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1. INTRODUCTION

Let A be a selfadjoint linear operator on a complex Hilbert space (H; (-, -)) . The Gelfand map
establishes a x-isometric isomorphism ¢ between the set C' (Sp (A)) of all continuous functions
defined on the spectrum of A, denoted by Sp (A), and the C*-algebra C* (A) generated by A
and the identity operator 15 on H as follows (see for instance [41} p. 3]):

For any f,g € C'(Sp(A)) and any «, 3 € C we have:

(i) @ (af + Bg) = a® (f) + P (9);
(i) ©(fg) =P (f)®(g)and @ (f) = @ (f)";
(i) |2 ()] = | ]| == supsespin If ()]
(iv) ®(fo) =1gand @ (f1) = A, where fy (t) = 1l and f; (t) =t, fort € Sp(A).

With this notation we define
f(A):=d(f) forall feC(Sp(A))

and we call it the continuous functional calculus for a selfadjoint operator A.

If A is a selfadjoint operator and f is a real-valued continuous function on Sp (A), then
f(t) > 0foranyt € Sp(A) implies that f (A) > 0, i.e., f (A) is a positive operator on H.
In addition, if both f and ¢ are real-valued functions on Sp (A) , then the following important
property holds:

(P) f(t)>g(t) forany t € Sp(A) impliesthat f(A) > g(A)

in the operator order of B (H) .

For a recent monograph devoted to various inequalities for functions of selfadjoint operators,
see [41]] and the references therein.

For other results, see [45]] and [59]].

The main aim of the present paper is to survey a number of recent results due to the author
(published in preprint form in the papers [29] and [30]) concerning some natural extensions
of the celebrated CebysSev and Griiss inequalities to two continuous functions of selfadjoint
operators defined on a real or complex Hilbert space. Applications for a number of fundamental
elementary functions such as the power, logarithmic and exponential functions of operators are
also provided.

2. CEBYSEV’S INEQUALITY

2.1. éeby§ev’s Inequality for Real Numbers. First of all, let us recall a number of classical
results for sequences of real numbers concerning the celebrated CebySev inequality.

Consider the real sequences (n — tuples) a = (ay,...,a,), b = (by,...,b,) and the non-
negative sequence p = (p1,...,p,) With P, := >  p; > 0. Define the weighted Cebysev’s
functional as

=1 =1 =1

In 1882 — 1883, Cebyéev [6] and [7] proved that if a and b are monotonic in the same
(opposite) sense, then

(2.2) T, (p;a,b) > (<)0.

For the special case p = a > 0, it appears that the inequality (2.2)) had been obtained by
Laplace long before Cebysev (see for example [49, p. 240]).
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The inequality (2.2) was mentioned by Hardy, Littlewood and Pélya in their 1934 book [43] in
the more general setting of synchronous sequences, i.e., if a, b are synchronous (asynchronous),
then

(23) ((li—a]‘) (bl—b]) > (S)O forany Z,] c {1,...771},
and (2.2)) also holds.

A relaxation of the synchronicity condition was provided by M. Biernacki in 1951, [4]], who
showed that, if a, b are monotonic in mean in the same sense, i.e., for P, := Zle i, k =
,....,n—1,

L 1k
(24) -— iaig Z i Qg ke ].,...ﬂ’L-l
5 ;p =) 5 ;p { }
and
L |
(25) - zbzé > ibiy ke 1,...,71—1 5
7 ;p =5 ;p { }

then (2.2)) holds with “>". If a, b are monotonic in mean in the opposite sense then (2.2)) holds
with “<”.

If the assumption of nonnegativity for the components of p is dropped, then one may state
the following inequality obtained by Mitrinovi¢ and Pecari¢ in 1991, [48]: If 0 < P, < P, for
eachi e {1,...,n— 1}, then

(2.6) T, (p;a,b) >0,

provided that a and b are sequences with the same monotonicity.

If a and b are monotonic in the opposite sense, the sign of the inequality reverses.

Similar integral inequalities may be stated, however we do not present them here.

For other recent results on the CebySev inequality in either discrete or integral form see [3],
[14], [15], [251], [36], [37], [49], [47], [S0], [S41], [SS], [S7], and the references therein.

The main aim of the present section is to provide operator versions of the Ceby3ev inequality
in different settings. Related results and some particular cases of interest are also given.

2.2. A Version of the Cebysev Inequality for One Operator. We say that the functions f, g :
la,b] — R are synchronous (asynchronous) on the interval [a, b] if they satisfy the following
condition:

(f ()= F(s)(g(t) —g(s)) = (<)0 foreacht,s € [a,b].

It is obvious that, if f, g are monotonic and have the same monotonicity on the interval
la, ], then they are synchronous on [a, b] while if they have opposite monotonicity, they are
asynchronous.

For some extensions of the discrete Cebysev inequality for synchronous (asynchronous) se-
quences of vectors in an inner product space, see [39]] and [38]].

The following result provides an inequality of Cebysev type for functions of selfadjoint op-
erators.

Theorem 2.1 (Dragomir, 2008, [29]). Let A be a selfadjoint operator with Sp (A) C [m, M]
for some real numbers m < M. If f,g : [m, M] — R are continuous and synchronous
(asynchronous) on [m, M|, then

2.7 (fA)g(A)z,z) > (<) (f(A)z,z) - (g (A)z,z)
forany x € H with ||z|| = 1.
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Proof. We consider only the case of synchronous functions. In this case we have then

(2.8) F@g)+f(s)g(s) = f(t)g(s)+f(s)g(t)
foreacht, s € [a,b].

