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1. I NTRODUCTION

Let E be a Banach space and letBE = {x ∈ E : ||x|| = 1}, thenE is said to be strictly
convex if for anyx, y ∈ BE andx 6= y implies ||x+y||

2
< 1. E is also said to be uniformly

convex if for eachε ∈ (0, 2], there existsδ > 0 such that for anyx, y ∈ BE, ||x − y|| ≥ ε

implies ||x+y||
2

≤ 1 − δ. It is known that a uniformly convex Banach space is reflexive and
strictly convex. Themodulus of convexityof E is the functionδE : (0, 2] → [0, 1] defined by

δE(ε) := inf
{

1−
∣∣∣∣∣∣x + y

2

∣∣∣∣∣∣ : x, y ∈ BE; ε = ||x− y||
}

.

E is uniformly convexif and only if δE(ε) > 0 for all ε ∈ (0, 2] andp-uniformly convexif
there is aCp > 0 such thatδE(ε) ≥ Cpε

p for anyε ∈ (0, 2]. Clearly, every p-uniformly convex
Banach space is uniformly convex. For example, see [3, 36] for more details.

A Banach space E is said to be smooth if the limitlim
t→0

||x + ty|| − ||x||
t

exists for allx, y ∈ BE

and is said to be uniformly smooth if the limit is attained uniformly forx, y ∈ BE. It is well
known that Hilbert and the LebesgueLp(1 < p ≤ 2) spaces are 2-uniformly convex and uni-
formly smooth.

The mappingJp(x) (p > 1) from E to 2E∗ defined by

Jp(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||||x∗||, ||x∗|| = ||x||p−1} ∀x ∈ E,

is called the generalised duality mapping. Ifp = 2, thenJ2 = J is the normalised duality map-
ping. If E is smooth, strictly convex and reflexive, thenJ∗ = J−1, whereJ∗ : E∗ → 2E is the
the normalized duality mapping onE∗. Also, if E is uniformly convex and uniformly smooth,
thenJ is uniformly norm-to-norm continuous on bounded subsets ofE andJ−1 = J∗ is also
uniformly norm-to-norm continuous on bounded subsets ofE∗. Let E be a reflexive, strictly
convex and smooth Banach space and letJ be the duality mapping fromE into E∗, thenJ−1 is
also single-valued, one-to-one, surjective, and it is the duality mapping fromE∗ into E. Some
other properties of the normalised duality mappings includes:
(1) For everyx ∈ E, Jx is nonempty closed convex and bounded subset ofE∗.
(2) If E is smooth orE∗ is strictly convex, thenJ is single-valued.
(3) If E is strictly convex, thenJ is one-one.
(4) If E is reflexive, thenJ is onto.
(5) If E is strictly convex, thenJ is strictly monotone, that is,〈x − y; Jx − Jy〉 > 0; for all
x; y ∈ E such thatx 6= y.
For more properties of the normalized duality mappingJ , see for example [1, 35].

Let E be a Banach space and letE∗ be the topological dual ofE, let the duality pairing between
E andE∗ be denoted〈., .〉. Let C be a nonempty, closed and convex subset ofE. In this paper,
we consider the following Variational Inequality Problem (VIP) introduced by Stampacchia
[23], which is to find a point̄x ∈ C such that

〈A(x̄), x− x̄〉 ≥ 0, ∀x ∈ C,(1.1)

whereA : E → E∗ is a single-valued mapping. The solution set of VIP (1.1) shall be denoted
by V I(C, A). The VIP is considered invaluable and have been studied extensively due to its
applications to numerous problems arising in differential equations, mechanics, contact prob-
lems in elasticity, optimization and control problems, management science, operations research
and general equilibrium problems in economics and transportation. In both Hilbert and Banach
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spaces, variant iterative methods have been utilized to study and approximate solutions of VIP
(1.1) whenA has some monotonicity and Lipschitz continuity properties, (see, for example,
[5, 6, 9, 10, 11, 16, 17, 18, 21, 22, 24, 31, 32, 37] and the reference therein.)

An operatorA of C into E∗ is said to be
(i) monotone if〈x− y, A(x)− A(y)〉 ≥ 0,∀x, y ∈ C.
(ii) α-inverse-strongly-monotone if there exists a positive real numberα such that

〈x− y, A(x)− A(y)〉 ≥ α||A(x)− A(y)||2,∀x, y ∈ C.

(iii) L-Lipschitz continuous if there exists a constantL > 0 such that||A(x) − A(y)|| ≤
L||x− y||,∀x, y ∈ C.
Clearly, everyα-inverse-strongly-monotone mapping is monotone and1

α
-Lipschitz continuous.

But, the converse is not true.
(iv) β-strongly monotone if there exists a positive real numberβ such that

〈x− y, A(x)− A(y)〉 ≥ β||x− y||2,∀x, y ∈ C.

The gradient method in which only one projection onto the feasible set is performed is a simple
method for finding the approximate solution of variational inequalities. This process is to start
with any x0 = x ∈ C and generate iteratively the subsequent termxn+1 according to the
formula

xn+1 = ΠCJ−1(Jxn − τnA(xn)), n ≥ 0,(1.2)

whereΠC , is the generalised projection mapping fromE ontoC, J is the normalised duality
mapping andτn is a sequence of positive numbers. However, the convergence of this method
requires a slightly strong assumption that operators are strongly monotone or inverse strongly
monotone [13].

