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2 S. PARVATHAM AND D. SENTHILKUMAR

1. I NTRODUCTION

Let H be an infinite dimensional separable complex Hilbert space with inner product〈., .〉
andB(H) be C∗ algebra of all bounded linear operators acting onH. For an operatorT ∈
B(H), we denoteT ∗, the adjoint ofT . The spectrum of an operatorT ∈ B(H) is denoted
by σ(T ). The range and kernel ofT is denoted by ran(T ) and ker(T ) respectively. Here an
operatorT ∈ B(H) is calledp-hyponormal for0 < p ≤ 1 if (T ∗T )p − (TT ∗)p ≥ 0; when
p = 1, T is called hyponormal; whenp = 1/2, T is called semihyponormal.T is called log-
hyponormal ifT is invertible andlog(T ∗T ) ≥ log(TT ∗) and an operatorT is called paranormal
if ‖Tx‖2 ≤ ‖T 2x‖‖x‖ for all x ∈ H or equivalentlyT ∗2T 2 − 2λT ∗T + λ2 ≥ 0 for all λ > 0.

An operatorT is called quasi paranormal if‖T 2x‖2 ≤ ‖T 3x‖‖Tx‖ for all x ∈ H andT is
calledk-quasi paranormal, if for every positive integerk, ‖T k+1x‖2 ≤ ‖T k+2x‖‖T kx‖ for all
x ∈ H. In [10] B. P. Duggal, Kubrusly, Levan, introduced and studied some properties of class
Q operators. An operatorT ∈ B(H) belongs to classQ if

T ∗2T 2 − 2T ∗T + I ≥ 0.

It is proved that an operatorT ∈ B(H) is of classQ if

‖Tx‖2 ≤ 1

2
(‖T 2x‖2 + ‖x‖2) for everyx ∈ H.

Devika, Suresh [9] introduced a new class of operators, the quasi classQ. An operatorT ∈
B(H) is said to belong to the quasi classQ if

T ∗3T 3 − 2T ∗2T 2 + T ∗T ≥ 0.

It is proved that an operatorT ∈ B(H) is of the quasi classQ if

‖T 2x‖2 ≤ 1

2
(‖T 3x‖2 + ‖Tx‖2) for everyx ∈ H.

In [20], V. R. Hamiti introduced a new class of operator calledk quasi classQ operator.

Definition 1.1. An operatorT is said to bek quasi classQ operator if, for every positive integer
k,

‖T k+1x‖2 ≤ 1

2
(‖T k+2x‖2 + ‖T kx‖2) for everyx ∈ H.

Whenk = 1, T is called quasi classQ operator.
In [20], it is also proved that,T is called quasi classQ operator if and only if

T ∗k+2T k+2 − 2T ∗k+1T k+1 + T ∗kTK ≥ 0.

Also he showed that everyk quasi paranormal operators isk quasi classQ operator, every quasi
paranormal operator is quasi classQ operator.

2. PRELIMINARIES

Let T ∈ B(H). N(T ) denotes the null space of T and letα(T ) = dimN(T ). For an
operatorT , ranT denotes the range ofT andranT denotes the closure of ranT . Let β(T ) =
dimH/ranT . T is called semi-Fredholm if it has closed range and eitherα(T ) < ∞ or β(T ) <
∞. T is called Fredholm if it is semi-Fredholm and bothα(T ) < ∞, β(T ) < ∞. T is called
Weyl if it is Fredholm of index zero, i.e.,i(T ) = α(T )− β(T ) = 0.

The Weyl spectrum ofT is defined byw(T ) = {λ ∈ C|T − λ is not Weyl }. π00(T ) denotes
the set of all eigenvalues ofT such thatλ is an isolated point ofσ(T ) and0 < α(T − λ) < ∞.
We write σe(T ) for the essential spectrum ofT . The spectral picture SP(T ) of T consists of
σe(T ), the collection of holes and pseudoholes inσe(T ) and indices associated with these holes
and pseudoholes. We say T to be isoloid if every isolated point inσ(T ) is an eigenvalue ofT .
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k - QUASI CLASSQ OPERATORS 3

The essential approximate point spectrumσea(T ) of T is defined byσea(T ) = {σa(T + K) :
K is a compact operator} , whereσa(T ) denotes the approximate point spectrum ofT .

