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2 S. FARVATHAM AND D. SENTHILKUMAR

1. INTRODUCTION

Let H be an infinite dimensional separable complex Hilbert space with inner prdduct
and B(H) be C'x algebra of all bounded linear operators actingfén For an operatofl” €
B(H), we denotel™, the adjoint of7". The spectrum of an operatér € B(H) is denoted
by o(T). The range and kernel df is denoted by rafi() and ker{") respectively. Here an
operator’ € B(H) is calledp-hyponormal for0 < p < 1if (T*T)" — (T'T*)? > 0; when
p = 1, T'is called hyponormal; whep = 1/2, T is called semihyponormall is called log-
hyponormal ifT is invertible andog(T*T) > log(TT*) and an operatdr is called paranormal
if | 72| < ||T2x|||=| for all z € H or equivalentlyl*27? — 2\T*T + A\* > 0 for all A > 0.

An operatorT is called quasi paranormal i ?z||?> < | T3x||||Tx]|| for all z € H andT is
calledk-quasi paranormal, if for every positive inteder|| 7% x||? < ||T*+2x|||| Tz || for all
x € H. In[10] B. P. Duggal, Kubrusly, Levan, introduced and studied some properties of class
() operators. An operatdr € B(H) belongs to clas§ if

T#2T? —2T*T + 1 > 0.
It is proved that an operatd@r € B(H) is of class() if

1
|72 < ST + |2]|?) for everya € H.

Devika, Suresh [9] introduced a new class of operators, the quasi@lags operator]’ €
B(H) is said to belong to the quasi clagsf

T3T3 — 2T**T? + T*T > 0.
It is proved that an operatdr € B(H) is of the quasi clasg if

|T2%z|> < =(||T3x|]* + ||Tx|]?) for everyx € H.

1
2
In [20], V. R. Hamiti introduced a new class of operator callegliasi class) operator.
Definition 1.1. An operator! is said to be: quasi class) operator if, for every positive integer
k,

T4 2] < (720 + [ T4a]?) for everya € H.

1

2
Whenk = 1, T is called quasi clas§ operator.

In [20], it is also proved thafl" is called quasi clas® operator if and only if

T*k+2Tk+2 . 2T*k+1Tk+1 + T*kTK 2 0.

Also he showed that evefyquasi paranormal operatorskigjuasi class) operator, every quasi
paranormal operator is quasi clag®operator.

2. PRELIMINARIES

Let T € B(H). N(T) denotes the null space of T and letl’) = dimN(T'). For an
operatorT’, ranT denotes the range @ andranT denotes the closure of rah Let 3(T) =
dimH /ranT. T is called semi-Fredholm if it has closed range and eitt{éi) < oo or 5(T) <
oo. T'is called Fredholm if it is semi-Fredholm and betfil") < co, [(T) < oo. T is called
Weyl if it is Fredholm of index zero, i.ei(T") = «(T) — B(T") = 0.

The Weyl spectrum dof" is defined byw(7") = {\ € C|T — X is not Weyl }. moo(7") denotes
the set of all eigenvalues @f such that\ is an isolated point of (7') and0 < a(T — \) < oc.

We write 0. (7T") for the essential spectrum @f. The spectral picture SPJ of 7' consists of
o.(T), the collection of holes and pseudoholesif7") and indices associated with these holes
and pseudoholes. We say T to be isoloid if every isolated poiat is an eigenvalue of.
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The essential approximate point spectram(7’) of T' is defined by, (T) = {c,(T + K) :
K is a compact operator} , where, (7') denotes the approximate point spectruni of

We say that Weyl's theorem holds fa@t if o(T")/w(T) = mo(T). An operatorl’ € B(H)
is said to have Bishop’s property) if (1" — z) f,(z) — 0 uniformly on every compact subset
of D for analytic functionsf,,(z) on D, then f,(z) — 0 uniformly on every compact subset
of D. T is said to have the single valued extension property, abbreviatbds SVEP iff(z)
is an analytic vector valued function on some openi3et. C' such that(T — z)f(z) = 0
forall z € D, thenf(z) = 0 for all z € D. M. Berkani investigated generalized Weyl's
theorem which extends Weyl's theorem, and proved that generalized Weyl's theorem holds for
hyponormal operator§|[5]-[7].