Many authors have succeeded to remove the assumption of strongly monotone or inverse strongly
monotone in frame works of both Hilbert and Banach spaces by adapting the extrgradient
method proposed by Korpelevich [21] for saddle point problems to variational inequality prob-
lems. More precisely, the Korpelevich’s extragradient method for a monotone and L-Lipschitz
continuous operatorA : E → E∗ is designed as follows: x0 ∈ E,

yn = ΠCJ−1(Jxn − µA(xn)),
xn+1 = ΠCJ−1(Jxn − µA(yn)).

(1.3)

whereµ ∈ (0, 1
L
). If the solution setV I(C, A) is nonempty then the sequence{xn} generated

by process (1.3) converges weakly to an element inV I(C, A) (May we point out here that the
original Korpelevich’s extragradient method was in the frame work of Hilbert spaces where the
generalised projection reduces to the metric projection and the normalised duality mappingJ
is the identity operator on the Hilbert space). In recent years, the extragradient method has
received great attention and many authors have come out with some improved version of it,
see, e.g., [6, 7, 8, 9, 10, 12, 14, 15, 17, 20, 26, 27, 30, 33, 34, 40, 41, 46] and the references
therein. The extragradient method has its own drawback due to the requirement to calculate two
projections onto the feasible setC. Since the projection onto a closed convex setC is related to
a minimum distance problem, ifC has a complex structure, this might be costly with respect to
the amount of computation time.

One of the notable iterative algorithm that have be used to overcome this drawback is the sub-
gradient extragradient method (see, e.g. [8, 9, 10, 25]). In the subgradient extragradient method,
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the second projection in Korpelevich’s extragradient method is replaced by a projection onto a
half-space which is computed explicitly. Precisely, the subgradient extragradient method in
Banach spaces is given as follows:

x0 ∈ E,
yn = ΠCJ−1(Jxn − τnA(xn)),
Tn = {w ∈ E : 〈Jxn − τnA(xn)− Jyn, w − yn〉 ≤ 0},
xn+1 = ΠTnJ−1(Jxn − τnA(yn)).

(1.4)

Using this type of iterative algorithm (withΠC = PC andJ the indentity operator), Censor et
al. [10], obtained a weak convergence result in Hilbert space.

Liu [25] presented a modified subgradient extragradient algorithm in Banach spaces for finding
a solution of the variational inequality (1.1) which is also a fixed point of a given relatively
nonexpansive mapping. His algorithm is as follows: For mappingsA, S : E → E and a closed
and convex subsetC of E, define three iterative sequences{xn}, {yn} and{zn} by:

x0 ∈ E,
yn = ΠCJ−1(xn − τnA(xn)),
Tn = {w ∈ E : 〈w − yn, Jxn − τnA(xn)− Jyn〉 ≤ 0},
wn = ΠTnJ−1(xn − τnA(yn)),
zn = J−1(αnJx0 + (1− αn)Jwn),
xn+1 = J−1(βnJxn + (1− βn)JS(zn)).

(1.5)

Under the condition thatA is monotone and Lipschitz, he obtained a strong convergence result
in 2-uniformly convex and uniformly smooth Banach spaces, whereS is a relatively nonexpan-
sive mapping.

We observe here that the results of Liu [25] requires the prior knowledge of the Lipschitz con-
stant of the cost operatorA, which is sometimes very difficult to compute. This raises a very
natural and important question of the possibility of an iterative algorithm for approximating a
common solution of variational inequality (1.1) and a fixed point problem for a relatively non-
expansive mapping which does not depend on the prior knowledge of the Lipschitz constant of
the cost operatorA. This question has been answered in the frame work of Hilbert spaces, for
example see Thong and Hieu [39].

Motivated by the works of Thong and Hieu [39] and Liu [25], we contribute to the ongoing
research by proposing a self adaptive iterative method without linesearch which is independent
of the Lipschitz constant of the cost operator for finding a solution of variational inequality (1.1)
which is also a common fixed point of an infinite family of relatively nonexpansive mappings
in the frame work 2-uniformly convex and uniformly smooth Banach spaces.

2. PRELIMINARIES

Let E be a smooth Banach space, Alber [2], introduced the following Lyapunov functional
φ : E × E → R defined as:

φ(x; y) = ||x||2 − 2〈x; Jy〉+ ||y||2;

for all x; y ∈ E. Observe that, in a Hilbert spaceH, φ(x; y) = ||x − y||2 for all x; y ∈ H. It is
clear from the definition ofφ that for allx; y; z; w ∈ E,

(||x|| − ||y||)2 ≤ φ(x; y) ≤ (||x||+ ||y||)2.(2.1)
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φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉.(2.2)

2〈x− y, Jz − Jw〉 = φ(x, w) + φ(y, z)− φ(x, z)− φ(y, w).(2.3)

φ(x, y) = 〈x, Jx− Jy〉+ 〈y − x, Jy〉 ≤ ||x||||Jx− Jy||+ ||y − x||||y||.(2.4)

If E is additionally assumed to be strictly convex, then

φ(x, y) = 0 if and only if x = y.(2.5)

Lemma 2.1. (see[29]) Let E be a uniformly convex and smooth Banach space and let{xn}
and{yn} be two sequences ofE. If φ(xn, yn) → 0 and either{xn} or {yn} is bounded, then
xn − yn → 0.