We say that Weyl’s theorem holds forT if σ(T )/w(T ) = π00(T ). An operatorT ∈ B(H)
is said to have Bishop’s property(β) if (T − z)fn(z) → 0 uniformly on every compact subset
of D for analytic functionsfn(z) on D, thenfn(z) → 0 uniformly on every compact subset
of D. T is said to have the single valued extension property, abbreviated,T has SVEP iff(z)
is an analytic vector valued function on some open setD ⊂ C such that(T − z)f(z) = 0
for all z ∈ D, thenf(z) = 0 for all z ∈ D. M. Berkani investigated generalized Weyl’s
theorem which extends Weyl’s theorem, and proved that generalized Weyl’s theorem holds for
hyponormal operators [5]-[7].

S. Mecheri et all showed that generalized Weyl’s theorem holds for(p, k) quasi hyponormal
operators. X. Cao, M. Guo and B. Meng were proved Weyl type theorems forp hyponormal
operators. M. Berkani investigatedB Fredholm theory as follows [1], [5] - [7]. An operator
T is calledB Fredholm if there existsn ∈ N such thatran(T n) is closed and the induced
operatorT[n] : ran(T n) 3 x → Tx ∈ ran(T n) is Fredholm, i.e.,ran(T[n]) = ran(T n+1) is
closed,α(T[n]) = dim N(T[n]) < ∞ andβ(T[n]) = dim ran(T n)/ran(T[n]) < ∞. Similarly,
B Fredholm operatorT is calledB Weyl if i(T[n]) = 0.

M. Berkani and M. Sarih [7] have proved that forT ∈ B(H), If ran(T n) is closed and
T[n] is Fredholm, thenR(Tm) is closed andT[m] is Fredholm for everym ≥ n. Moreover,
indT[n] = indT[n](= indT ) and he also proved, An operatorT is B Fredholm (B Weyl) if and
only if there existT invariant subspacesM andN such thatT = T |M ⊕ T |N whereT |M is
Fredholm (Weyl) andT |N is nilpotent.

TheB Weyl spectrumσBW (T ) are defined by
σBW (T ) = λ ∈ C : T − λ is not B −Weyl ⊂ σW (T )

We say that generalized Weyl’s theorem holds forT if σ(T )|σBW (T ) = E(T ), whereE(T )
denotes the set of all isolated points of the spectrum which are eigenvalues. Note that, if the
generalized Weyl’s theorem holds forT , then so does Weyl’s theorem [6].

M. Berkani and A. Arroud showed that ifT is hyponormal, then generalized Weyl’s theorem
holds forT . Salah Mecheri, et all have defined that,T ∈ SF−

+ if R(T ) is closed,dim ker(T ) <
∞ and indT ≤ 0. Let πa

00(T ) denote the set of all isolated pointsλ of σa(T ) with 0 <
dim ker(T − λ) < ∞. Let σSF−+

(T ) = λ T − λ /∈ SF−
+ ⊂ σW (T ). a Weyl’s theorem holds

for T if σa(T ) σSF−+
(T ) = πa

00(T ). V. Rakocevic ([18], Corollary 2.5) proved that ifa Weyl’s
theorem holds forT , then Weyl’s theorem holds forT .

Also Salah Mecheri, et allT ∈ SBF−
+ if there exists a positive integern such thatran(T n)

is closed,T[n] : ran(T n) 3 x → Tx ∈ ran(T n) is upper semi-Fredholm and defined that
σSBF−+

(T ) = λ|T − λ /∈ SBF−
+ ⊂ σSF−+

. Let Ea(T ) denote the set of all isolated pointsλ

of σa(T ) with 0 < dim ker(T − λ). The quasinilpotent part ofT is defined byH0(T ) =
x ∈ H : limn→∞‖T nx‖1/n = 0. In general,H0(T ) is not closed.

3. WEYL ’ S THEOREM FOR CLASS Q OPERATORS

In this section we prove some properties of classQ operators.

Theorem 3.1. Let T ∈ B(H) be classQ operator andT 2 is isometry thenN(T − λI) ≤
N(T ∗ − λI) for each non zero complex numberλ.

Proof. SupposeT is classQ operator, thenT ∗2T 2 − 2T ∗T + I ≥ 0. This gives that2‖Tx‖2 ≤
‖T 2x‖+ ‖x‖2. Let T 2 is isometry andTx = λx, Then
2〈Tx, Tx〉 ≤ 〈T 2x, T 2x〉+ 〈x, x〉.
2λ〈T ∗x, x〉 ≤ 2|λ|2〈x, x〉. Hence‖T ∗‖ ≤ |λ|
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4 S. PARVATHAM AND D. SENTHILKUMAR

Now consider‖T ∗x− λx‖ = ‖T ∗x‖2 − 〈λx, T ∗x〉 − 〈T ∗x, λx〉+ ‖λx‖2

= ‖T ∗x‖2 − 〈λx, T ∗x〉 − 〈T ∗x, λx〉+ |λ|2‖x‖2

= ‖T ∗x‖2 − λ〈Tx, x〉 − |λ|2‖x‖2 + |λ|2‖x‖2

= |λ|2‖x‖2 − |λ|2‖x‖2

= 0.
⇒ T ∗x = λx.

