 20]).

Now, a square norm on an inner product space satisfies the important parallelogram equality

‖x + y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2)

for all vectorsx, y. The following functional equation, which was motivated by the last identity,

(1.3) Q(x + y) + Q(x− y) = 2Q(x) + 2Q(y)
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GENERALIZED QUADRATIC MAPPINGS 3

is called a quadratic functional equation, and every solution of the equation (1.3) is said to be
a quadratic mapping. In 1983 F. Skof [22] was the first author to solve the Ulam problem for
additive mappings on a restricted domain. In 1998 S. Jung [13] and in 2002 J.M. Rassias [15] in-
vestigated the Hyers–Ulam stability for additive and quadratic mappings on restricted domains.
The stability problems of several quadratic functional equations have been extensively inves-
tigated by a number of authors and there are many interesting results concerning this problem
[1, 4, 10, 11, 14, 19, 21].

Now we are going to extend the equation (1.3) to a more generalized equation with several
(d + 1)-variables. For this purpose, we employ the operator

⊎
x2

f(x1) as follows⊎
x2

f(x1) = f(x1 + x2) + f(x1 − x2)

for a given mappingf : E1 → E2 between vector spaces. Similarly, we define
⊎2

x2,x3
f(x1) =⊎

x3

(⊎
x2

f(x1)
)

and inductively

d⊎
x2,...,xd+1

f(x1) =
⊎
xd+1

(
d−1⊎

x2,...,xd

f(x1)

)

for all natural numbersd. Here, we consider the following new functional equation,

(1.4)
∑

1≤i<j≤d+1

⊎
xj

f(xi)

 = 2d
d+1∑
i=1

f(xi)

for all (d + 1)-variablesx1, . . . , xd+1 ∈ E1, whered ≥ 1 is a natural number. As a special case,
the equation (1.4) reduces to the equation (1.3) for the cased = 1. In this paper, it will be verified
that the general solutions of the above functional equations (1.4) are quadratic mappings in the
class of functions between vector spaces. In addition, we establish new theorems about the
Hyers–Ulam–Rassias stability for general equations and apply our results on restricted domains
to the asymptotic behavior of functional equations. Thus, we may obtain the stability result of
the equation (1.4) utilizing independently direct methods without using the fixed point theorem
of the alternative for contractions.

2. APPROXIMATELY QUADRATIC M APPINGS

Lemma 2.1. LetE1 andE2 be vector spaces. A mappingf : E1 → E2 satisfies the functional
equation (1.4) if and only if the mappingf satisfies the functional equation (1.3).

Proof. We first assume thatf is a solution of the functional equation (1.4). Setxi := 0 in (1.4)
for all i = 1, . . . , d + 1 to getf(0) = 0. Puttingxi := 0 in (1.4) for all i = 3, . . . , d + 1, we get
f(x1 + x2) + f(x1 − x2) = 2[f(x1) + f(x2)] for all x1, x2 ∈ E1.

Conversely, assume that the mappingf satisfies the functional equation (1.3). By induction,
we first assume thatf satisfies the equation

(2.1)
∑

1≤i<j≤d

⊎
xj

f(xi)

 = 2(d− 1)
d∑

i=1

f(xi)
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for all d-variablesx1, . . . , xd ∈ E1. Then we get

∑
1≤i<j≤d+1

⊎
xj

f(xi)

 =
∑

1≤i<j≤d

⊎
xj

f(xi)

+
d∑

i=1

[f(xi + xd+1) + f(xi − xd+1)](2.2)

= 2(d− 1)
d∑

i=1

f(xi) +
d∑

i=1

[2f(xi) + 2f(xd+1)]

= 2d
d+1∑
i=1

f(xi)

for all (d + 1)-variablesx1, . . . , xd+1 ∈ E1. Thusf satisfies the equation (1.4). This completes
the proof of the lemma.