S. Mecheri et all showed that generalized Wey!'s theorem holdgfdr) quasi hyponormal
operators. X. Cao, M. Guo and B. Meng were proved Weyl type theoremsltigponormal
operators. M. Berkani investigatddl Fredholm theory as follows [1], [5] £[7]. An operator
T is called B Fredholm if there exista € N such thatran(7™) is closed and the induced
operatorly, : ran(T") 3 « — Tz € ran(T™) is Fredholm, i.e.ran(Ty,) = ran(T") is
closed,«(T},)) = dim N(T})) < oo and3(T},)) = dim ran(T™)/ran(Ty,)) < oo. Similarly,

B Fredholm operataf’ is called5 Weyl if i(T},)) = 0.

M. Berkani and M. Sarih[|7] have proved that fér ¢ B(H), If ran(T™) is closed and
T is Fredholm, then?(7™) is closed andlj,, is Fredholm for everyn > n. Moreover,
indTy, = indI}, (= indT’) and he also proved, An operaffris B Fredholm (3 Weyl) if and
only if there existl” invariant subspace®/ andN such thatl’ = T'|M & T|N whereT|M is
Fredholm (Weyl) and’| N is nilpotent.

The B Weyl spectrunv sy (T') are defined by

opw(T)=XeC:T —Xisnot B—Weyl C ow(T)
We say that generalized Weyl's theorem holdsfoif o(T")|ocgw(T) = E(T), whereE(T)
denotes the set of all isolated points of the spectrum which are eigenvalues. Note that, if the
generalized Weyl's theorem holds for then so does Weyl's theorem [6].

M. Berkani and A. Arroud showed thatif is hyponormal, then generalized Weyl’s theorem
holds forT". Salah Mecheri, et all have defined thatc SF if R(T) is closeddim ker(T') <
oo andindl” < 0. Letnf,(T") denote the set of all isolated pointsof o,(7) with 0 <
dim ker(T — \) < oo. Let Ospr (T)=AT—X¢ SF; C ow(T). a Weyl's theorem holds
for T'if o,(T) USF;(T) = 78,(T). V. Rakocevic ([18], Corollary 2.5) proved thatdfWeyl's
theorem holds foff’, then Weyl's theorem holds far.

Also Salah Mecheri, et all' € SBF'_ if there exists a positive integersuch thatran(7™)
is closed, T}, : ran(T") > * — Tz € ran(1™) is upper semi-Fredholm and defined that
USBF;(T) = NT —X¢ SBF_ C Ogp- Let E*(T) denote the set of all isolated points
of 0,(T) with 0 < dim ker(T — X\). The quasinilpotent part df is defined byHy(T) =
x € H : limy,_o||T"2||*/™ = 0. In general Hy(T) is not closed.

3. WEYL'S THEOREM FOR CLASS Q OPERATORS

In this section we prove some properties of cl@ssperators.

Theorem 3.1.LetT € B(H) be class@ operator andT™? is isometry thenV (T — \I) <
N(T* — \I) for each non zero complex number

Proof. Supposel” is class() operator, thefT™*T? — 27*T + [ > 0. This gives tha||Tz||* <
|T?z|| + ||z||*. LetT? is isometry and’z = Az, Then

2Tz, Tx) < (T?*x, T?*x) + (z,z).

2MT*z, x) < 2|\*(x, z). Hence||T*|| < ||
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Now considet| T*z — Az|| = | T*z||*> — Az, T*z) — (T*z, \z) + |[Xz?
= | T*z|]> = Qa, T*x) — (T*z, Ax) + [AP*]|]|?

= |T*2|* = M(Tx,2) — [AP[|]]* + M2

= [AP[|]]* = [AP? ]|l

=0.

= Tz = \z. I

Theorem 3.2.Let A be an invertible operator and@ be an operator such th&t commutes with
A*A. ThenT is classQ operator if and only ifAT A~ is class() operator.

Proof. Let T be a clas$) operator. Thed™ 27?2 — 27*T + 1 > 0. AlsoT commutes with4* A,
so we have ATA 1)*2(ATA™Y)? = AT?T?A~ ! and(ATA ) (ATA™') = AT*TA™!. So
we have(AT A1) 2(AT A2 — 2(ATA~1)*(AT A1) + I = A(T*2T? — 2T*T + I)A~'. But
A(T*T? = 2T*T + I)A* > 0.