Theorem 3.2.LetA be an invertible operator andT be an operator such thatT commutes with
A∗A. ThenT is classQ operator if and only ifATA−1 is classQ operator.

Proof. Let T be a classQ operator. ThenT ∗2T 2− 2T ∗T + I ≥ 0. AlsoT commutes withA∗A,
so we have(ATA−1)∗2(ATA−1)2 = AT ∗2T 2A−1 and(ATA−1)∗(ATA−1) = AT ∗TA−1. So
we have(ATA−1)∗2(ATA−1)2− 2(ATA−1)∗(ATA−1) + I = A(T ∗2T 2− 2T ∗T + I)A−1. But
A(T ∗2T 2 − 2T ∗T + I)A∗ ≥ 0.

Now considerA(T ∗2T 2− 2T ∗T + I)A∗(AA∗) = (AA∗)A(T ∗2T 2− 2T ∗T + I)A∗ Therefore
AA∗ commutes withA(T ∗2T 2 − 2T ∗T + I)A∗. Which gives that(AA∗)−1 also commutes
with A(T ∗2T 2 − 2T ∗T + I)A∗. Since(AA∗)−1 andA(T ∗2T 2 − 2T ∗T + I)A∗ are positive
A(T ∗2T 2 − 2T ∗T + I)A−1 ≥ 0. HenceATA−1 is classQ operator.
Conversely, letATA−1 be classQ operator then,

(ATA−1)∗2(ATA−1)2 − 2(ATA−1)∗(ATA−1) + I ≥ 0

A(T ∗2T 2 − 2T ∗T + I)A−1 ≤ 0

[A∗A](T ∗2T 2 − 2T ∗T + I) ≥ 0.

Also (A∗A)−1 commutes with(A∗A)(T ∗2T 2−2T ∗T +I). Since(A∗A)−1 and(A∗A)(T ∗2T 2−
2T ∗T + I) are positive then we haveT ∗2T 2 − 2T ∗T + I ≥ 0. HenceT is classQ operator.

Corollary 3.3. LetT be classQ operator andA be any positive operator such thatA−1 = A∗.
ThenS = A−1TA is classQ operator.

By simple calculation we get the result.

Theorem 3.4. If T is a classQ operator andM be a closedT -invariant subspace ofH. Then
the restrictionT |M of classQ operatorT to M is classQ operator.

Proof. Let P be an orthogonal projection onM . ThenT1 = TP = PTP . SinceT is classQ
operator

T ∗2T 2 − 2T ∗T + I ≥ 0
P (T ∗2T 2 − 2T ∗T + I)P ≥ 0

ThenT ∗21 T 2
1 − 2T ∗1 T1 + I ≥ 0 ∴ T|M is classQ operator.

Theorem 3.5. Let T ∈ B(H) be classQ operator, the range ofT does not have dense range

then T has the following2× 2 matrix representationT =

(
T1 T2

0 T3

)
onH = ran(T )⊕ ker T ∗,

thenT1 is classQ operator onran(T ) andT3 = 0. Further moreσ(T ) = σ(T1) ∪ {0}.

Proof. Let P be an orthogonal projection ofH ontoran(T ). ThenT1 = TP = PTP . By The
definition of classQ operator we have that

T ∗2T 2 − 2T ∗T + IT k ≥ 0
Which implies P (T ∗2T 2 − 2T ∗T + I)P ≥ 0
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ThenT ∗21 T 2
1 − 2T ∗1 T1 + I ≥ 0 SoT1 is classQ operator onran(T ).

Also for anyx = (x1, x2) ∈ H,

〈T3x2, x2〉 = 〈T (I − P )x, (I − P )x〉
= 〈(I − P )x, T ∗(I − P )x〉
= 0

This impliesT3 = 0
Sinceσ(T )∪τ = σ(T1)∪σ(T3) whereτ is the union of certain holes inσ(T ), which happens

to be a subset ofσ(T1) ∩ σ(T3) [by corollary 7, [20]] andσ(T3) = 0. σ(T1) ∩ σ(T3) has no
interior points. So we haveσ(T ) = σ(T1) ∪ {0}.