If we fix s € [a, b] and apply the property (IH) for the inequality (2.8) then we have for each
x € H with ||z|| = 1 that

(F (A g(A) + [ (s)g(s) 1)z, 2) = ((g(s) f(A)+ [ () g (A)) z,2),
which is clearly equivalent with
(2.9) (f(A)g(A)z,z) + [ (s)g(s) 2 g(s) (f (A)z,2) + [ (s) (g (A) x,x)
for each s € [a, b] .

Now, if we apply again the property (P) for the inequality (2.9), then we have for any y € H
with ||y|| = 1 that

(f(A)g(A)z,z) 1n + f(A) g (A)) y,y)
> (({(f (A)z,2) g (A) + (g (A) z, z) [ (A) y, ) ,

which is clearly equivalent with

(2.10) (f(A)g(A)z,2)+(f(A)g(A)y,y)
> (f(A)z,7) (g (A)y,y) +(f (A)y,y) (9 (A) z, )

for each =,y € H with ||z|| = ||y|| = 1. This is an inequality of interest in itself.
Finally, on making y = z in (2.10) we deduce the desired result (2.7). n

Some particular cases are of interest for applications. In the first instance we consider the
case of power functions.

Example 2.1. Assume that A is a positive operator on the Hilbert space H and p,q > 0. Then
for each x € H with ||z|| = 1, we have the inequality

(2.11) (APHg x) > (APx,z) - (Alz, ) .

If A is positive definite, then the inequality also holds for p,q < 0.
If A is positive definite and either p > 0,q < 0 or p < 0,q > 0, then the reverse inequality

holds in (2.11).

Another case of interest for applications is the exponential function.
Example 2.2. Assume that A is a selfadjoint operator on H. If o, 3 > 0 or o, 3 < 0, then
(2.12) (exp [(a+ B) Az, x) > (exp (aA) z, z) - {exp (BA) z, )

for each x € H with ||z| = 1.
If either « > 0,3 < 0 or a < 0, 8 > 0, then the reverse inequality holds in (2.12)).

The following particular cases may be of interest as well:

Example 2.3.
a. Assume that A is positive definite and p > 0. Then
(2.13) (APlog Az, x) > (APx, z) - (log Ax, x)

for each x € H with ||z|| = 1. If p < 0, then the reverse inequality holds in (2.13).
b. Assume that A is positive definite and Sp (A) C (0,1).Ifr,s > 0orr,s < 0 then

Q14 (g -A) ' (1g—A) T r2) > (g - A aya) (g — A a,a)
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foreach x € H with ||z| = 1.
If either r > 0,5 < 0 orr < 0,s > 0, then the reverse inequality holds in (2.14).

Remark 2.1. We observe, from the proof of the above theorem that, if A and B are selfadjoint
operators and Sp (A) , Sp (B) C [m, M], then for any continuous synchronous (asynchronous)
functions f, g : [m, M] — R we have the more general result

(2.15) (f(A)g(A)z,x) +(f(B)g(B)y,y)
> () (f(A)z,2)(g(B)y,y) + (f (B)y,y) (9 (A) z,z)

for each x,y € H with ||z|| = [|y|| = 1.

If f:[m,M] — (0,00) is continuous, then the functions f?, f are synchronous in the case
when p, ¢ > 0 or p,q < 0 and asynchronous when either p > 0,q < O orp < 0,q > 0. In this
situation, if A and B are positive definite operators then we have the inequality

(2.16) (fr*(A)z,z) + (fPY(B)y,y)
> (fP(A)z,z) (f1(B)y,y) + (7 (B)y,y) (f! (A) z, )

for each x,y € H with ||z|| = ||y|| = 1 where either p,q > 0 orp,q < 0.If p > 0,¢ < 0 or
p < 0,¢ > 0 then the reverse inequality also holds in (2.16)).

As particular cases, we should observe that for p = ¢ = 1 and f (t) = t, we get from
the inequality

(2.17) (Az,z) + (B%y,y) > 2 (Az,z) (By,y)

for each x,y € H with ||z| = ||y|| = 1.
For p = 1 and ¢ = —1 we have from (2.16)

(2.18) (A, x) (B 'y, y) + (By,y) (A, z) <2
for each z,y € H with ||z|| = |Jy|| = 1.

2.3. A Version of the Cebysev Inequality for n Operators. The following multiple operator
version of Theorem 2.1l holds:

Theorem 2.2 (Dragomir, 2008, [29]). Let A; be selfadjoint operators with Sp (A;) C [m, M|
forj € {1,...,n} and some scalars m < M. If f,g : [m, M| — R are continuous and
synchronous (asynchronous) on [m, M| , then

n n n

(2.19) D (F A g(A) mgm) > () (A g ) - Y (g (A)) g, 25),

j=1 j=1 j=1
foreachx; € H,j€{1,....,n} with) 7, z;])* = 1.
Proof. As in [41, p. 6], if we put
N Ay -+ 0 1
A= oo, and 7T = :

then we have Sp <Z> C[m,M], ||z|| =1,

(1 (A) 0 (A)27) = 3¢ (A g (A
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(F(A)77) =X 0 ey and (g(A)77) =3 to(Ay) ).

j=1 j=1

Applying Theorem for A and x, we deduce the desired result 1' 1

The following particular cases may be of interest for applications.

Example 2.4. Assume that A;,j € {1,...,n} are positive operators on the Hilbert space H
and p,q > 0. Then for each x; € H,j € {1,...,n} with )7, |z;||> = 1 we have

(220) <ZA§)+qx],xj> > Z<A§$1,$]> Z<A;}$J,$]>
=1 =1

j=1

If A; are positive definite, then the inequality (2.20) also holds for p,q < 0.
If A; are positive definite and either p > 0,q < 0 or p < 0,q > 0, then the reverse inequality

holds in (2.20).

Another case of interest for applications is the exponential function.