Now considerA(T**T? — 2T*T + 1) A*(AA*) = (AA*)A(T**T? — 2T*T + I) A* Therefore
AA* commutes withA(T**T? — 27T + I)A*. Which gives that AA*)~! also commutes
with A(T**T? — 2T*T + I)A*. Since(AA*)~! and A(T**T? — 2T*T + I)A* are positive
A(T*T? = 2T*T + I)A~' > 0. HenceAT A~! is class() operator.

Conversely, letdAT A~! be class) operator then,
(ATA Y2 (ATA™)? — 2 ATA Y)Y (ATA ™D +1>0
A(T?T? = 2T*T + 1) A~ <0
[A*A(T**T? — 2T*T + I) > 0.
Also (A*A)~ commutes with A*A)(T*2T? —2T*T +I). Since(A*A)~! and(A* A)(T**T? —
2T*T + I) are positive then we havE?T? — 27*T + I > 0. HenceT is classQ operator.
|

Corollary 3.3. LetT be class operator andA be any positive operator such that! = A*.
ThenS = A~'T A is classQ operator.

By simple calculation we get the result.

Theorem 3.4.1f T'is a class( operator andM be a closed -invariant subspace off. Then
the restrictionT’|, of class@ operatorT to M is class() operator.

Proof. Let P be an orthogonal projection aWW. ThenT; = TP = PTP. SinceT is class@
operator

T2 - 2T*T +1>0
P(T**T? — 2T*T + I)P > 0
ThenTy*T7 — 2771y + 1 > 0. T}y is class) operator.y
Theorem 3.5.LetT € B(H) be classp operator, the range of’ does not have dense range
T T3 _ T x
0 Tg) onH =ran(T) ® ker T*,
thenT; is class@ operator onran(T) andT3 = 0. Further mores(T') = o(T}) U {0}.

then T has the following x 2 matrix representatiofi’ = (

Proof. Let P be an orthogonal projection éf ontoran(7T"). ThenTy = TP = PTP. By The
definition of classy operator we have that

T27? - 2T*T + IT* >0
Which implies  P(T**T? — 2T*T + I)P > 0
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ThenT;*T? — 2771y + I > 0 SoT; is class) operator onran(T).
Also for anyx = (z1,29) € H,

(Tsx9,x9) = (T'(I — P)z,(I — P)x)
(I — P)x, T*(I — P)x)

{
0
This impliesT; =0
Sinceo(T')UT = o(T1)Ua(T3) wherer is the union of certain holes in(7"), which happens
to be a subset of (77) N o(T3) [by corollary 7, [20]] ands(73) = 0. o(Ty) N o(T3) has no
interior points. So we have(T') = o(7}) U {0}.
|

Corollary 3.6. LetT € B(H) be a class) operator. IfT; is invertible, therll” is similar to a
direct sum of a clas® and nilpotent operator.

Theorem 3.7.1f T € B(H) is class@ with T? is isometry, themsc(T — \) < 1 for all .
By using the above theorem and corollary we get the proof.
Corollary 3.8. If T is a class() operator with7? is isometry, thed” has SVEP and’ satisfies
Weyl's theorem.
4. SPECTRAL PROPERTIES OF K-QUASI CLASS Q OPERATORS

We begin with the following theorem, this will be utilized to get the several important prop-
erties ofk quasi class) operators.

Theorem 4.1.LetT € B(H) bek quasi classy operator for any positive integet > 0 and

letT = (T01 ?) on H = ran(T*) @ ker T** be 2 x 2 matrix expression. Assume that, the
3

range of I'* be not dense if and only 1, is classQ operator onran(T*) andTy¥ = 0. Further
moreo(T) = o(17) U {0}.