Corollary 3.6. Let T ∈ B(H) be a classQ operator. IfT1 is invertible, thenT is similar to a
direct sum of a classQ and nilpotent operator.

Theorem 3.7. If T ∈ B(H) is classQ with T 2 is isometry, thenasc(T − λ) ≤ 1 for all λ.

By using the above theorem and corollary we get the proof.

Corollary 3.8. If T is a classQ operator withT 2 is isometry, thenT has SVEP andT satisfies
Weyl’s theorem.

4. SPECTRAL PROPERTIES OF K -QUASI CLASS Q OPERATORS

We begin with the following theorem, this will be utilized to get the several important prop-
erties ofk quasi classQ operators.

Theorem 4.1. Let T ∈ B(H) bek quasi classQ operator for any positive integerk > 0 and

let T =

(
T1 T2

0 T3

)
on H = ran(T k) ⊕ ker T ∗k be2 × 2 matrix expression. Assume that, the

range ofT k be not dense if and only ifT1 is classQ operator onran(T k) andT k
3 = 0. Further

moreσ(T ) = σ(T1) ∪ {0}.

Proof. Suppose thatT ∈ B(H) is an operator ofk quasi classQ. Let P be the projection ofH
ontoran(T k). ThenT1 = TP = PTP .
SinceT is k quasi classQ operator, we have

P (T ∗2T 2 − 2T ∗T + I)P ≥ 0.

Then

P (T ∗2T 2)P − 2P (T ∗T )P + PIP ≥ 0

T ∗21 T 2
1 − 2T ∗1 T1 + I ≥ 0

For anyx = (x1, x2) ∈ H

〈T k
3 x2, x2〉 = 〈T k(I − P )x, (I − P )x〉

= 〈(I − P )x, T ∗k(I − P )x〉
= 0

This impliesT k
3 = 0

Sinceσ(T ) ∪M = σ(T1) ∪ σ(T3) where M is the union of the holes inσ(T ), which happens
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6 S. PARVATHAM AND D. SENTHILKUMAR

to be a subset ofσ(T1) ∩ σ(T3). Thenσ(T3) = 0 andσ(T1) ∩ σ(T3) has no interior points we
haveσ(T ) = σ(T1) ∪ {0}.

Suppose thatT =

(
T1 T2

0 T3

)
on H = ran(T k) ⊕ ker T ∗k whereT ∗21 T 2

1 − 2T ∗1 T1 + I ≥ 0,

andT k
3 = 0

T k =

(
T k

1

∑k−1
j=0 T j

1 T2T
k−1−j
3

0 0

)

T kT ∗k =

(
(T k

1 T ∗k1 ) +
∑k−1

j=0 T j
1 T2T

k−1−j
3 (

∑k−1
j=0 T j

1 T2T
k−1−j
3 )∗ 0

0 0

)
=

(
A 0
0 0

)
WhereA = A∗ = (T k

1 T ∗k1 ) +
∑k−1

j=0 T j
1 T2T

k−1−j
3 (

∑k−1
j=0 T j

1 T2T
k−1−j
3 )∗ ≥ 0.

Therefore

T kT ∗k(T ∗2T 2 − 2T ∗T + I)T kT ∗k

=

(
(A(T ∗21 T 2

1 − 2T ∗1 T1 + I)A) 0
0 0

)
≥ 0

It follows thatT ∗k(T ∗2T 2 − 2T ∗T + I)T k ≥ 0 for k > 0 onH = ran(T k)⊕ ker T ∗k. ThusT
is k quasi classQ operator.

Corollary 4.2. Let T be k quasi classQ operator. IfT is quasi nilpotent, then it must be a
nilpotent operator.

Proof. SinceT is quasi nilpotent operator,σ(T ) = {0}. SinceT is k quasi classQ operator
and "by Theorem 4.1", we haveσ(T ) = σ(T1) ∪ {0}. Thenσ(T1) = {0}. This implies that
T1 = 0. But T k

3 = 0, So

T k+1 =

(
0 T2T

k
3

0 T k+1
3

)
= 0.

ThereforeT is nilpotent operator.

Corollary 4.3. If T is ak quasi classQ operator withσ(T ) ⊆ {0, 1}, thenT k+1 = T k+2.