From now on, letX be a normed space andY a Banach space unless otherwise specified.
Let R+ denote the set of all nonnegative real numbers andd a positive integer withd ≥ 1.
Now before taking up the main subject, givenf : X → Y , we define the difference operator
Df : Xd+1 → Y by

Df(x1, x2, . . . , xd+1) :=
∑

1≤i<j≤d+1

⊎
xj

f(xi)

− 2d
d+1∑
i=1

f(xi)

for all (d + 1)-variablesx1, . . . , xd+1 ∈ X, which acts as a perturbation of the equation (1.4).
We now investigate the generalized Hyers–Ulam stability problem for the equation (1.4). Thus
we give conditions in order for a true mapping near an approximate mapping of the equation
(1.4) to exist.

Theorem 2.2. Assume that there exists a mappingε : Xd+1 → [0,∞) for which a mapping
f : X → Y satisfies the functional inequality

(2.3) ‖Df(x1, x2, . . . , xd+1)‖ ≤ ε(x1, . . . , xd+1)

for all (d + 1)-variablesx1, . . . , xd+1 ∈ X. If there exists a real numberL(0 < L < 1) such
that the mappingε satisfies

(2.4) ε(2x1, . . . , 2xd+1) ≤ 4Lε(x1, . . . , xd+1)

for all x1, . . . , xd+1 ∈ X, then there exists a unique quadratic mappingQ : X → Y which
satisfies the equation (1.4) and the inequality

(2.5)

∥∥∥∥f(x)− f(0)

3
−Q(x)

∥∥∥∥ ≤ ε(x, . . . , x)

2d(d + 1)(1− L)

for all x ∈ X. The mappingQ is defined by

Q(x) = lim
n→∞

f(2nx)

22n

for all x ∈ X. Moreover, iff is measurable orf(tx) is continuous int ∈ R for each fixed
x ∈ X, then the mappingQ is homogeneous of degree2 overR.

Proof. It follows from (2.4) that

ε(2ix1, . . . , 2
ixd+1) ≤ (4L)iε(x1, . . . , xd+1)
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for all x ∈ X. If we take(x, . . . , x) instead of(x1, . . . , xd+1) in (2.11), we obtain

(2.6)

∥∥∥∥(d + 1

2

)
[f(2x) + f(0)]− 2d(d + 1)f(x)

∥∥∥∥ ≤ ε(x, . . . , x),

which can be rewritten in the form∥∥∥∥[f(2x)− f(0)

3

]
− 4

[
f(x)− f(0)

3

]∥∥∥∥ ≤ 2

d(d + 1)
ε(x, . . . , x),(2.7)

or,

∥∥∥∥q(2x)

4
− q(x)

∥∥∥∥ ≤ 1

2d(d + 1)
ε(x, . . . , x)

for all x ∈ X, whereq(x) := f(x) − f(0)
3

, x ∈ X. We claim that a sequence defined by{
q(2nx)

4n

}
, x ∈ X, is Cauchy in the Banach spaceY . By (2.7), we get

∥∥∥∥q(2lx)

4l
− q(2nx)

4n

∥∥∥∥ ≤ n−1∑
i=l

∥∥∥∥q(2ix)

4i
− q(2i+1x)

4i+1

∥∥∥∥(2.8)

≤ 1

2d(d + 1)

n−1∑
i=l

ε(2ix, . . . , 2ix)

4i

=
1

2d(d + 1)

n−1∑
i=l

Li ε(x, . . . , x)

for all integers withn > l ≥ 0. Hence a mappingQ : X → Y given by the formula

Q(x) = lim
n→∞

q(2nx)

4n
= lim

n→∞

f(2nx)

22n

is well defined for allx ∈ X. In addition it is clear from (2.3) that the following inequality

1

4n
‖Df(2nx1, . . . , 2

nxd+1)‖ ≤
1

4n
ε(2nx1, . . . , 2

nxd+1)

≤ Ln ε(x1, . . . , xd+1)

holds for allx1, . . . , xd+1 ∈ X and alln ∈ N. Taking the limitn →∞, we see that the mapping
Q satisfies the equation (1.4) and soQ is quadratic. Lettingl := 0 in the inequality (2.8) and
taking the limitn → ∞, we find that there exists a quadratic mappingQ : X → Y satisfying
the inequality (2.5).