Proof. Suppose thdl’ € B(H) is an operator of quasi class). Let P be the projection off
ontoran(T*). ThenT; = TP = PTP.
SinceT is k quasi class) operator, we have

P(T**T2 — 2T*T + I)P > 0.
Then
P(T*T*)P — 2P(T*T)P + PIP >0
TP2T? — 2T Ty + 1> 0
For anyz = (z1,22) € H
(T5ws, 9) = (
(

T"(I — P)z,(I — P)x)
(I — P)x, T**(I — P)x)
0

This impliesT? =0
Sinceo(T) U M = o(Ty) U o(T3) where M is the union of the holes in(T"), which happens
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to be a subset af (77) N o(73). Theno(73) = 0 ando(71) N o(T3) has no interior points we

haveo(T') = o(T1) U {0}.

Suppose thal” = I T
0 T

and7¥ =0

) on H = ran(T*) & ker T** whereT}?T? — 2171, + 1 > 0,

_ (Tf >0 TszTf‘l‘j)
0 0

— ((TFTI*’“) S LT (S Ty o)

0 0
(A0
—\0 0
Whered = A* = (TFT{F) + Y TIT Ty (X5 TIL T ) > 0.
Therefore
((A(Tf?Tf — 2171 + 1)A) 0)
= 0 0) =0

It follows thatT**(T**T? — 2T*T + I)T* > 0 for k > 0 on H = ran(T*) & ker T**. ThusT
is k quasi class) operator.g

Corollary 4.2. LetT be k quasi class) operator. IfT" is quasi nilpotent, then it must be a
nilpotent operator.

Proof. SinceT is quasi nilpotent operatos;(7') = {0}. SinceT is k quasi clasg) operator
and "by Theorem 4|1", we havgT) = o(T}) U {0}. Theno(T7) = {0}. This implies that

Ty, = 0. But7Ty =0, So
0 ToT¥
Th+1 _ (0 Tiffl) = 0.

Thereforel is nilpotent operatom
Corollary 4.3. If T'is ak quasi class) operator witha (T') C {0, 1}, thenT*™! = T*+2,

Proof. By Theorenj 4.1, we hawe(T;) C {0,1}. SinceT} is class) operator, then we say it is
a projection. SA? = Tj.
By simple calculation we havg++! = T2 g

Theorem 4.4. LetT be an operator or{ € K, whereK be an infinite dimensional separable

Hilbert space andl’ is defined ag” = (Tl 13

0 0 ) If T is class(@ operator, thenl’ is quasi

class() operator.
Proof. Calculate T (T*2T? — 2T*T + I)T

()10 o) (e ) -2 o) (6 )0 2 (i o)
+

Iy 0), TRTE 0\ _, (T TiTy V(0 T
Ty 0) \ 13172 0 Ty TiTy o 1 0 0
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TH(TPTE - 20T + DTy Ty (TP - 210 + DT
T\ THTRT2 2Ty + DTy Ty (TRT? — 21Ty + DTy ) =

Letu=2@Pyc HPK.

Then ((T*(T**T? —2T*T + IT)u, u)

= (TH(T72TE — 2171y + DTy )x, o) + (TF(T72TE — 2171, + 1) Ty)y, x)
+ (T5(Ty*TE = 215 + 1Tz, y) + (T (T2 17 — 2171y + 1Ta)y, y)

= ((Ty*TE = 2T Ty + I)(Thvx + Toy), (Thx + Toy)) > 0.
SinceT} is class@ operator ;2T — 27Ty + I > 0.
Thereforel is quasi clasg) operator.g

Corollary 4.5. LetT be an operator o/ ) &, whereK be an infinite dimensional separable
Hilbert space and’ is defined ag" = (7& :'(;2
class( operator.

Proof. By 'Theorem{ 4.4’, we have,
((T*’“(T*QT2 — 27T + ])Tk)u, u)

= ((T7°T7 = 217y + I)(TFx + T Toy), (Te + TF ' Tay)) > 0.
SinceT; is class operator.p

). If T is class Q operator, theft' is k£ quasi

Theorem 4.6.LetT € B(H) be an algebraicallyt quasi class) operator ando (1) = p,
thenT — p, is nilpotent.

Proof. Assumep(T') is k quasi class) operator for some non constant polynomiéd). Since
o(p(T)) = p(a(T)) = p(uy)- This implies thap(T') — p(y,) is nilpotent (by Corollary 413).