Example 2.5. Assume that A;,j € {1,...,n} are selfadjoint operators on H. If o, 3 > 0 or
a, 3 <0, then

n

(2.21) <Z exp [(a + B) Aj] %%‘> > (exp (ady) zj,x5) - > (exp (BA;) x5, 2;)

J=1 J=1

Joreachx; € H,j€{1,....,n} with) 7, z;]* = 1.
If either a > 0,3 < 0 or a < 0,3 > 0, then the reverse inequality holds in (2.21).

The following particular cases may be of interest as well:

Example 2.6.
a. Assume that A;, j € {1,...,n} are positive definite operators and p > 0. Then

(2.22) <Z Allog Ajx;, xj> > Z <A§x]~, :L"j> . Z (log Ajz;,x;)
j=1 Jj=1 Jj=1

foreach z; € H,j € {1,...,n} with 377, |z;||> = 1. If p < 0, then the reverse inequality

holds in (2.22)).
b. If A; are positive definite and Sp (A;) C (0,1) for j € {1,...,n}, then for r,s > 0 or
r,s < 0 we have

(2.23) <Z (1 — A (g — A3~ xj,xj>

J=1

foreachx; € H,j€{1,....,n} with) 7, ;] = 1.
If either r > 0,5 < 0 orr < 0,s > 0, then the reverse inequality holds in (2.23).
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2.4. Another Version of the éebyéev Inequality for n Operators. The following different
version of the CebySev inequality for a sequence of operators also holds:

Theorem 2.3 (Dragomir, 2008, [29]). Let A; be selfadjoint operators with Sp (A;) C [m, M]
for j € {1,...,n} and some scalars m < M. If f,g : [m, M] — R are continuous and
synchronous (asynchronous) on [m, M| , then

(2.24) <Zij(Aj)9(Aj)$afE> > (<) <ijf(f4j)%$> : <ij9 (Aj)$a$>a

foranyp; >0,j € {1,...,n} with Z;L:lpj = land x € H with ||z]| = 1.
In particular,

(2.25) <% Zf(Aj)g(Aj)a:,x> > (<) <% > (Aj)x,x> - <% Zg(Aj)x,x> |

foreach x € H with ||z|| = 1.

Proof. We provide here two proofs. The first is based on the inequality (2.15)) and generates as
a by-product a more general result. The second is derived from Theorem [2.2]

1. If we make use of the inequality (2.15]), then we can write

(2.26) (f(Aj) g(Aj)z,z) +(f (Br) 9 (Br)y,y)
> (L) (f (Ay) z,2) (g (Br) y, y) + (f (Br) v, ) (9 (A;) z,7),

which holds for any A; and B, selfadjoint operators with Sp (4;),Sp (By) C [m, M], j, k €
{1,...,n} and for each z,y € H with ||z|| = ||y|| = 1.

Now, if p; > 0,qx > 0,7,k € {1,...,n}and 37 p; = >, qx = 1 then, by multiplying
(2.26) with p; > 0,¢g, > 0 and summing over j and k from 1 to n we deduce the following
inequality that is of interest in its own right:

(2.27) <ijf(Aj)9(Aj)$7$> + <Z af (Bk)g(Bk)y7y>
> (<) <ijf(f4j)l’7$> <Z qrg (Br) yay>

+ <Z af (Bk)y;y> <Z]9j9 (Aj)$,$>
k=1 j=1
for each z,y € H with ||z|| = |jy|| = 1.
Finally, the choice By = Ay, qx = px and y = x in (2.27)) produces the desired result (2.24).

2. If we choose in Theorem 2.2\ v; = \/pj - @, j € {1,...,n}, wherep; > 0,5 € {1,...,n},
S p; = land x € H with ||z|| = 1, then a simple calculation shows that the inequality

@ becomes (2.24). The details are omitted. §
Remark 2.2. We remark that the case n = 1 in (2.24) produces the inequality (2.7).

The following particular cases are of interest:
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Example 2.7. Assume that A;,j € {1,...,n} are positive operators on the Hilbert space H,
p; > 0,5 €{1,...,n} with Z?zlpj = land p,q > 0. Then for each x € H with ||x|| = 1 we
have

(2.28) <ijA§+qx,x> > <ijA§x,x> : <ijAgx,:c>.
j=1 j=1 j=1

IfA;, 5 € {1,...,n} are positive definite, then the inequality also holds for p,q < 0.
IfA;, 5 € {1,...,n} are positive definite and either p > 0,q < 0 or p < 0,q > 0, then the
reverse inequality holds in ([2.28)).

Another case of interest for applications is the exponential function.

Example 2.8. Assume that A;,j € {1,...,n} are selfadjoint operators on H and p; > 0, j €
{1,...,n}pwith3 7 pj=11Ifo, > 00ra,B <0, then

(2.29) <ij exp [(a+ B) Aj] x, x>
<ij exp (a4;) > <ij exp (BA;) z, >

foreach x € H with ||z|| = 1.
If either a > 0,3 < 0 or a < 0,3 > 0, then the reverse inequality holds in ([2.29).
The following particular cases may be of interest as well:

Example 2.9.
a. Assume that A;,j € {1,...,n} are positive definite operators on the Hilbert space H,
p;i > 0,5 €{1,....,n}with}7"_ p; = Landp > 0. Then

(2.30) <ijA§ logij,az> > <ijA§x,x> . <ij logij,x> .
j=1

j=1 j=1

If p < 0, then the reverse inequality holds in (2.30).
b. Assumethat A;, j € {1,...,n} are positive definite operators on the Hilbert space H, Sp (A;) C
(0,1) andp; > 0,5 € {1,...,n}ywith) > p; =1 Ifr,s > 0orr,s <0 then

2.31) <ij (L — A7) (1 — A7) $x>
j=1
> <ij (g — A;)_la:,x> : <ij (g — Aj-)_la:,x>
j=1 j=1

for each x € H with ||z| = 1.
If either r > 0,5 < 0 orr < 0,5 > 0, then the reverse inequality holds in (2.31)).