Proof. By Theorem 4.1, we haveσ(T1) ⊆ {0, 1}. SinceT1 is classQ operator, then we say it is
a projection. SoT 2

1 = T1.
By simple calculation we haveT k+1 = T k+2.

Theorem 4.4.LetT be an operator onH
⊕

K, whereK be an infinite dimensional separable

Hilbert space andT is defined asT =

(
T1 T2

0 0

)
. If T is classQ operator, thenT is quasi

classQ operator.

Proof. Calculate,T ∗(T ∗2T 2 − 2T ∗T + I)T

=

(
T ∗1 0
T ∗2 0

)
{
(

T ∗21 0
T ∗2 T ∗1 0

) (
T 2

1 0
T2T1 0

)
− 2

(
T ∗1 0
T ∗2 0

) (
T1 T2

0 0

)
+

(
1 0
0 1

)
}

(
T1 T2

0 0

)
=

(
T ∗1 0
T ∗2 0

)
{
(

T ∗21 T 2
1 0

T ∗2 T ∗1 T 2
1 0

)
− 2

(
T ∗1 T1 T ∗1 T2

T ∗2 T1 T ∗2 T2

)
+

(
1 0
0 1

)
}

(
T1 T2

0 0

)
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=

(
T ∗1 (T ∗21 T 2

1 − 2T ∗1 T1 + I)T1 T ∗1 (T ∗21 T 2
1 − 2T ∗1 T1 + I)T2

T ∗2 (T ∗21 T 2
1 − 2T ∗1 T1 + I)T1 T ∗2 (T ∗21 T 2

1 − 2T ∗1 T1 + I)T2

)
≥ 0

Let u = x
⊕

y ∈ H
⊕

K.

Then 〈(T ∗(T ∗2T 2 − 2T ∗T + I)T )u, u〉

= (T ∗1 (T ∗21 T 2
1 − 2T ∗1 T1 + I)T1)x, x〉+ 〈(T ∗1 (T ∗21 T 2

1 − 2T ∗1 T1 + I)T2)y, x〉
+ 〈(T ∗2 (T ∗21 T 2

1 − 2T ∗1 T1 + I)T1)x, y〉+ 〈(T ∗2 (T ∗21 T 2
1 − 2T ∗1 T1 + I)T2)y, y〉

= 〈(T ∗21 T 2
1 − 2T ∗1 T1 + I)(T1x + T2y), (T1x + T2y)〉 ≥ 0.

SinceT1 is classQ operator,T ∗21 T 2
1 − 2T ∗1 T1 + I ≥ 0.

ThereforeT is quasi classQ operator.

Corollary 4.5. LetT be an operator onH
⊕

K, whereK be an infinite dimensional separable

Hilbert space andT is defined asT =

(
T1 T2

0 0

)
. If T1 is class Q operator, thenT is k quasi

classQ operator.

Proof. By ’Theorem 4.4’, we have,
〈(T ∗k(T ∗2T 2 − 2T ∗T + I)T k)u, u〉

= 〈(T ∗21 T 2
1 − 2T ∗1 T1 + I)(T k

1 x + T k−1
1 T2y), (T k

1 x + T k−1
1 T2y)〉 ≥ 0.

SinceT1 is classQ operator.

Theorem 4.6. Let T ∈ B(H) be an algebraicallyk quasi classQ operator andσ(T ) = µ0,
thenT − µ0 is nilpotent.

Proof. Assumep(T ) is k quasi classQ operator for some non constant polynomialp(z). Since
σ(p(T )) = p(σ(T )) = p(µ0). This implies thatp(T )− p(µ0) is nilpotent (by Corollary 4.3).

Let p(z)− p(µ0) = a(z − µ0)
k0(z − µ1)

k1 .....(z − µt)
kt whereµj 6= µs for j 6= s. We have

0 = p(T )− p(µ0) gives0 = (p(T )− p(µ0))
m = am(T − µ0)

mk0(T − µ1)
mk1 .....(T − µt)

mkt.
This gives(T − µ0)

mk0 = 0. That is(T − µ0)
n. ThereforeT − µ0 is nilpotent.

Theorem 4.7. Let T bek quasi classQ operator,λ ∈ C, and assume thatσ(T ) = λ. Then
T = λ.

Proof. Suppose thatλ = 0. SinceT is k quasi classQ operator,T is normaloid. Therefore
T = 0. Suppose thatλ 6= 0. SinceT is invertiblek quasi classQ, T−1 is alsok quasi class
Q. This implies that T is normaloid andσ(T−1) = {1/λ}. Then‖T‖ ‖T−1‖ = 1. HenceT is
convexoid. ThereforeW (T ) = {λ}. Which givesT = λ.