Letp(2) — pko) = alz — p19)™ (2 — py)* ...z — p)™ wherep; # p, for j # s. We have
0 = p(T) — p(ko) givesO = (p(T) — p(k))™ = a™ (T — p1g) ™ (T — py)™* oo (T — pg)™*.
This gives(T — yy)™ = 0. Thatis(T — p,)". Thereforel’ — i, is nilpotent.n

Theorem 4.7.LetT be k quasi class) operator,A € C, and assume that(7) = A. Then
T=M\

Proof. Suppose thah = 0. SinceT is k quasi class) operator, T’ is normaloid. Therefore
T = 0. Suppose thak # 0. SinceT is invertiblek quasi class), 7! is alsok quasi class
Q. This implies that T is normaloid ang(7~') = {1/A}. Then||T|| |T~!|| = 1. HenceT is
convexoid. ThereforéV (T") = {\}. Which givesT’ = \. i

Theorem 4.8.let T' be an algebraicallyt quasi clasg) operator, theril” is polaroid.

Proof. If T'is an algebraically: quasi class) operator, them(7") is ak quasi class) operator
for some non constant polynomia(z). Letu € isoo(T) and £, be the Riesz idempotent
associated tg defined by,

R 1 —1
E, = 5 [ oM =T)71adA,
whereD is the cl points of the osed disc centereg.athich contains no othersupremum’of
ThenT can be represented as folloé%1 :IQ ) ,Whereo (T}) = {u} ando (Ts) = o(T)\{p}.
2

SinceT; is algebraicallyk quasi clasg) operator andr(7;) = {u}, then by Theorerh 47,
T, — pl is nilpotent. Thereford’ — pI has finite ascent and descent. Hepas a pole of the
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resolvent ofl". Now if i € isoo(T') thenu € 7n(T). Thusisoo(T') € n(T), wherer(7T') denote
the set of poles of the resolvent6f Hencéel' is polaroid.n

Theorem 4.9.let T be k quasi clasg) operator, theril" is isoloid.

1 . . .
Proof. Let A € isoo(T) and letP = 5 Jop (1 — T)~'dp be the associated Riesz idempo-
VX

tent,whereD is a closed disc centered &atwhich contains no other points ef 7). Therefore
Now 7" = ](;1 T0> whereo (T1) = {\} ando(T,) = o(T') \ {\}. SinceT is algebraicallyk
2

quasi clasg) operator, them(T") is ak quasi clasg) operator for some non constant polynomial
p. Sinceo(T1) = {\} we must haver(p(71)) = p(o(T1)) = {p{\}}. Thereforep(T;) — p(A)

is quasi nilpotent by Theorem 4.6. Then we hay&,) — p(\) = 0 putq(z) = p(z) — p(\)
theng(71) = 0 and hencd; is algebraically clas§). By Theorenj 4]77; — ()) is nilpotent.
Therefore) € my(T7) = X € mo(T"). HenceT  is isoloid. §

Theorem 4.10.LetT € B(H) bek quasi classy operator , theril” has SVEP.

Proof. If the range of7'™* is dense thefl" is class). By Theore, the range @ is not
T Ty
0 T3
fn(z) be analytic function oD to H. Assume(T' — z) f,,(z) — 0 uniformly on every compact
subset ofD. Putf,(z) = fu,(2) ® fu,(2) ONH = ranT* @& kerT**.
Then
(Tl -z T2 ) (fm(z)) _ <(T1 - Z)fm (Z) + TQfm(Z))

0 Ty—z)\fulz)) (T5 = 2) s (2) '
SinceT3 is nilpotent, 73 has bishop property. Hence uniformly on every compact subset of
D. Then(Ty — 2)f,,(2) — 0. SinceT; is class@, T} has bishop property. HenceTl has
SVEP. Sincef,,, (z) — 0 uniformly on every compact subset bf. g

dense we havé’ = on H = ranT* @ kerT**. Let D be an open subset 6f and

Corollary 4.11. LetT be ak quasi clasg) operator. Then the following assertions hold:

(i) oea(f(T)) = f(0e(T)), for every analytic functiorf on some open neighborhooda(fr").
(if) T obeys a-Browder's theorem, thatis 0., (1) = 04, (T)

(whereo,,(T) = (N oo(T + K) : TK = KTand K is a compact operator.