To prove the afore-mentioned uniqueness, we assume that there exists a quadratic mapping
Q1 : X → Y which satisfies the equation (1.4) and the inequality

(2.9)

∥∥∥∥f(x)− f(0)

3
−Q1(x)

∥∥∥∥ ≤ ε(x, . . . , x)

2d(d + 1)(1− L)

for all x ∈ X. SinceQ and Q1 are quadratic, we see the identitiesQ(x) = 2−2nQ(2nx),
Q1(x) = 2−2nQ1(2

nx) hold for allx ∈ X and alln ∈ N. Thus it follows from inequalities (2.5)
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and (2.9) that

‖Q(x)−Q1(x)‖

=
1

22n
‖Q(2nx)−Q1(2

nx)‖

≤ 1

22n

(∥∥∥∥Q(2nx)− f(2nx) +
f(0)

3

∥∥∥∥+

∥∥∥∥f(2nx)− f(0)

3
−Q1(2

nx)

∥∥∥∥)
≤ ε(2nx, . . . , 2nx)

d(d + 1)(1− L)22n
≤ Lnε(x, . . . , x)

d(d + 1)(1− L)

for all x ∈ X and alln ∈ N. Therefore lettingn → ∞, one hasQ(x) − Q1(x) = 0 for all
x ∈ X, completing the proof of uniqueness.

The proof of last assertion in the theorem follows in the same manner as the proof of Theorem
3 in [5]. The proof is complete.

Theorem 2.3. Assume that there exists a mappingε : Xd+1 → [0,∞) for which a mapping
f : X → Y satisfies the functional inequality

‖Df(x1, x2, . . . , xd+1)‖ ≤ ε(x1, . . . , xd+1)

for all (d + 1)-variablesx1, . . . , xd+1 ∈ X. If there exists a real numberL(0 < L < 1) such
that the mappingε satisfies

(2.10) ε
(x1

2
, . . . ,

xd+1

2

)
≤ L

4
ε(x1, . . . , xd+1)

for all x1, . . . , xd+1 ∈ X, then there exists a unique quadratic mappingQ : X → Y which
satisfies the equation (1.4) and the inequality

‖f(x)−Q(x)‖ ≤ L ε(x, . . . , x)

2d(d + 1)(1− L)

for all x ∈ X. The mappingQ is defined by

Q(x) = lim
n→∞

4nf
( x

2n

)
for all x ∈ X. Moreover, iff is measurable orf(tx) is continuous int ∈ R for each fixed
x ∈ X, then the mappingQ is homogeneous of degree2 overR.

Proof. We note thatε(0, . . . , 0) = 0 impliesf(0) = 0 and

ε
(x1

2i
, . . . ,

xd+1

2i

)
≤
(

L

4

)i

ε(x1, . . . , xd+1)

for all x ∈ X. It follows from (2.7) that for all integers withn > l ≥ 0∥∥∥4lf
( x

2l

)
− 4nf

( x

2n

)∥∥∥ ≤ n−1∑
i=l

∥∥∥4if
( x

2i

)
− 4i+1f

( x

2i+1

)∥∥∥
≤ 2

d(d + 1)

n−1∑
i=l

4iε
( x

2i+1
, . . . ,

x

2i+1

)
=

1

2d(d + 1)

n−1∑
i=l

Li+1 ε(x, . . . , x)

for all x ∈ X.
The rest of the proof is similar to that of Theorem 2.2.
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If we apply Theorem 2.2 and Theorem 2.3 to each caseL := 2p

4
, p < 2 andL := 4

2p , p > 2,
we have the following corollary.