Lemma 2.2. (see[32]) Let E be a 2-uniformly convex and smooth Banach space. Then, for
everyx, y ∈ E, φ(x, y) ≥ c1||x− y||2, wherec1 > 0 is the 2-uniformly convexity constant ofE.

The following mappingV : E × E∗ → R was studied in Alber [2]:

V (x, x∗) = ||x||2 − 2〈x, x∗〉+ ||x∗||2,(2.6)

for all x ∈ E andx∗ ∈ E∗. Clearly, V (x, x∗) = φ(x, J−1(x∗)) for all x ∈ E andx ∈ E∗.
For eachx ∈ E, the mappingg defined byg(x∗) = V (x, x∗) for all x∗ ∈ E∗ is a continuous,
convex function fromE∗ into R.

Lemma 2.3. (see[2]) Let E be a reflexive, strictly convex and smooth Banach space and letV
be as in(2.6). Then

V (x, x∗) + 2〈J−1(x∗)− x, y∗〉 ≤ V (x, x∗ + y∗),

for all x ∈ E andx∗, y∗ ∈ E∗.

Let C be a nonempty, closed and convex subset of a reflexive, strictly convex and smooth
Banach spaceE, then for eachx ∈ E (see Alber [2]), there exists a unique elementx̄ ∈ C such
thatφ(x̄, x) = miny∈C φ(y, x). The mappingΠC : E → C, defined byΠC(x) = x̄, is called the
generalized projection mapping fromE ontoC andx̄ is called the generalized projection ofx.
If E is a Hilbert space, then the generalized projectionΠC coincides with the metric projection
PC .

Lemma 2.4. (see[16, 29]) LetC be a nonempty closed and convex subset of a smooth Banach
spaceE andx ∈ E. Then,x̄ = ΠC(x) if and only if〈x̄− y, Jx− Jx̄〉 ≥ 0, ∀y ∈ C.

Lemma 2.5. (see[16, 29]) LetE be a reflexive, strictly convex and smooth Banach space, letC
be a nonempty closed and convex subset ofE and letx ∈ E. Thenφ(y, ΠC(x))+φ(ΠC(x), x) ≤
φ(y, x),∀y ∈ C.

LetC be a nonempty closed and convex subset of a smooth, strictly convex and reflexive Banach
spaceE andT be a mapping fromC into itself. A pointx ∈ C is said to be a fixed point of
T if Tx = x. We denote the set of fixed points ofT by F (T ). A point p ∈ C is said to
be an asymptotic fixed point ofT if there exists{xn} in C which converges weakly top and
limn→∞ ||xn − Txn|| = 0. We denote the set of all asymptotic fixed points of T byF̂ (T ).

Definition 2.1. ([29, 32]) A mappingT of C into itself is said to be relatively nonexpansive if
the following conditions are satisfied:
(i) F (T ) is nonempty;
(ii) φ(u, Tx) ≤ φ(u, x),∀u ∈ F (T ), x ∈ C;

(iii) F̂ (T ) = F (T ).
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Lemma 2.6. (see[29]) LetE be a strictly convex and smooth Banach space, letC be a closed
convex subset ofE, and letT be a relatively nonexpansive mapping fromC into itself. Then
F (T ) is closed and convex.

An operatorA of C into E∗ is said to be hemicontinuous if for allx, y ∈ C, the mappingf
of [0, 1] into E∗ defined byf(t) = A(tx + (1 − t)y) is continuous with respect to the weak∗

topology ofE∗.

Lemma 2.7. (see[16]) Let C be a nonempty, closed and convex subset of a Banach space
E and A a monotone, hemicontinuous operator ofC into E∗. ThenV I(C, A) = {u ∈ C :
〈v − u, A(v)〉 ≥ 0, ∀v ∈ C}.

It is obvious from Lemma 2.7 that the setV I(C, A) is a closed and convex subset ofC.

Lemma 2.8. (see[28]) Let {an} be a sequence of real numbers such that there exists a sub-
sequence{ni} of {n} such thatani

< ani+1 for all i ∈ N. Then there exists a nondecreasing
sequence{mk} of N such thatlimk→∞mk = ∞ and the following properties are satisfied by
all (sufficiently large) numberk ∈ N:

amk
≤ amk+1 and ak ≤ ank+1.

In fact,mk = max{j ≤ k : aj < aj+1}.

Lemma 2.9. (see[43]) Let {an} be a sequence of nonnegative real numbers satisfying the
following relation:

an+1 ≤ (1− αn)an + αnδn, n ≥ n0,

where{αn} ⊂ [0, 1] and {δn} is a sequence of real numbers satisfying
∑∞

n=1 αn = ∞,
limn→∞ αn = 0 and lim sup δn ≤ 0. Thenlimn→∞ an = 0.

Lemma 2.10. (see[44]) Let E be a uniformly convex Banach space and letr > 0. Then there
exists a continuous strictly increasing convex functiong : [0, 2r] → R such thatg(0) = 0 and

||tx + (1− t)y||2 ≤ t||x||2 + (1− t)||y||2 − t(1− t)g(||x− y||),
for all x, y ∈ Br(0) andt ∈ [0, 1], whereBr(0) = {z ∈ E : ||z|| ≤ r}.