Theorem 4.8. let T be an algebraicallyk quasi classQ operator, thenT is polaroid.

Proof. If T is an algebraicallyk quasi classQ operator, thenp(T ) is ak quasi classQ operator
for some non constant polynomialp(z). Let µ ∈ isoσ(T ) andEµ be the Riesz idempotent
associated toµ defined by,

Eµ :=
1

2πi

∫
σD

(λI − T )−1dλ,

whereD is the cl points of the osed disc centered atµ which contains no othersupremum ofT .

ThenT can be represented as follows

(
T1 0
0 T2

)
, whereσ(T1) = {µ} andσ(T2) = σ(T )\{µ}.

SinceT1 is algebraicallyk quasi classQ operator andσ(T1) = {µ}, then by Theorem 4.7,
T1 − µI is nilpotent. ThereforeT1 − µI has finite ascent and descent. Henceµ is a pole of the
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8 S. PARVATHAM AND D. SENTHILKUMAR

resolvent ofT . Now if µ ∈ isoσ(T ) thenµ ∈ π(T ). Thusisoσ(T ) ∈ π(T ), whereπ(T ) denote
the set of poles of the resolvent ofT . HenceT is polaroid.

Theorem 4.9. let T bek quasi classQ operator, thenT is isoloid.

Proof. Let λ ∈ isoσ(T ) and letP =
1

2πi

∫
∂D

(µ − T )−1dµ be the associated Riesz idempo-

tent,whereD is a closed disc centered atλ which contains no other points ofσ(T ). Therefore

Now T =

(
T1 0
0 T2

)
, whereσ(T1) = {λ} andσ(T2) = σ(T ) \ {λ}. SinceT is algebraicallyk

quasi classQ operator, thenp(T ) is ak quasi classQ operator for some non constant polynomial
p. Sinceσ(T1) = {λ} we must haveσ(p(T1)) = p(σ(T1)) = {p{λ}}. Thereforep(T1)− p(λ)
is quasi nilpotent by Theorem 4.6. Then we havep(T1) − p(λ) = 0 put q(z) = p(z) − p(λ)
thenq(T1) = 0 and henceT1 is algebraically classQ. By Theorem 4.7,T1 − (λ) is nilpotent.
Thereforeλ ∈ π0(T1) =⇒ λ ∈ π0(T ). HenceT is isoloid.

Theorem 4.10.LetT ∈ B(H) bek quasi classQ operator , thenT has SVEP.

Proof. If the range ofT k is dense thenT is classQ. By Theorem 4.1, the range ofT k is not

dense we haveT =

(
T1 T2

0 T3

)
on H = ranT k ⊕ kerT ∗k. Let D be an open subset ofC and

fn(z) be analytic function onD to H. Assume(T − z)fn(z) → 0 uniformly on every compact
subset ofD. Putfn(z) = fn1(z)⊕ fn2(z) onH = ranT k ⊕ kerT ∗k.
Then(

T1 − z T2

0 T3 − z

) (
fn1(z)
fn1(z)

)
=

(
(T1 − z)fn1(z) + T2fn2(z)

(T3 − z)fn2(z)

)
.

SinceT3 is nilpotent,T3 has bishop propertyβ. Hence uniformly on every compact subset of
D. Then(T1 − z)fn1(z) → 0. SinceT1 is classQ, T1 has bishop propertyβ. HenceT has
SVEP. Sincefn1(z) → 0 uniformly on every compact subset ofD.

Corollary 4.11. LetT be ak quasi classQ operator. Then the following assertions hold:
(i) σea(f(T )) = f(σea(T )), for every analytic functionf on some open neighborhood ofσ(T ).
(ii) T obeys a-Browder’s theorem, thatT is σea(T ) = σab(T )
(whereσab(T ) =

⋂
σa(T + K) : TK = KTand K is a compact operator.

(iii) a Browder’s theorem holds forf(T ) for every analytic functionf on some open neighbor-
hood ofσ(T ).

Proof. Note that above theorem implies thatT has SVEP. By [3], (i) follows. Assertion (ii) is
a consequence of ([7], Corollary 2.3). Sinceσea(f(T )) = f(σea(T )), the rest of the argument
follows as in ([7], Corollary 2.3).

Theorem 4.12.An operator quasi similar to ak quasi classQ operator has SVEP.