Corollary 2.4. Suppose that there exist a real numberε ≥ 0 and a realp 6= 2 such that a
mappingf : X → Y satisfies

‖Df(x1, x2, . . . , xd+1)‖ ≤ ε(‖x1‖p + · · ·+ ‖xd+1‖p)

for all (d + 1)-variablesx1, . . . , xd+1 ∈ X. Then there exists a unique quadratic mapping
Q : X → Y which satisfies the equation (1.4) and the inequality∥∥∥∥f(x)− f(0)

3
−Q(x)

∥∥∥∥ ≤ 2ε‖x‖p

d|4− 2p|

for all x ∈ X, wherex 6= 0 if p ≤ 0 andf(0) = 0 if p > 0. The mappingQ is defined by

Q(x) =

 lim
n→∞

f(2nx)
4n , if p < 2,

lim
n→∞

4nf
(

x
2n

)
, if p > 2,

for all x ∈ X.

Further, we establish other theorems about the Ulam stability problem of the equation (1.4)
as follows.

Theorem 2.5.Suppose that a mappingf : X → Y satisfies

(2.11) ‖Df(x1, x2, . . . , xd+1)‖ ≤ ε(x1, . . . , xd+1)

for all (d+1)-variablesx1, . . . , xd+1 ∈ X, and thatε : Xd+1 → R+ is a mapping such that the
series

∞∑
i=0

ε(2ix1, . . . , 2
ixd+1)

22i

converges for allx1, . . . , xd+1 ∈ X. Then there exists a unique quadratic mappingQ : X → Y
which satisfies the equation (1.4) and the inequality

(2.12)

∥∥∥∥f(x)− f(0)

3
−Q(x)

∥∥∥∥ ≤ 1

2d(d + 1)

∞∑
i=0

ε(2ix, . . . , 2ix)

22i

for all x ∈ X. The mappingQ is defined by

(2.13) Q(x) = lim
n→∞

f(2nx)

22n

for all x ∈ X. Moreover, iff is measurable orf(tx) is continuous int ∈ R for each fixed
x ∈ X, then the mappingQ is homogeneous of degree2 overR.

Proof. Now by (2.7), we have that for any integersm,n with n > m ≥ 0,∥∥∥∥q(2mx)

4m
− q(2nx)

4n

∥∥∥∥ ≤ n−1∑
i=m

∥∥∥∥q(2i+1x)

4i+1
− q(2ix)

4i

∥∥∥∥(2.14)

≤ 1

2d(d + 1)

n−1∑
i=m

ε(2ix, . . . , 2ix)

4i
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for all x ∈ X. Since the right hand side of the above inequality tends to0 asm → ∞, the se-

quence
{

q(2nx)
4n

}
is Cauchy inY and thus converges inY . Therefore, we may define a mapping

Q : X → Y as

Q(x) = lim
n→∞

q(2nx)

4n
= lim

n→∞

f(2nx)

4n

for all x ∈ X, and then by lettingn →∞ in (2.14) withm = 0 we arrive at the formula (2.12).
We claim thatQ satisfies the equation (1.4). For this purpose, we calculate the following

inequality from (2.11)

‖DQ(x1, . . . , xd+1)‖ = lim
n→∞

1

4n
‖Df(2nx1, . . . , 2

nxd+1)‖

≤ lim
n→∞

1

4n
ε(2nx1, . . . , 2

nxd+1),

which implies thatDQ(x1, . . . , xd+1) = 0 for all (x1, . . . , xd+1) ∈ X. Hence the mappingQ is
quadratic by Lemma 2.1.

The rest of the proof is similar to that of Theorem 2.2.

Theorem 2.6.Suppose that a mappingf : X → Y satisfies

‖Df(x1, x2, . . . , xd+1)‖ ≤ ε(x1, . . . , xd+1)

for all (d+1)-variablesx1, . . . , xd+1 ∈ X, and thatε : Xd+1 → R+ is a mapping such that the
series

∞∑
i=1

4iε
(x1

2i
, . . . ,

xd+1

2i

)
converges for allx1, . . . , xd+1 ∈ X. Then there exists a unique quadratic mappingQ : X → Y
which satisfies the equation (1.4) and the inequality

‖f(x)−Q(x)‖ ≤ 1

2d(d + 1)

∞∑
i=1

4iε
( x

2i
, . . . ,

x

2i

)
for all x ∈ X. The mappingQ is defined by

Q(x) = lim
n→∞

4nf
( x

2n

)
for all x ∈ X. Moreover, iff is measurable orf(tx) is continuous int ∈ R for each fixed
x ∈ X, then the mappingQ is homogeneous of degree2 overR.