3. M AIN RESULTS

In this section, we will always assume the following conditions.
A1. E is a 2-uniformly convex and uniformly smooth Banach space with the 2-uniformly

convexity constantc1 andC is a nonempty closed convex subset ofE.
A2. The mappingA : E → E∗ is monotone and Lipschitz continuous onC with Lipschitz

constantL > 0.
A3. Tj : E → E ( For each j ≥ 1) is a relatively nonexpansive mapping.
A4. V I(C, A) ∩ (∩∞j=1F (Tj)) 6= ∅.

We now present a viscosity type subgradient extragradient algorithm for finding a point in the
solution set of a variational inequality problem which is also a common fixed point of a infinite
family of relatively nonexpansive mappings in 2-uniformly convex Banach spaces which are
uniformly smooth. We further state and prove a strong convergence result with the proposed
algorithm.

Algorithm 3.1. Initialization: Givenτ 0 > 0, µ ∈ (0, c1), and arbitraryx0 ∈ E.
Step 1.Computeyn = ΠCJ−1(Jxn − τnA(xn)).
Step 2.Computezn = ΠTnJ−1(Jxn − τnA(yn)), where

Tn = {w ∈ E : 〈w − yn, Jxn − τnA(xn)− Jyn〉 ≤ 0}.
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Step 3.Computexn+1 = J−1(αnJv + βnJzn +
∑∞

j=1 γn,jJTj(zn))
and

τn+1 =

 min
{ µ||xn − yn||
||A(xn)− A(yn)||

, τn

}
, if A(xn) 6= A(yn),

τn, Otherwise.
(3.1)

Lemma 3.2. The sequence{τn} generated by(3.1) is a nonincreasing sequence and

lim
n→∞

τn = λ ≥ min
{

τ 0,
µ

L

}
.

Proof. See the proof of Lemma 3.1 in [45].

Lemma 3.3. Let {xn}, {yn} and{zn} be the sequences generated in Algorithm 3.1 andu ∈
V I(C, A) ∩ (∩∞j=1F (Tj)). Then,

φ(u, zn) ≤ φ(u, xn)−
(
1− µτn

c1τn+1

)
φ(yn, xn)−

(
1− µτn

c1τn+1

)
φ(zn, yn).(3.2)

Proof.

φ(u, zn) ≤ φ(u, J−1(Jxn − τnA(yn)))− φ(zn, J
−1(Jxn − τnA(yn)))

= φ(u, xn) + φ(xn, J
−1(Jxn − τnA(yn))) + 2〈u− xn, τnA(yn)〉

−φ(zn, xn)− φ(xn, J
−1(Jxn − τnA(yn)))− 2〈zn − xn, τnA(yn)〉

= φ(u, xn)− φ(zn, xn)− 2τn〈zn − u, A(yn)〉.(3.3)

SinceA is monotone, we have2τn〈A(yn)−A(u), yn−u〉 ≥ 0. Therefore, adding2τn〈A(yn)−
A(u), yn − u〉 to the right hand side of (3.3), we obtain

φ(u, zn) ≤ φ(u, xn)− φ(zn, xn)− 2τn〈zn − u, A(yn)〉+ 2τn〈A(yn)− A(u), yn − u〉
= φ(u, xn)− φ(zn, xn) + 2τn〈A(yn), yn − u〉

−2τn〈A(u), yn − u〉 − 2τn〈zn − u, A(yn)〉
= φ(u, xn)− φ(zn, xn) + 2τn〈yn − zn, A(yn)〉 − 2τn〈A(u), yn − u〉
= φ(u, xn)− φ(zn, xn) + 2τn〈yn − zn, A(yn)− A(xn)〉

+2τn〈A(xn), yn − zn〉 − 2τn〈A(u), yn − u〉.(3.4)

But by the Cauchy Schwartz inequality and the definition ofτn, we have

2τn〈yn − zn, A(yn)− A(xn)〉 ≤ 2τn||A(yn)− A(xn)||||yn − zn||

≤ 2µ
τn

τn+1

||yn − xn||||yn − zn||

≤ µτn

τn+1

||yn − xn||2 +
µτn

τn+1

||yn − zn||2

≤ µτn

c1τn+1

φ(yn, xn) +
µτn

c1τn+1

φ(zn, yn).(3.5)

Again, by the definition ofTn, we have

〈zn − yn, Jxn − τnA(xn)− Jyn〉 ≤ 0,

which implies

2τn〈A(xn), yn − zn〉 ≤ 2〈Jyn − Jxn, zn − yn〉
= φ(zn, xn)− φ(zn, yn)− φ(yn, xn).(3.6)
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It then follows from (3.4), (3.5) and (3.6) that

φ(u, zn) ≤ φ(u, xn)− φ(zn, xn) +
µτn

c1τn+1

φ(yn, xn) +
µτn

c1τn+1

φ(zn, yn) + φ(zn, xn)

−φ(zn, yn)− φ(yn, xn)− 2τn〈A(u), yn − u〉.(3.7)

Obviously, fromu ∈ V I(C, A), we have〈A(u), yn − u〉 ≥ 0, Thus, we have from (3.7) that

φ(u, zn) ≤ φ(u, xn)−
(
1− µτn

c1τn+1

)
φ(yn, xn)−

(
1− µτn

c1τn+1

)
φ(zn, yn).(3.8)

Theorem 3.4.Let{αn}, {βn} and{γn,j}∞j=1, be sequences chosen in(0, 1) such that

(i) limn→∞ αn = 0,
(ii)

∑∞
n=1 αn = ∞,,

(iii) 0 < a ≤ βn,
∑∞

j=1 γn,j < b < 1 and
(iv) αn + βn +

∑∞
j=1 γn,j = 1.