(iii) « Browder’s theorem holds fof (7") for every analytic functiorf on some open neighbor-
hood ofo (7).

Proof. Note that above theorem implies th&thas SVEP. By[[3], (i) follows. Assertion (ii) is
a consequence of ([7], Corollary 2.3). Sineg(f(T)) = f(ce(T)), the rest of the argument
follows as in ([7], Corollary 2.3)1

Theorem 4.12.An operator quasi similar to & quasi classy operator has SVEP.

Proof. Let 7' be k quasi clasg). SupposeS is an operator quasi similar t6. Then there
exist an injective operatad with dense range such thatS = T A. Let U be an open set
and f : U — H be an analytic function for whicltS — zI)f(z) = 0 onU. Then( =
A(S —zI)f(z) = (T — zI)Af(z) forall zin U. SinceT has SVEP, we findlf(z) = 0. Since
A is injective, it is immediate thaf(z) = O forall zin U.

Theorem 4.13.Weyl's theorem holds for & quasi class) operatorT.

Proof. Let A € o(T")|w(T). ThenT — X is weyl and not invertible. I\ is an interior point of
o(T) there exists an open sétsuch thats € G C o(T")|w(T). HencedimN (T — p) > 0 for
all 4 € G andT does not have the single valued extension property. Which is a contradiction to

AJMAA Vol. 16, No. 2, Art. 17, pp. 1-11, 2019 AJMAA


http://ajmaa.org

k - QUASI CLASSQ OPERATORS 9

Theorenj 4.10. Henckis a boundary point of (7") and hence an isolated point®fI’). Thus
A S 7T0()(T).

Let A € moo(7') and £, be the Riesz idempotent farof 7. Then0 < dimN (T — \) < oo,
T = T|E>\H D T’(I—EA)H O’(T’E/\H) = A andO'(T’(]_EA)H) = O'(T)l)\ By TheoreT|E>\H
is k quasi class) operator.

If A # 0thenT|g, g = X\. HenceE,H C N(T — \) and E, is of finite rank. Since
(T—=N)|(1-gyu isinvertible,(T—X) = 0| g, u®(T— )| (1—g,)u is Weyl. Hence\ € o(T)|w(T).

If X = 0, then(T|g,x)* = 0. HenceEyH C N(T*) anddim EcH < dim N(T*) <
kdim N(T) < co. ThenT|(;_g,)u is compact. SINC&'|(;_ g,y is invertible A € o(T)|w(T') a

Corollary 4.14. Wey!'s theorem holds for evekyquasi clasg) operator?'.

Proof. LetT € B(H) is ak quasi class) operator. Then by Theorem 41 has the following
matrix representation,

T = ho T on H = ran(T*) & ker T**
0 Tj
where T is class@) operator,T3 is nilpotent operator. Therefore Weyl’'s theorem holds for
because Weyl's theorem holds for clag@soperator and nilpotent operator and both cl@ss
operator and nilpotent operator are isoloid. Hence Weyl's theorem holds i@r(j(;l ?)
3
because P(T5) has no pseudoholes.

Theorem 4.15.Generalized Weyl's theorem holds foquasi clasg) operatorT'.
Proof. Let A € o(T)|opw (T'). ThenT — X\ is B weyl and not invertible. Then
(T=2) =T =N & (T =Ny

where(T — \)|y is Weyl and(T — \)|x is nilpotent.

The caseV = 0 or N = 0 is easy to prove. For the cagé #* 0 and N # 0, we assume
that \ € o(T|y). In this caseT|y is k quasi clasg) operator by Theorern 4.1, and €
o(T|m)|ow(T|a) = meo(T|ar) Hencel is an isolated point of(7'|,,) and an eigenvalue of
T|m. Hencel is an eigenvalue df'. Also, (7" — A)|x is nilpotent, so\ is an isolated point of
o(T). HenceX € E(T).

Secondly we assume¢ o(T|,,). In this case(T — )| is nilpotent, and\ is an eigenvalue
of T'|y andT'. Since(T — \)|, is invertible,\ is an isolated point of (7). Hence\ € E(T).
Conversely, let € E(T'). Since is an isolated point of(7), (T'— ) = (T — A\)|g,u @
T|(1-g,n Where E denotes the Riesz idempotent forof 7. Then(T' — \)|g,u is k quasi
class@ by Theorem 1 and(7|g, n) = .