Note that one hasf(0) = 0 in the above theorem becauseε(0, . . . , 0) = 0 by the convergence
of the series.

Corollary 2.7. Suppose that there exists a nonnegative real numberε for which a mapping
f : X → Y satisfies

‖Df(x1, x2, . . . , xd+1)‖ ≤ ε

for all (d + 1)-variablesx1, . . . , xd+1 ∈ X. Then there exists a unique quadratic mapping
Q : X → Y which satisfies the equation (1.4) and the inequality∥∥∥∥f(x)− f(0)

3
−Q(x)

∥∥∥∥ ≤ 2ε

3d(d + 1)

for all x ∈ X.

Remark 2.1. If d = 1 in Theorem 2.5 and Corollaries 2.4 and 2.7, then the results exactly
coincide with the classical results [2, 17, 22].
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Corollary 2.8. A mappingf : X → Y with f(0) = 0 is quadratic if and only if

sup
x1,...,xd+1

‖Df(x1, x2, . . . , xd+1)‖

is bounded for alld ≥ 1.

Proof. Let supx1,...,xd+1
‖Df(x1, x2, . . . , xd+1)‖ ≤ M < ∞ for all d ≥ 1. Then for eachd ≥ 1,

there exists a unique quadratic mappingQd : X → Y which satisfies the equation (1.4) and the
inequality

‖f(x)−Qd(x)‖ ≤ 2M

3d(d + 1)

for all x ∈ X by Corollary 2.7. Letm be a positive integer withm > d. Then, we obtain

‖f(x)−Qm(x)‖ ≤ 2M

3m(m + 1)
≤ 2M

3d(d + 1)

for all x ∈ X. The uniqueness ofQd implies thatQm = Qd for all m with m > d, and so

‖f(x)−Qd(x)‖ ≤ 2M

3m(m + 1)

for all x ∈ X. By lettingm →∞, we conclude thatf is itself quadratic.
The reverse assertion is trivial.

Remark 2.2. If we apply Theorem 2.5 and Theorem 2.6 to Corollary 2.4, then we have exactly
the same conclusion, and if we apply Theorem 2.2 to Corollary 2.7 withL := 1

4
, then we have

exactly the same conclusion.

3. APPROXIMATELY QUADRATIC M APPINGS ON RESTRICTED DOMAINS

In this section we investigate the Hyers–Ulam stability problem for the equation (1.4) on
an unbounded restricted domain. As results, we have corollaries concerning an asymptotic
property of the equation (1.4).

Theorem 3.1. Let r > 0 be fixed. Suppose that there exists a nonnegative real numberε for
which a mappingf : X → Y satisfies

(3.1) ‖Df(x1, x2, . . . , xd+1)‖ ≤ ε

for all (d + 1)-variablesx1, . . . , xd+1 ∈ X with
∑d+1

i=1 ‖xi‖ ≥ r. Then there exists a unique
quadratic mappingQ : X → Y which satisfies the equation (1.4) and the inequality

(3.2)

∥∥∥∥f(x) +
(d2 + d− 2)f(0)

2
−Q(x)

∥∥∥∥ ≤ 3ε

2

for all x ∈ X.

Proof. Taking(x1, . . . , xd+1) as(x, y, 0, . . . , 0) in (3.1) with‖x‖+ ‖y‖ ≥ r, we obtain

‖f(x + y) + f(x− y)− 2f(x)− 2f(y)− (d2 + d− 2)f(0)‖ ≤ ε,

which yields

(3.3) ‖q(x + y) + q(x− y)− 2q(x)− 2q(y)‖ ≤ ε,

for all x, y ∈ X with ‖x‖+ ‖y‖ ≥ r, where

q(x) := f(x) +
(d2 + d− 2)f(0)

2
.
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In particular, we have‖q(0)‖ ≤ ε
2

by settingy := 0 andx := t with ‖t‖ ≥ r in (3.3). Now,
assume‖x‖+ ‖y‖ < r and choose at ∈ X with ‖t‖ ≥ 2r. Then it clearly holds that

‖x± t‖ ≥ r, ‖y ± t‖ ≥ r, and ‖2t‖+ ‖x + y‖ ≥ r.