We remark that the following operator norm inequality can be stated as well:

Corollary 2.4. Let A; be selfadjoint operators with Sp (A;) C [m, M] for j € {1,...,n} and
some scalars m < M. If f,q : [m, M| — R are continuous, asynchronous on [m, M| and for
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p; >0, €{1,....,n} with} 7, pj = 1 the operator 3 _, p; f (A;) g (A;) is positive, then

Zp] Zpgg

(2.32)

Proof. We have from (2.24)) that

T R R

for each + € H with ||z| = 1. Taking the supremum in this inequality over z € H with
|z|]| = 1, we deduce the desired result (2.32)). 1

Corollary [2.4] provides some interesting norm inequalities for sums of positive operators as
follows:

Example 2.10.
a. If A;,j € {1,...,n} are positive definite and either p > 0,q < 0 or p < 0,q > 0, then for
p; > 0,5 €{1l,...,n} with Z?Zl p; = 1 we have the norm inequality:

(2.33) > pArte AL (D pidS
j=1 j=1

In particular,

(2.34) »A;f

forany r > 0.

b. Assume that A;,j € {1,...,n} are selfadjoint operators on H and p; > 0,5 € {1,....,n}
with 7 pj = 1. If either a > 0,3 < 0 or a < 0,3 > 0, then

(2.35) exp [(a+ 6) A Zp] exp (a4,) exp (BA4A;)
In particulan
(2.36) > piexp (YA)|[ - D pjexp (—v4;)
j=1 j=1
for any v > 0.

2.5. Related Results for One Operator. The following result that is related to the CebySev
inequality may be stated:

Theorem 2.5 (Dragomir, 2008, [29]]). Let A be a selfadjoint operator with Sp (A) C [m, M]
for some real numbers m < M. If f,g : [m, M] — R are continuous and synchronous on
[m, M|, then

237 (f(A)g(A)z,x) = (f(A)z,z) - (9(A) 2, x)
> [(f (A)z,2) — f ((Az,2))] - [g ((Az, 2)) = (g (A) 2, )]

forany x € H with ||z|| = 1.
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If f, g are asynchronous, then

2.38) (f(A)z,z)-(g(A)z,z) = (f(A) g(A)z,z)
> [(f (A)z,2) = f (Az,2))] - [(9 (A) z,2) — g ((Az, 2))]
forany x € H with ||z|| = 1.

Proof. Since f, g are synchronous and m < (Az,z) < M for any x € H with ||z|| = 1, then
we have

(2.39) [f () = f ({Az, 2))] [g (t) — g ((Az,2))] = 0

forany t € [a,b] and x € H with ||z|| = 1.
On utilising the property (P) for the inequality (2.39) we have that

(2.40) ([f (B) = f ({Az, 2))] g (B) — g ((Az, x))]y, ) = 0

for any B a bounded linear operator with Sp (B) C [m, M] and y € H with |Jy|| = 1.
Since

241 ([f(B) = f ({(Az,z))][g (B) — g ((Az,2))] y, y)
=(f(B)g(B)y,y) + f((Aw 7)) g ({(Az, x))
—(f (B)y,y) g ((Ax,2)) — f ((Az,2)) (9 (B) y,v)

then from (2.40) we get

(f(B)g(B)y,y) + | ((Azx,z)) g ((Az, )
> ([ (B)y,y) g ((Az, ) + f ((Az,2)) (9 (B) y,y)

which is clearly equivalent with

(242) (f(B)g(B)y,y) = {(f(A)y,y) (9(A)y,y)
> [(f(B)y,y) — f((Az,2))] - [g (Az,2)) — (9 (B) y,9)]

for each z,y € H with ||z|| = ||y|| = 1. This inequality is of interest in its own right.
Now, if we choose B = A and y = z in (2.42), then we deduce the desired result (2.37). n

The following result which improves the Cebysev inequality may be stated:

Corollary 2.6 (Dragomir, 2008, [29]). Let A be a selfadjoint operator with Sp (A) C [m, M]
for some real numbers m < M. If f, g : [m, M] — R are continuous, synchronous and one is
convex while the other is concave on [m, M| , then

2.43) (f(A)g(A)z,x) = (f(A)z,x)-(9(A)z,x)
> [(f (A)z,z) — f ((Az,2))] - [g (Az, 2)) = (g (A) z,2)] = 0

forany x € H with ||z|| = 1.
If f, g are asynchronous and either both of them are convex or both of them areconcave on
[m, M), then

2.44) (f(A)z,z)-(9(A)z,z) = (f(A) g (A) 2, x)
> [(f (A)z,z) — f ((Az,2))] - [(9 (A) 2, 2) — g ((Az,2))] = 0
forany x € H with ||z|| = 1.
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Proof. The second inequality follows by making use of the result due to Mond and Pecaric, see
[S1], [53] or [41, p. 5]:

(MP) (h(A)z,z) > (<) h ((Az, 2))

for any © € H with ||z|| = 1, provided that A is a selfadjoint operator with Sp (A) C [m, M|
for some real numbers m < M and h is convex (concave) on the given interval [m, M. &

Corollary [2.6] offers the possibility of improving some of the results established before for
power function as follows:

Example 2.11.
a. Assume that A is a positive operator on the Hilbert space H. If p € (0,1) and q € (1,0),
then for each x € H with ||x|| = 1 we have the inequality

(2.45) (APYg x)—(APz,z)- (A%, x) > [(A%, z) — (Az, 1)) [(Az,2)’ — (APz, z)] > 0.