Suppose the conditions A1-A4 hold, then the sequence{xn} generated by Algorithm(3.1)con-
verges strongly top = ΠV I(C,A)∩(∩∞j=1F (Tj))v.

Proof. First, we show that{xn} is bounded.
Then From Lemma 3.2, we have

lim
n→∞

(
1− µτn

c1τn+1

)
= 1− µ

c1

> 0.

This implies that there existsn0 ∈ N such that1− µτn

c1τn+1
> 0,∀n ≥ n0. Thus from Lemma 3.3,

we haveφ(p, zn) ≤ φ(p, xn),∀n ≥ n0. Therefore, for alln ≥ n0, we have

φ(p, xn+1) = φ
(
p, J−1(αnJv + βnJzn +

∞∑
j=1

γn,jJTj(zn))
)

≤ αnφ(p, v) + βnφ(p, zn) +
∞∑

j=1

γn,jφ(p, Tj(zn))

≤ αnφ(p, v) + βnφ(p, zn) +
∞∑

j=1

γn,jφ(p, zn)

= αnφ(p, v) + (1− αn)φ(p, zn)

≤ αnφ(p, v) + (1− αn)φ(p, xn)

≤ max{φ(p, v), φ(p, xn)}
...

≤ max{φ(p, v), φ(p, xn0)}.(3.9)

Hence the sequence{φ(p, xn)} is bounded and consequently, we have that{xn} is bounded.
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We now continue with the rest of the proof. From Lemma 2.3, we have

φ(p, xn+1) = V
(
p, αnJv + βnJzn +

∞∑
j=1

γn,jJTj(zn)
)

≤ V (p, αnJv + βnJzn +
∞∑

j=1

γn,jJTj(zn)− αn(Jv − Jp))

−〈J−1(αnJv + βnJzn +
∞∑

j=1

γn,jJTj(zn)− p,−αn(Jv − Jp)〉

= V
(
p, αnJp + βnJzn +

∞∑
j=1

γn,jJTj(zn)
)

+ αn〈xn+1 − p, Jv − Jp〉

= φ
(
p, J−1(αnJp + βnJzn +

∞∑
j=1

γn,jJTj(zn))
)

+ αn〈xn+1 − p, Jv − Jp〉

≤ αnφ(p, p) + βn(p, zn) +
∞∑

j=1

γn,jφ(p, Tj(zn)) + αn〈xn+1 − p, Jv − Jp〉

≤ βn(p, zn) +
∞∑

j=1

γn,jφ(p, zn) + αn〈xn+1 − p, Jv − Jp〉

= (1− αn)φ(p, zn) + αn〈xn+1 − p, Jv − Jp〉
≤ (1− αn)φ(p, xn) + αn〈xn+1 − p, Jv − Jp〉, ∀n ≥ n0.(3.10)

Let us now consider two cases.
Case 1:Assume that there existsn1 ∈ N such thatφ(p, xn+1) ≤ φ(p, xn) for all n ≥ n1. Then

{φ(p, xn)} converges andlimn→∞(φ(p, xn+1) − φ(p, xn)) = 0. Setwn = J−1
(

βn

1−αn
Jzn +

P∞
j=1 γn,j

1−αn
JTj(zn)

)
. Then

xn+1 = J−1(αnJv + (1− αn)Jwn).

Now, since{xn} and{zn} are bounded, there existsr > 0 such that{xn}, {zn} ∈ Br(0).
Therefore, by Lemma 2.10, there exists a continuous, strictly increasing and convex function
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g : [0, r] → R with g(0) = 0 such that

φ(p, wn) = φ
(
p, J−1

( βn

1− αn

Jzn +

∑∞
j=1 γn,j

1− αn

JTj(zn)
))

= ||p||2 +
∣∣∣∣∣∣ βn

1− αn

Jzn +

∑∞
j=1 γn,j

1− αn

JTj(zn)
∣∣∣∣∣∣2

−2
βn

1− αn

〈
p, Jzn

〉
− 2

∑∞
j=1 γn,j

1− αn

〈
p, JTj(zn)

〉
≤ ||p||2 +

βn

1− αn

∣∣∣∣∣∣zn

∣∣∣∣∣∣2 +

∑∞
j=1 γn,j

1− αn

∣∣∣∣∣∣Tjzn

∣∣∣∣∣∣2
− βn

1− αn

∑∞
j=1 γn,j

1− αn

g
(∣∣∣∣∣∣JTj(zn)− Jzn

∣∣∣∣∣∣)
−2

βn

1− αn

〈
p, Jzn

〉
− 2

∑∞
j=1 γn,j

1− αn

〈
p, JTj(zn)