Proof. Let T be k quasi classQ. SupposeS is an operator quasi similar toT . Then there
exist an injective operatorA with dense range such thatAS = TA. Let U be an open set
and f : U → H be an analytic function for which(S − zI)f(z) = 0 on U . Then0 =
A(S − zI)f(z) = (T − zI)Af(z) for all z in U . SinceT has SVEP, we findAf(z) = 0. Since
A is injective, it is immediate thatf(z) = 0 for all z in U .

Theorem 4.13.Weyl’s theorem holds for ak quasi classQ operatorT .

Proof. Let λ ∈ σ(T )|w(T ). ThenT − λ is weyl and not invertible. Ifλ is an interior point of
σ(T ) there exists an open setG such thatλ ∈ G ⊂ σ(T )|w(T ). HencedimN(T − µ) > 0 for
all µ ∈ G andT does not have the single valued extension property. Which is a contradiction to
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Theorem 4.10. Henceλ is a boundary point ofσ(T ) and hence an isolated point ofσ(T ). Thus
λ ∈ π00(T ).

Let λ ∈ π00(T ) andEλ be the Riesz idempotent forλ of T . Then0 < dimN(T − λ) < ∞,
T = T |EλH ⊕ T |(I−Eλ)H σ(T |EλH) = λ andσ(T |(I−Eλ)H) = σ(T )|λ. By Theorem 4.1,T |EλH

is k quasi classQ operator.
If λ 6= 0 then T |EλH = λ. HenceEλH ⊂ N(T − λ) and Eλ is of finite rank. Since

(T−λ)|(I−Eλ)H is invertible,(T−λ) = 0|EλH⊕(T−λ)|(I−Eλ)H is Weyl. Henceλ ∈ σ(T )|w(T ).
If λ = 0, then(T |E0H)k = 0. HenceE0H ⊂ N(T k) anddim E0H ≤ dim N(T k) ≤

k dim N(T ) < ∞. ThenT |(I−Eλ)H is compact. SinceT |(I−E0)H is invertible,λ ∈ σ(T )|w(T )

Corollary 4.14. Weyl’s theorem holds for everyk quasi classQ operatorT .

Proof. Let T ∈ B(H) is ak quasi classQ operator. Then by Theorem 4.1,T has the following
matrix representation,

T =

(
T1 T2

0 T3

)
onH = ran(T k)⊕ ker T ∗k

whereT1 is classQ operator,T3 is nilpotent operator. Therefore Weyl’s theorem holds for
because Weyl’s theorem holds for classQ operator and nilpotent operator and both classQ

operator and nilpotent operator are isoloid. Hence Weyl’s theorem holds forT =

(
T1 T2

0 T3

)
becauseSP (T3) has no pseudoholes.

Theorem 4.15.Generalized Weyl’s theorem holds fork quasi classQ operatorT .

Proof. Let λ ∈ σ(T )|σBW (T ). ThenT − λ is B weyl and not invertible. Then

(T − λ) = (T − λ)|M ⊕ (T − λ)|N
where(T − λ)|M is Weyl and(T − λ)|N is nilpotent.

The caseM = 0 or N = 0 is easy to prove. For the caseM 6= 0 andN 6= 0, we assume
that λ ∈ σ(T |M). In this caseT |M is k quasi classQ operator by Theorem 4.1, andλ ∈
σ(T |M)|σw(T |M) = π00(T |M) Henceλ is an isolated point ofσ(T |M) and an eigenvalue of
T |M . Henceλ is an eigenvalue ofT . Also, (T − λ)|N is nilpotent, soλ is an isolated point of
σ(T ). Henceλ ∈ E(T ).

Secondly we assumeλ /∈ σ(T |M). In this case,(T −λ)|N is nilpotent, andλ is an eigenvalue
of T |N andT . Since(T − λ)|M is invertible,λ is an isolated point ofσ(T ). Henceλ ∈ E(T ).
Conversely, letλ ∈ E(T ). Sinceλ is an isolated point ofσ(T ), (T − λ) = (T − λ)|EλH ⊕
T |(I−Eλ)H whereEλ denotes the Riesz idempotent forλ of T . Then(T − λ)|EλH is k quasi
classQ by Theorem 1 andσ(T |EλH) = λ.

If λ 6= 0 thenT |EλH = λ. Hence(T −λ) = 0|EλH ⊕ (T −λ)|(I−Eλ)H Since(T −λ)|(I−Eλ)H

is invertible,(T − λ) is B Weyl. Henceλ ∈ σ(T )|(σBW (T )).
If λ = 0 , then(T |EλH)k = 0. Henceλ ∈ σ(T )|(σBW (T ))

Theorem 4.16.Letm be a positive integer andλ ∈ isoσ(T ).
(1) The following assertions are equivalent:

(a)EH = ker(T − λ)m.
(b) kerE = (T − λ)mH.