If A is positive definite and p > 1,q < 0, then
(246) (AP, z)- (Alz,z) — (AP, 1) > [(A%%, z) — (Az, )] [(APz,2) — (Az, 2)"] > 0

foreach x € H with ||z| = 1.
b. Assume that A is positive definite and p > 1. Then
(247) (APlog Az, x) — (APx,x) - (log Az, x)
> [(API,ZL‘> - <Ax7$>p] [1Og <AZL‘71'> - <10gAl’,I>] >0

for each x € H with ||z| = 1.

2.6. Related Results for n Operators. We can now state the following generalisation of The-
orem [2.5|for n operators:

Theorem 2.7 (Dragomir, 2008, [29]). Let A; be selfadjoint operators with Sp (A;) C [m, M]
forj €{1,...,n} and some scalars m < M.

() If f,g : [m, M| — R are continuous and synchronous on [m, M| , then

(2.48) Z (f (A7) g (Aj) xj,25) — Z (f (Aj) g, 25) - Z(g (Aj) ), 25)
> [Z (f(Aj)zj,z5) — f <Z <ijj,xj)>]
: [g (Z <ijjaxj>> - Z (g (Aj)$j>37j>]

for each x; € H,j € {1,...,n} with 37, |z;||> = 1. Moreover; if one function
is convex while the other is concave on [m, M|, then the right hand side of is
nonnegative.
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(ii) If f, g are asynchronous on [m, M| , then

(2.49) Z (f (Aj) ), ;) - Z (9 (Aj) x5, 25) — Z (f (A5) g (Aj) x5, 25)
> [Z (f (Aj)zj,z5) — f (Z <ijj,xj)>]
' [Z (9 (4j)zj,25) — g (Z <Aj$ja$j>>]

for each v; € H,j € {1,...,n} with 377, |z;||> = 1. Observe that if either both of
them are convex or both of them are concave on [m, M|, then the right hand side of

is nonnegative as well.

Proof. The argument is similar to the one from the proof of Theorem [2.2|on utilising the results
from one operator case obtained in Theorem

The nonnegativity of the right hand sides of the inequalities (2.48) and (2.49) follows by the
use of the Jensen type result from [41} p. 5]

(2.50) Zn: (h(Aj) zj,25) = (<) h (Zn: <ijj,:cj)>

Jj=1

J=1

for each z; € H,j € {1,...,n} with 377 |z;]|> = 1, which holds provided that A; are
selfadjoint operators with Sp (A;) C [m, M] for j € {1,...,n}, some scalars m < M and h is
convex (concave) on [m, M].

The details are omitted. §

Example 2.12.
a. Assume that A;, j € {1,...,n} are positive operators on the Hilbert space H. If p € (0,1)

and q € (1,00) , then for each v; € H,j € {1,...,n} with )75, |z;]|* = 1, we have

n

@51 D (AT wj,m5) = > (Afwj ;) D (Al ;)
= =1

> Z<A3xj,$j> - (Z <ijjv$j>> ]
: [(Z <Aj37jaf€j>> —Z<A§%f€j>] = 0.

If A; are positive definite and p > 1,q < 0, then
(2.52) Y ( Ay ay) - ) (Alwyyay) = Y (AT g, 25)
j=1 j=1 j=1
n n q
> (Alwj,a;) - (Z (Ajz;, %‘>> ]

j=1 =1

>
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n n p
> (Abzjx;) — (Z <Ajl“j,ffj>> ] >0
j=1 j=1

Joreachx; € H,j€{1,....,n} with) 7, z;]* = 1.

b. Assume that A; are positive definite and p > 1. Then

n

(2.53) Z (A% log Axj, ;) — Z (Alaj, x;) - Z (log Ajxj, x;)
s =1

- Z<A§$J"$i> - (Z (ijj,$j>> ]
: [Z log (Ajz;,x;) — log <Z <Aj3;j7$j>>] >0

foreachz; € H,j€{l,....,n} with) 7, z;])* = 1.
The following result may be stated as well:

Theorem 2.8 (Dragomir, 2008, [29]). Let A; be selfadjoint operators with Sp (A;) C [m, M|
forj € {1,...,n} and some scalars m < M.

() If f,g : [m, M] — R are continuous and synchronous on [m, M| , then

(2.54) <ijf(Aj)g(Aj)l’7$> - <ijf(f4j)56a5€> : <ijg (Aj)5675€>
() (e
S

foranyp; > 0,5 € {1,...,n} with} 7 p; = L and x € H with ||z|| = 1. Notice that

if one is convex while the other is concave on [m, M| , then the right hand side of
is nonnegative.

(ii) If f, g are asynchronous on [m, M|, then

(2.55) <ijf(Aj)37,95> ' <ij9 (Aj)ﬂf,$> - <ijf(Aj)g(Aj)x,x>
> [<ijf(f4j)l‘,$> —f <<ZPJAJ5U>$>>
(S}l

Joranyp; > 0,5 € {1,...,n} with 7 p; = 1 and x € H with ||z|| = 1. Note that,
if either both of them are convex or both of them are concave on [m, M|, then the right
hand side of (2.53) is nonnegative as well.
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Proof. Follows from Theoremon choosing z; = \/pj-x,j € {1,...,n},wherep; > 0,j €
{1,...,n}, > 0 pj=1land x € H, with [|z]| = 1.

Also, the positivity of the right hand term in (2.54) follows by the Jensen type inequality
from the inequality for the same choices, namely x; = \/p; -z, j € {1,...,n}, where
p;>0,j€{l,....,n},> " pj=1landx € H, with ||z| = 1. The details are omitted. &

Finally, we can list some particular inequalities that may be of interest for applications. They
improve some of the results obtained above.