〉
=

(
1−

∑∞
j=1 γn,j

1− αn

)∣∣∣∣∣∣p∣∣∣∣∣∣2 +

∑∞
j=1 γn,j

1− αn

∣∣∣∣∣∣p∣∣∣∣∣∣2 +
(
1−

∑∞
j=1 γn,j

1− αn

)∣∣∣∣∣∣zn

∣∣∣∣∣∣2
+

∑∞
j=1 γn,j

1− αn

∣∣∣∣∣∣Tjzn

∣∣∣∣∣∣2
−2

(
1−

∑∞
j=1 γn,j

1− αn

)〈
p, Jzn

〉
− 2

∑∞
j=1 γn,j

1− αn

〈
p, JTj(zn)

〉
− βn

1− αn

∑∞
j=1 γn,j

1− αn

g
(∣∣∣∣∣∣JTj(zn)− Jzn

∣∣∣∣∣∣)
=

(
1−

∑∞
j=1 γn,j

1− αn

)
φ(p, zn) +

∑∞
j=1 γn,j

1− αn

φ(p, Tj(zn))

− βn

1− αn

∑∞
j=1 γn,j

1− αn

g
(∣∣∣∣∣∣JTj(zn)− Jzn

∣∣∣∣∣∣)
≤ φ(p, zn)− βn

1− αn

∑∞
j=1 γn,j

1− αn

g
(∣∣∣∣∣∣JTj(zn)− Jzn

∣∣∣∣∣∣).(3.11)

Therefore, from (3.8) and (3.11), we have

φ(p, xn+1) ≤ αnφ(p, v) + (1− αn)φ(p, wn)

≤ αnφ(p, v) + φ(p, zn)− βn

1− αn

∑∞
j=1 γn,j

1− αn

g
(∣∣∣∣∣∣JTj(zn)− Jzn

∣∣∣∣∣∣)
≤ αnφ(p, v) + φ(p, xn)−

(
1− µτn

τn+1

)
φ(yn, xn)−

(
1− µτn

τn+1

)
φ(zn, yn)

− βn

1− αn

∑∞
j=1 γn,j

1− αn

g
(∣∣∣∣∣∣JTj(zn)− Jzn

∣∣∣∣∣∣).(3.12)

which implies(
1− µτn

τn+1

)
φ(yn, xn) +

(
1− µτn

τn+1

)
φ(zn, yn)

+
βn

1− αn

∑∞
j=1 γn,j

1− αn

g
(∣∣∣∣∣∣JTj(zn)− Jzn

∣∣∣∣∣∣) ≤ αnφ(p, v) + φ(p, xn)− φ(p, xn+1).(3.13)
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Hence, sincelimn→∞

(
1− µτn

c1τn+1

)
=

(
1− µ

c1

)
> 0, we have

lim
n→∞

||JTj(zn)− Jzn|| = 0.(3.14)

and

lim
n→∞

φ(yn, xn) = lim
n→∞

φ(zn, yn) = 0.(3.15)

From (3.15), we get

lim
n→∞

||yn − xn|| = 0(3.16)

and

lim
n→∞

||yn − zn|| = 0.(3.17)

||xn − zn|| ≤ ||xn − yn||+ ||yn − zn|| → 0, n →∞.(3.18)

Furthermore, sinceJ−1 is uniformly norm to norm continuous, we have from (3.14) that

lim
n→∞

||Tj(zn)− zn|| = 0.(3.19)

Therefore, from (2.4), (3.14) and (3.19), we get

φ(zn, Tj(zn)) = 〈zn, Jzn − JTj(zn)〉+ 〈Tj(zn)− zn, Jzn〉
≤ ||zn||||Jzn − JTj(zn)||+ ||Tjzn − zn||||Tj(zn)|| → 0, n →∞.(3.20)

Hence,

φ(zn, xn+1) = φ
(
zn, J

−1(αnJv + βnJzn +
∞∑

j=1

γn,jJTj(zn)
)

≤ αn(zn, v) + βnφ(zn, zn) +
∞∑

j=1

γn,jφ(zn, Tj(zn)) → 0,→∞,(3.21)

which implieslimn→∞ ||zn − xn+1|| = 0. Thus, from (3.18), we have

||xn − xn+1|| ≤ ||xn − zn||+ ||zn − xn+1|| → 0, n →∞.(3.22)

Since the sequence{xn} is bounded, there exists a subsequence{xnk
} of {xn} such that

lim sup
n→∞

〈xn+1 − p, Jv − Jp〉 = lim
k→∞

〈xnk
− p, Jv − Jp〉.

andxnk
⇀ q for someq ∈ E.

Next, we show thatq ∈ V I(C, A) ∩ (∩∞j=1F (Tj)). Let x ∈ C. Sinceyn = ΠCJ−1(Jxn −
τnA(xn)), then by Lemma 2.4, we have

〈yn − x, Jxn − τnA(xn)− Jyn〉 ≥ 0,∀n ≥ 0.