If X # 0thenT|g, gz = A\. Hence(T' — \) = 0|, 5 ® (T — N)|(1—g,)m Since(T — \)|—e)u
is invertible,(T" — \) is B Weyl. Hence\ € o(T)|opw (T)).

If \=0,then(T|g,u)* = 0. HenceX € o(T)|osw(T)) 1

Theorem 4.16.Letm be a positive integer andl € isoo(T).
(1) The following assertions are equivalent:
(@Q)FH = ker(T — \)™.
(b) kerE = (T — \)™H.
(2) If X € po(T) and the order of\ is m, the following assertions are equivalent:
(a) E' is self-adjoint.
(b) ker(T — \)™ = ker(T — \)*™.
(€) ker(T — X\)™ C ker(T — \)*™.
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Theorem 4.17.LetT be ak quasi class) operator and\ € C.
(1) Ho(T) = kerT*1, and if A # 0, thenHy(T — \) = ker(T — \).

(2) LetT = ())\ ;2) onker(T—AN) @ [(T—A\)*H]. if 0 # X € isoo(T) andker(Ts)* =0,
3
thenE = £~

Proof. The local spectral subspacér(F') of T is closed for every closed sét C C. Thus
Hy(T — ) = X7p_»(0) is closed andr(S) C A whereS = T'|y,(r—»). Moreover,S is k quasi
class@ operator. Ifo(S) is empty, thenHy(T — A\) = 0 andker(T — A) = 0. If o(5) is not
empty, thens(S) = . By Theoren] 4.155'*% = 0 when\ = 0, andS = A when\ # 0.
Hence (i) is true.

By Theorenj 4.15, Theorejn 4.8 and Theofen 4.8, a simple pole of the resolvent ®fand
it is sufficient to proveker(T — \) C ker(T — \)*, thatis, 7, = 0. In fact, A € isoo(T) C
p(T3)Uisoo (T3). SinceTs is k quasi class) operator and isoloid by Theorém 4]15, Thedrem4.8
and 4.9, this together wither (73— \) = 0 implies that\ € p(T3). Hencel,T§ = 0 andT = 0
by the assumptioker(73)* = 0. Thereforeker(T' — \) C ker(T — \)*. 1

Theorem 4.18.1f T* is k quasi clasg), then Weyl's theorem holds far.

Proof. By Theorenj 4.15, we have(T™) \ (o pw (T*)) = E(T™).

It is obvious that(o(7*) \ opw (T%))* = o(T)|wosw(T)). Hence we have to show that
(E(T")") = E(T)

Let \* € E(T*). Then\ is an isolated point of (T"). Let F\« denotes the Riesz idempotent for
A" of T,

If \* # 0, F)+ is self-adjoint,0 # F\»H = N((T'— \)*) = N(T'— \). Hence\ € E(T).

If \* =0, thenT™ \ Fy is k quasi clasg) operator by Theorem 4.1 ari@™ |z, )" = 0. Hence
T**Fy = 0. Let Ey = F be the Riesz idempotent for 0 . ThenT*E, = (T**F,)* = 0.
HenceT |,y is nilpotent. Thus) = A € E(T).

Conversely, Letx € E(T). Then\" is an isolated point of (7). Let F)- be the Riesz
idempotent for\*™ of 7. if A # 0, thenF)- is self adjoint and) # F\-H = N((T — \)*) =
N(T — X). Hence\" = E(T*). Let A = 0. SinceT*|p, g is k quasi class) operator and
o(T*| o) = 0 we have(T*|p,)* = 0. this implies tha{ T*|, ) is nilpotent. Thug) = \* €
E(T*).

1
Corollary 4.19. If T* is k quasi clasg), thena Weyl's theorem holds fdF.

Corollary 4.20. If T is k quasi clas€), then generalized Weyl's theorem holds fcF.

5. CONCLUSION

Weyl's theorem plays an important role in operator theory. We proved that, "Weyl's theorem
hold for class@, quasi clasg) and k quasi class) operators with the condition th&t? is
isometry".
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