Example 2.13.

a. Assume that Aj,j € {1,...,n} are positive operators on the Hilbert space H and p; >
0,7 € {1,...,n} with Z?lej =1.1Ifp € (0,1) and q € (1,00), then for each x € H with
|z|| = 1 we have

(2.56) <ijz4§+q$,x> — <ijA§x,x> : <ijA?x,a:>
=1 j=1 j=1

e ]
| [<jzlijjx7x> - <]leﬂ4?$aw>] > 0.

IfA;,j €{1,...,n} are positive definite and p > 1,q < 0, then

(2.57) <ijA§x,x> . <ijA§x,x> - <ijA§+qx,x>
=1 =1 =1

n n q
[ o
j=1 j=1
n n p
: [<ijA§x,x> - <ijAjm,x> ] >0
j=1 Jj=1
foreach x € H with ||z|| = 1.

b. Assume that A;, j € {1,...,n} are positive definite and p > 1. Then

(2.58) <ijA§ logij,as> - <ijA§x,x> : <ij log Ajaj,x>
j=1

Jj=1 Jj=1

N [<gij§x,x> _ <§ijjx,w>p]

. [log <ijij,x> — <ij logAjw,x>] >0

Jj=1 Jj=1

foreach x € H with ||z|| = 1.
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3. GRUSS INEQUALITY

3.1. Some Elementary Inequalities of Griiss Type. In 1935, G. Griiss [42] proved the fol-
lowing integral inequality which gives an approximation of the integral of the product in terms
of the product of the integrals as follows:

b b b
o [ [r@ewa- o [ @ o [

<

(®—0) (I —9),

N

where f, g : [a,b] — R are integrable on [a, b] and satisfy the condition
(3.2) ¢ < f(z) <2, v<g(x)<T

for each x € [a, b] , where ¢, @, ~, T" are given real constants.

Moreover, the constant i is sharp in the sense that it cannot be replaced by a smaller one.

In 1950, M. Biernacki, H. Pidek and C. Ryll-Nardjewski [49, Chapter X] established the
following discrete version of Griiss’ inequality:

Leta = (a1,...,a,), b= (by,...,b,) be two n—tuples of real numbers such that r < a; <
Rand s <b; < Sfori=1,...,n. Then one has

<[] (-3 B]) -0,

where [x] denotes the integer part of z, = € R.

For a simple proof of as well as for some other integral inequalities of Griiss type, see
Chapter X of the recent book [49]. For other related results see the papers [1] — [3]], [8] — [LO],
(1] = [12]], [18] — [135], [40], [56], [60] and the references therein.

n

i=1

3.2. Operator Inequalities. The following operator version of the Griiss inequality was ob-
tained by Mond and Pecari¢ in [52]:

Theorem 3.1 (Mond-Pecari¢, 1993, [52])). Let C;, j € {1,...,n} be selfadjoint operators on
the Hilbert space (H, (-,-)) and such that m;-1y < C; < M;-1y forj € {1,...,n}, wherely
is the identity operator on H. Further, let g;, h; : [m;, Mj| — R, j € {1,...,n} be functions
such that

(3.4) p-ly<gi(Cj)) <@ 1y and ~v-1p <h;(Cj) <T -1y

foreachj € {1,...,n}.
. n 2
Ifzj € H,j€{1,...,n}aresuchthat 3 ;_, ||z;||" = 1, then

n n n

(3.5 D g (C) i (Chwjoay) = > g (Ch)ajoay) - > (b (Cy) xj, ;)

j=1 j=1 j=1

If C},j € {1,...,n} are selfadjoint operators such that Sp (C;) C [m, M]forj € {1,...,n},
some scalars m < M and if g,h : [m, M| — R are continuous, then by the Mond-Pecari¢
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inequality we deduce the following version of the Griiss inequality for operators

n n n

B.6) D _(g(CH(Cyaj,a) =Y {g(Ch)ag,az) - (h(Cy)wj,a;)

j=1 j=1 J=1
1
< (@—p) (=),

where z; € H, j € {1,...,n} are such that ) " |z;]|> = 1 and ¢ = minepmang(t),

S = maxsepm,a g (1), v = mingepna b (1) and I' = maxiepm,a b () -
In particular, if the selfadjoint operator C' satisfies the condition Sp (C') C [m, M] for some
scalars m < M, then

(3.7 (g (C)h(C) ;) = (g (C) ) - (A (C) z, 2)] <

for any x € H with ||z|| = 1.

Motivated by the above results we investigate in what follows other Griiss type inequalities
for selfadjoint operators in Hilbert spaces. Some of the obtained results improve the inequalities
(3.6) and derived from the Mond-Pecari¢ inequality. Others provide different operator
versions for the celebrated Griiss inequality mentioned above. Examples for power functions
and the logarithmic function are given as well.

3.3. An Inequality of Griiss Type for One Operator. The following result may be stated:

Theorem 3.2 (Dragomir, 2008, [30]). Let A be a selfadjoint operator on the Hilbert space
(H;(-,-)) and assume that Sp (A) C [m, M| for some scalars m < M. If f and g are continu-
ous on [m, M) and y := minycpm, v f (t) and I' := maxycpm ) f (1) , then

(3.8) |(f(A)gA)y,y) —(f(A)yy) (g(A)z, )

o tr
2

(T =) [l (A) gl + (g (A) 2, 2)* — 2 (g (A) 2, 2) (g (A) g, )] "

(9 (A)y,y) — (g (A)z,2)]

2
forany x,y € H with ||z|| = ||y|| = 1.