Thus,

〈xn − x, τnA(xn)〉 = 〈xn − yn, τnA(xn)〉+ 〈yn − x, τnA(xn)〉
= 〈xn − yn, τnA(xn)〉 − 〈yn − x, Jxn − τnA(xn)− Jyn〉

+〈yn − x, Jxn − Jyn)〉
≤ 〈xn − yn, τnA(xn)〉+ 〈yn − x, Jxn − Jyn)〉
≤ τn||A(xn)||||xn − yn||+ ||Jxn − Jyn||||yn − x||.(3.23)
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SinceA(xn) is bounded,limn→∞ ||xn − yn|| = 0 andJ is norm to norm uniformly continuous,
we have from (3.23) thatlim sup

n→∞
〈xn−x, τnA(xn)〉 ≤ 0. Thus, from the monotonicity ofA, we

have that

〈q − x, τnA(x)〉 = lim sup
n→∞

〈xn − x, τnA(x)〉

≤ lim sup
n→∞

〈xn − x, τnA(xn)〉 ≤ 0,∀x ∈ C.(3.24)

Sincexn ⇀ q and lim
n→∞

||xn − yn|| = 0, we haveyn ⇀ q. Noting thatC is closed and convex

andyn ∈ C,∀n ≥ 0, then from Lemma 2.7 and (3.24), we conclude thatq ∈ V I(C, A).
Furthermore, from the definition of relatively nonexpansive mapping, (3.18) and (3.19), we
haveq ∈ F (Tj), j = 1, 2, · · · . That isq ∈ ∩∞j=1F (Tj). Henceq ∈ V I(C, A) ∩ (∩∞j=1F (Tj)).

Now, from Lemma 2.4, we have

lim sup
n→∞

〈xn+1 − p, Jv − Jp〉 = lim
k→∞

〈xnk
− p, Jv − Jp〉 = 〈q − p, Jv − Jp〉 ≤ 0.

Therefore, applying Lemma 2.9 to (3.10), we obtain thatlimn→∞ φ(p, xn) = 0, which implies
||xn − p|| → 0, n →∞. That isxn → p = ΠV I(C,A)∩(∩∞j=1F (Tj))v.

Case 2.There exists a subsequence{xni
} of {xn} such that

φ(p, xni
) ≤ φ(p, xni+1) ∀i ∈ N.

From Lemma 2.8, there exists a nondecreasing sequence{nl} of N such thatliml→∞ nl = ∞
and the following inequalities hold for alll ∈ N :

φ(p, xnl
) ≤ φ(p, xnl+1)(3.25)

and

φ(p, xl) ≤ φ(p, xnl+1).(3.26)

Thus from (3.13), we have(
1− µτnl

c1τnl+1

)
φ(ynl

, xnl
) +

(
1− µτnl

c1τnl+1

)
φ(znl

, yn)

+
βnl

1− αnl

∑∞
j=1 γnl,j

1− αnl

g
(∣∣∣∣∣∣JTj(znl

)− Jznl

∣∣∣∣∣∣) ≤ αnl
φ(p, v) + φ(p, xnl

)− φ(p, xnl+1).(3.27)

Hence, sincelimn→∞

(
1− µτnk

c1τnk+1

)
=

(
1− µ

c1

)
> 0, we have

lim
l→∞

||JTj(znl
)− Jznl

|| = 0.(3.28)

and

lim
l→∞

φ(ynl
, xnl

) = lim
l→∞

φ(znl
, ynl

) = 0.(3.29)

Using similar argument as in case 1, we obtain

lim sup
l→∞

〈xnl+1 − p, Jv − Jp〉 ≤ 0.

Furthermore, from (3.10), we have

φ(p, xnl+1) ≤ (1− αnl
)φ(p, xnl

) + αnl
〈xnl+1 − p, Jv − Jp〉, ∀l ≥ n0.

It therefore follows from (3.25) that

φ(p, xnl+1) ≤ (1− αnl
)φ(p, xnl+1) + αnl

〈xnl+1 − p, Jv − Jp〉.(3.30)
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Combining (3.26) and (3.30), we obtain

φ(p, xl) ≤ 〈xnl+1 − p, Jv − Jp〉,
which giveslim supl→∞ φ(p, xl) = 0 and thusxl → p.

4. APPLICATIONS

4.1. Constrained Minimization Problem. In this subsection, we give an application of our
result to constrained minimization problem.
Consider the constrained convex minimization problem:

min{f(x) : x ∈ C},(4.1)

whereC is a closed convex subset of a 2-uniformly convex and uniformly smooth Banach
spaceE andf : E → R is a real valued convex function. Assume thatf is continuously
Fréchet differentiable with Lipschitz continuous gradient:

||∇f(x)−∇f(y)|| ≤ L||x− y||,(4.2)

for all x, y ∈ E, whereL is a positive constant. It is well known that the minimization problem
(4.1) is equivalent to the following variational inequality problem:

x ∈ C, 〈∇f(x), x− x∗〉 ≥ 0, ∀x ∈ C.(4.3)

Moreover, the gradient of a convex and continuously Fréchet differentiable function is monotone.
LettingA = ∇f , we obtain from Algorithm 3.1, the following algorithm for finding a solution
of (4.1) which is also a common fixed point of an infinite family of relatively nonexpansive
mappings.