(2) If λ ∈ p0(T ) and the order ofλ is m, the following assertions are equivalent:
(a) E is self-adjoint.
(b) ker(T − λ)m = ker(T − λ)∗m.
(c) ker(T − λ)m ⊆ ker(T − λ)∗m.
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Theorem 4.17.LetT be ak quasi classQ operator andλ ∈ C.
(1) H0(T ) = kerT k+1, and ifλ 6= 0 , thenH0(T − λ) = ker(T − λ).

(2) LetT =

(
λ T2

0 T3

)
. onker(T −λ)⊕ [(T −λ)∗H]. if 0 6= λ ∈ isoσ(T ) andker(T3)

∗ = 0,

thenE = E∗

Proof. The local spectral subspaceXT (F ) of T is closed for every closed setF ⊆ C. Thus
H0(T − λ) = XT−λ(0) is closed andσ(S) ⊆ λ whereS = T |H0(T−λ). Moreover,S is k quasi
classQ operator. Ifσ(S) is empty, thenH0(T − λ) = 0 andker(T − λ) = 0. If σ(S) is not
empty, thenσ(S) = λ. By Theorem 4.15,S1+k = 0 whenλ = 0, andS = λ whenλ 6= 0.
Hence (i) is true.

By Theorem 4.15,Theorem 4.8 and Theorem 4.9,λ is a simple pole of the resolvent ofT and
it is sufficient to proveker(T − λ) ⊆ ker(T − λ)∗, that is,T2 = 0. In fact,λ ∈ isoσ(T ) ⊂
ρ(T3)∪isoσ(T3). SinceT3 isk quasi classQ operator and isoloid by Theorem 4.15, Theorem4.8
and 4.9, this together withker(T3−λ) = 0 implies thatλ ∈ ρ(T3). HenceT2T

k
3 = 0 andT2 = 0

by the assumptionker(T3)
∗ = 0. Thereforeker(T − λ) ⊆ ker(T − λ)∗.

Theorem 4.18.If T ∗ is k quasi classQ, then Weyl’s theorem holds forT .

Proof. By Theorem 4.15, we haveσ(T ∗) \ (σBW (T ∗)) = E(T ∗).
It is obvious that(σ(T ∗) \ σBW (T ∗))∗ = σ(T )|(σBW (T )). Hence we have to show that

(E(T ∗)∗) = E(T )
Let λ∗ ∈ E(T ∗). Thenλ is an isolated point ofσ(T ). Let Fλ∗ denotes the Riesz idempotent for
λ∗ of T ∗.

If λ∗ 6= 0, Fλ∗ is self-adjoint,0 6= Fλ∗H = N((T − λ)∗) = N(T − λ). Henceλ ∈ E(T ).
If λ∗ = 0, thenT ∗ \ F0 is k quasi classQ operator by Theorem 4.1 and(T ∗|F0H)k = 0. Hence
T ∗kF0 = 0. Let E0 = F ∗

0 be the Riesz idempotent for 0 ofT . ThenT kE0 = (T ∗kF0)
∗ = 0.

HenceT |E0H is nilpotent. Thus0 = λ ∈ E(T ).
Conversely, Letλ ∈ E(T ). Thenλ∗ is an isolated point ofσ(T ∗). Let Fλ∗ be the Riesz

idempotent forλ∗ of T ∗. if λ 6= 0, thenFλ∗ is self adjoint and0 6= Fλ∗H = N((T − λ)∗) =
N(T − λ). Henceλ∗ = E(T ∗). Let λ = 0. SinceT ∗|F0H is k quasi classQ operator and
σ(T ∗|F0H) = 0 we have(T ∗|F0H)k = 0. this implies that(T ∗|F0H) is nilpotent. Thus0 = λ∗ ∈
E(T ∗).

Corollary 4.19. If T ∗ is k quasi classQ, thena Weyl’s theorem holds forT .

Corollary 4.20. If T ∗ is k quasi classQ, then generalizeda Weyl’s theorem holds forT .

5. CONCLUSION

Weyl’s theorem plays an important role in operator theory. We proved that, "Weyl’s theorem
hold for classQ, quasi classQ andk quasi classQ operators with the condition thatT 2 is
isometry".
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