Proof. First of all, observe that, for each A € R and z,y € H, ||z| = |ly]| = 1 we have the
identity

(3.9 ((f(A) =A-1u)(g(A) —(g(A) 2, 2) 1u)y,y)
= (f(A) gDy, y) =X [{g(A)y,y) —(g(A)z,2)] — (g (A) z,2) (f (A) y, )

Taking the modulus in (3.9) we have

(3.10) [(f(A)g(A)y,y) —A-[g(A)y,y) — (9(A) z, x)]
—(g(A)z,2) (f (A) y,y)|
= [{( ) 1)y, (f (A) = A 1u) )|

g(A) = (g(A)z,z
(

< llg(A)y = {g(A)z,2)yll[[f (A)y = Ayl
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1/2

= [llg (A ylI*> + (g (A) z,2)> — 2 (g (A) z,7) (g (A) y, )]
X |If (A)y = My
< [Ig (A yll* + (g (A) 2, 2)* — 2 (g (A) 2, 2) (g (A) v, )] "
X [If (A) = A~ 1]
forany z,y € H, ||z|| = |ly|l = 1.

Now, since v = minsejm g f (t) and I' = maxycpn,ar f () , then by the property (]E) we have
that v < (f (A)y,y) < T foreachy € H with ||yH = 1, which is clearly equivalent with

(f(A)y,y)

‘<<f<A>—”‘gF1H)y y>‘ <=7

for each y € H with |ly|| = 1.
Taking the supremum in this inequality we get

or with

1

A)———-1 r—
which together with the inequality li applied for A = % produces the desired result

(G3). n

As a particular case of interest we can derive from the above theorem the following result of
Griiss’ type that improves (3.7):
Corollary 3.3 (Dragomir, 2008, [30]). With the assumptions in Theorem[3.2lwe have

GA1) [(f (4) g (A)z,2) = (F (A)2,2) - (g (4) 2, )
(I - 7“%@@ﬂf—@@®%@ﬂm(éi@—vﬂﬁ—®>

for each v € H with ||z|| = 1, where § := minycpm, a9 (t) and A := maxepm g () -

l\DIH

Proof. The first inequality follows from (3.8]) by putting y = z.
Now, if we write the first inequality in (3.11] for f = g we get
0<llg(A)z]” (g (A)z2)" = (g* (A z,2) — (g (A) x,z)"
1/2

< 5 (8 =5) [l () ol ~ (g (A) 2, 2]

which implies that
12

(A —9)

[llg (A) zl|* = (g (4) z,)°] %

for each x € H with ||z|| = 1.
This together with the first part of (3.11) proves the desired bound. §

The following particular cases that hold for power functions are of interest:

Example 3.1. Let A be a selfadjoint operator with Sp (A) C [m, M| for some scalars m < M.
If A is positive (m > 0) and p, q > 0, then

(3.12) (0 <) (APHz, ) — (APx, z) - (A%, x)

< 5 (M7 — ) [[[ Atz — (Avz, 1))
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< = (MP —mP) (M —m9)

S

for each x € H with ||z| = 1.
If A is positive definite (m > 0) and p, q < 0, then

(3.13) (0 <) (AP, z) — (APx, x) - (A%, )
1 MP—m™ 9 971/2
S T MAdel? — (AY
<o BT el — (a2,
< 1 MP—m™PM1—m™1
4 MPm~P M-9m~4
for each x € H with ||z| = 1.
If A is positive definite (m > 0) and p < 0, q¢ > 0 then
(3.14) (0 <) (AP, z) - (A%, z) — (APT 2, x)
1 M7P—m™P 2 211/2
S T MAYel? — (Al
L [ A
1 M7P—m™P
S T M —
= 4  M—Pm~p (M = m?)
foreach x € H with ||z| = 1.
If A is positive definite (m > 0) and p > 0, q¢ < O then
(3.15) (0 <) (APz,z) - (A%, z) — (APHz, 2)
1
<5 (7 —m?) [[[ A% — (A, 2)?)
1 M= —m™1
(M gy T
= 4 (M? = m) M—am—4

foreach x € H with ||z|| = 1.

We notice that the positivity of the quantities in the left hand side of the above inequalities

(3.12) — (3.15) follows from Theorem 2.1]
The following particular cases when one function is a power while the second is the logarithm
are of interest as well:

Example 3.2. Let A be a positive definite operator with Sp (A) C [m, M| for some scalars
0<m< M.
If p > 0 then

(3.16) (0 <) (APIn Az, z) — (APz,z) - (In Az, )
5 (MP —mP) [HlnAycH2 — <lnAa:,:c>2}

/2 APl — (Ape, )]

1 M
[§§~(M”—mp)ln —

1/2

<

m

foreach x € H with ||z|| = 1.
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If p <0, then
(3.17) (0 <) (APz,z) - (In Az, z) — (AP In Az, z)
L Mrom? iy Ag||? — (In Az, 2)?] "/
<
In /2 . [||Arz|? — (A2, 2)?]"?
1 MP—m»_  [M
< - Iny/—
2 M—Pm~—p m

foreach x € H with ||z|| = 1.