Algorithm 4.1. Initialization: Givenτ 0 > 0, µ ∈ (0, c1), and arbitraryx0 ∈ E.
Step 1.Computeyn = ΠCJ−1(Jxn − τn∇f(xn)).
Step 2.Computezn = ΠTnJ−1(Jxn − τn∇f(yn)), where

Tn = {w ∈ E : 〈w − yn, Jxn − τn∇f(xn)− Jyn〉 ≤ 0}.
Step 3.Computexn+1 = J−1(αnJv + βnJzn +

∑∞
j=1 γn,jJTj(zn))

and

τn+1 =

 min
{ µ||xn − yn||
||∇f(xn)−∇f(yn)||

, τn

}
, if ∇f(xn) 6= ∇f(yn),

τn, Otherwise.
(4.4)

4.2. Convex Feasibility Problem. Let {Cj}∞j=1, be nonempty closed and convex subsets ofE
such that∩∞j=1Cj 6= ∅. The convex feasibility problem (CFP) is to findx ∈ ∩∞j=1Cj. Obviously
F (ΠCj

) = Cj for all j ≥ 1. Thus, if setTj = ΠCj
in Algorithm 3.1, we obtain the following

Algorithm:

Algorithm 4.2. Initialization: Givenτ 0 > 0, µ ∈ (0, c1), and arbitraryx0 ∈ E.
Step 1.Computeyn = ΠCJ−1(Jxn − τnA(xn)).
Step 2.Computezn = ΠTnJ−1(Jxn − τnA(yn)), where

Tn = {w ∈ E : 〈w − yn, Jxn − τnA(xn)− Jyn〉 ≤ 0}.
Step 3.Computexn+1 = J−1(αnJv + βnJzn +

∑∞
j=1 γn,jJΠCj

(zn))
and

τn+1 =

 min
{ µ||xn − yn||
||A(xn)− A(yn)||

, τn

}
, if A(xn) 6= A(yn),

τn, Otherwise.
(4.5)
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Therefore from Theorem 3.4, we obtain a strong convergence result for approximating a com-
mon solution of a variational inequality problem and a convex feasibility problem.

4.3. Equilibrium Problem. Let C be a closed and convex subset of a Banach spaceE and let
f : C × C → R be a bifunction. The equilibrium problem for a bifunctionf is to find

x ∈ Csuch that f(x, y) ≥ 0for all y ∈ C.(4.6)

The set of solutions above is denoted byEP (f, C), that is

x ∈ EP (f, C) iff f(x, y) ≥ 0∀y ∈ C.(4.7)

To solve the equilibrium problem (4.6), the bifunctionf is usually assumed to satisfy the fol-
lowing conditions:
(B1) f(x, x) = 0, for all x ∈ C;
(B2) f is monotone, that is,f(x, y) + f(y, x) ≤ 0, for all x, y ∈ C;
(B3) for all x, y, z ∈ C, lim supt↓0 f(tz + (1− t)x, y) ≤ f(x, y);
(B4) for all x ∈ C, f(x, .) is convex and lower semicontinuous.

Lemma 4.3. ([38], Lemma 2.8) LetC be a nonempty closed convex subset of a uniformly
smooth, strictly convex and reflexive Banach spaceE. Let f be a bifunction fromC × C → R
satisfying(A1)− (A4). For r > 0 andx ∈ E, define a mappingT f

r : E → C as follows:

T f
r = {z ∈ C : f(z, y) +

1

r
〈y − z, Jz − Jx〉 ≥ 0∀y ∈ C}(4.8)

for all x ∈ E. Then, the following hold:

(1) T f
r is single-valued;

(2) T f
r is a firmly nonexpansive-type mapping, that is, for allx, y ∈ E

〈T f
r x− T f

r y, JT f
r x− JT f

r y〉 ≤ 〈T f
r x− T f

r y, Jx− Jy〉;(4.9)

(3) F (T f
r ) = Ep(f, C),

(4) EP (f, C) is closed and convex andT f
r is a relatively nonexpansive mapping.

LettingT
fj
r = Tj in Algorithm 3.1, we obtain the following Algorithm:

Algorithm 4.4. Initialization: Givenτ 0 > 0, µ ∈ (0, c1), and arbitraryx0 ∈ E.
Step 1.Computeyn = ΠCJ−1(Jxn − τnA(xn)).
Step 2.Computezn = ΠTnJ−1(Jxn − τnA(yn)), where

Tn = {w ∈ E : 〈w − yn, Jxn − τnA(xn)− Jyn〉 ≤ 0}.

Step 3.Computexn+1 = J−1(αnJv + βnJzn +
∑∞

j=1 γn,jJT
fj
r (zn))

and

τn+1 =

 min
{ µ||xn − yn||
||A(xn)− A(yn)||

, τn

}
, if A(xn) 6= A(yn),

τn, Otherwise.
(4.10)

Thus from Theorem 3.4, we obtain a strong convergence result for approximating a common
solution of an infinite family of equilibrium problems which also solves a variational inequality
problem.
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5. CONCLUSION

We introduce a subgradient extragradient algorithm with self adaptive variable step sizes with-
out line search which does not require a prior knowledge of the Lipschitz constant for the ap-
proximation of a solution of variational inequality problem which is also a common fixed point
of an infinite family of relatively nonexpansive mappings in 2-uniformly convex Banach spaces
which are uniformly smooth. Using the proposed algorithm, we stated and proved a strong
convergence result and give some applications in 2-uniformly convex Banach spaces which are
uniformly smooth. The result of this paper extends the work of Thong and Hieu [39] from
Hilbert spaces to 2-uniformly convex Banach spaces which are uniformly smooth. In our future
project, we hope to introduce a new inertial accelerated version of Algorithm 3.1 for finding a
solution of variational inequality problem which is also a common fixed point of a family of
relatively nonexpansive mappings in 2-uniformly convex Banach spaces which are uniformly
smooth.
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