Therefore from (3.3) and the following functional identity

2
[
q(x + y) + q(x− y)− 2q(x)− 2q(y)− q(0)

]
=
[
q(x + y + 2t) + q(x− y)− 2q(x + t)− 2q(y + t)

]
+
[
q(x + y − 2t) + q(x− y)− 2q(x− t)− 2q(y − t)

]
+
[
− q(x + y + 2t)− q(x + y − 2t) + 2q(x + y) + 2q(2t)

]
+
[
2q(x + t) + 2q(x− t)− 4q(x)− 4q(t)

]
+
[
2q(y + t) + 2q(y − t)− 4q(y)− 4q(t)

]
+
[
− 2q(2t)− 2q(0) + 4q(t) + 4q(t)

]
,

we get

(3.4) ‖q(x + y) + q(x− y)− 2q(x)− 2q(y)− q(0)‖ ≤ 9ε

2

for all x, y ∈ X with ‖x‖ + ‖y‖ < r. Consequently, the last functional inequality holds for all
x, y ∈ X in view of (3.3) and (3.4). Now lettingy := x in (3.4), we obtain

‖q(2x)− 4q(x)‖ ≤ 9ε

2
.

Applying a standard procedure of direct method [9] to the last inequality, we see that there exists
a unique quadratic mappingQ : X → Y which satisfies the equation (1.4) and the inequality

‖q(x)−Q(x)‖ ≤ 3ε

2

for all x ∈ X.

Obviously our inequality (3.2) is sharper than the corresponding inequalities of Jung [13] and
J.M. Rassias [15], where the approximate estimations were equal to7

2
ε and 5

2
ε, respectively.

We note that if we defineSd+1 = {(x1, . . . , xd+1) ∈ Xd+1 : ‖xi‖ < r, ∀i = 1, . . . , d + 1} for
some fixedr > 0, then we have{

(x1, . . . , xd+1) ∈ Xd+1 :
d+1∑
i=1

‖xi‖ ≥ (d + 1)r

}
⊂ Xd+1 \ Sd+1.

Thus the following corollary is an immediate consequence of Theorem 3.1.

Corollary 3.2. If a mappingf : X → Y satisfies the functional inequality (3.1) for all
(x1, . . . , xd+1) ∈ Xd+1 \ Sd+1, then there exists a unique quadratic mappingQ : X → Y
which satisfies the equation (1.4) and the inequality (3.2)

From Theorem 3.1, we have the following corollary concerning an asymptotic property of
quadratic mappings.

Corollary 3.3. A mappingf : X → Y with f(0) = 0 is quadratic if and only if

‖Df(x1, . . . , xd+1)‖ → 0

as
∑d+1

i=1 ‖xi‖ → ∞.
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Proof. According to our asymptotic condition, there is a sequence(εm) decreasing to zero such
that‖Df(x1, . . . , xd+1)‖ ≤ εm for all (d+1)-variablesx1, . . . , xd+1 ∈ X with

∑d+1
i=1 ‖xi‖ ≥ m.

Hence, it follows from Theorem 3.1 that there exists a unique quadratic mappingQm : X → Y
which satisfies the equation (1.4) and the inequality

‖f(x)−Qm(x)‖ ≤ 3εm

2

for all x ∈ X. Let m andl be positive integers withm > l. Then, we obtain

‖f(x)−Qm(x)‖ ≤ 3εm

2
≤ 3εl

2

for all x ∈ X. The uniqueness ofQl implies thatQm = Ql for all m, l, and so

‖f(x)−Ql(x)‖ ≤ 3εm

2

for all x ∈ X. By lettingm →∞, we conclude thatf is itself quadratic.
The reverse assertion is trivial.
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