3.4. An Inequality of Griiss Type for n Operators. The following multiple operator version
of Theorem [3.2] holds:

Theorem 3.4 (Dragomir, 2008, [30]). Let A; be selfadjoint operators with Sp (A;) C [m, M]
for 3 € {1,...,n} and some scalars m < M.If f, g

: [m, M] — R are continuous, vy :=
Minepm vy f (t) and T' := maxyepm g f (t) , then

n

GA8) D> (F(A) g (A i) = D (F (A i) - Y (g (A) 2j,25)
j=1 j=1 J=1
7+F Z ) Yis Y5) Z fEJaxJ”
7j=1 7=1
1 n n 2
5 [ lg yj|| ( fj,l"ﬁ)
Jj=1 j=1

1
n n 2

—2 Z Dz Yy (g(A) yj,yj)]

=1
foreach w;,y; € H,j € {1,....n} with 325, |la;l* = 30—, |y 1" = 1
Proof. Asin [41] p. 6], if we put

N Al s 0 T n
A= and == ) g: )
then we have Sp (A) 1,12 =yl =1

3

(F(2)(2)7.3) =S W mm) . (o(D)7) =3 Az,

and
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Applying Theorem 3.2 for A, T and § we deduce the desired result (3.18). &

The following particular case provides a refinement of the Mond- Pecari¢ result from (3.6)

Corollary 3.5 (Dragomir, 2008, [30]). With the assumptions of Theorem[3.4|we have

n

n n

S A g(A) wgms) = > (F(A)aja5) - > (g (A)) ;)

j=1 7j=1 7=1

(3.19)

97 1/2
1 n

<5 (=7) ZHQ e —<Z<9(Aj)$jal’j>>
(giw—vMA—a)

for each x; € H,j € {1,...,n} with Z;’L:1 H:IJ]H2 = 1, where § := minyejm g (t) and
A i=maxXsepm, g (1) .

Example 3.3. Let A;, j € {1,...,n} be selfadjoint operators with Sp (A;) C [m,M],j €
{1,...,n} for some scalars m < M.

If A; are positive (m > 0) and p, q > 0, then

(320) (0 S) Z <A§+q$’j, l’j> — Z <A§$j, $j> : Z <A;I-[I§'j, l’j>
j=1 j=1 j=1

o1 1/2
1 n 9 n
<5 (M —m?) | D[4Sl - (Z <A§"%‘v%>>
j=1 j=1
1
< 1O =) (o = )
foreachz; € H,j€{l,...,n} withy 7, z;])* = 1.
If A; are positive definite (m > 0) and p,q < 0, then
(3.21) (0 <) Z ( p+qxj,x] Z <A T, 1) - Z <Aqx3,xj
j=1
0 1/2

" S gl (3 (4

M
7j=1
1 MP—m™PM1—m1
< —.
<5 |

PP M—am—4a

foreachz; € H,j€{l,....,n} with) 7, z;])* = 1.
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If A; are positive definite (m > 0) and p < 0, ¢ > 0, then

(3.22) (0 <) Z (AP :cj,:cj> Z<Aq:c],x]> Z Aerqa:j,xj
7j=1

07 1/2
1
<5 S | S Ml - (3 ()
7=1
1 M™P—m™>
. 4 _
[g 4  M-Pm-p (M —m )1
foreachx; € H,j€{1,....,n} with) "7, ;] = 1.
If A; are positive definite (m > 0) and p > 0, g < 0, then
(3.23) (0 <) Z (Alxj, x;) - Z Al ;) — Z (AT 25)
j=1 j=1
o7 1/2

<30 =) [ - (3 (g

1 M~ —m™1
z. p_ o\ MY
{§4 (M =) ]

foreachx; € H,j€{l,....,n} with) 7, z;])* =

We notice that the positivity of the quantities in the left hand side of the inequalities (3.20) —
(3.23)) follows from Theorem [2.1]

The following particular cases when one function is a power while the second is the logarithm
are of interest as well:

Example 3.4. Let A; be positive definite operators with Sp (A;) C [m, M|, j € {1,...,n} for
some scalars 0 < m < M.

If p > 0, then
(3.24) (0 <) Z <A§ InAjz;, SL’j> — Z <A§xj, q:j Z (InAjz;,x;)
j=1 j=1 j=1
( 971/2
n 2 n
o007 = ) | S A = (S O gy ) |
<

M n p 2 n p 2 v
In peoglly {Zj—l HijjH B <Zj:1 <ijj7xj>> }

Ve

1 M
<=+ (MP—mP)In —]
2 m

foreachz; € H,j€{1,....,n} with) 7, z;])* =
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If p < 0, then

n

3

n

(325) (0 S) Z <A§xj,xj> : <1Il AjZEj7.Z'j> - Z <A§ In ijj,xj>

Jj=1 J=1 J=1

1/2

~P—_m~P n n 2
Pt [T A P~ (S (n sy |

IN

571/2
/% | S g = (S (As,) |

[ 1 MP—m™> M]
<. 2Ty

=2 "Mrmr \Nm
foreachz; € H,j€{1,....,n} with) 7, z;]* = 1.

3.5. Another Inequality of Griiss Type for n Operators. The following different result for
n operators can be stated as well:

Theorem 3.6 (Dragomir, 2008, [30]). Let A; be selfadjoint operators with Sp (A;) C [m, M|
for j € {1,...,n} and some scalars m < M. If f and g are continuous on [m, M|, v =

minsefmn ar) f (t) and T := maxiepm ) f (t) , then foranyp; > 0,5 € {1,... ,nywith) ] p; =
1, we have

<épkf<Ak>g<Ak>y,y>
SRALY <§pkg (Ak>y,y> - <§;pjg <Aj>:c,m>]
- <k§2pkf <Ak>y,y> - <§n;pjg <Aj>x,x>‘
- lzp o (40 ol 2 <ipkg <Ak>y,y> <§n;pjg <Aj>x,x>

(3.26)

k=1

§ 07 1/2
. <zpjg <Aj>x7:c> ,
j=1
foreach x,y € H with ||z|| = [|y|| = 1.

Proof. Follows from Theorem on choosing z; = \/pj - 2, y; = \/P; -y, j € {1,...,n},

where p; > 0,5 € {1,...,n}, > 7 p; = land 7,y € H, with |[z|| = |ly|| = 1. The details
are omitted.

Remark 3.1. The case n = 1 (therefore p = 1) in (3.26) provides the result from Theorem 3.2]

As a particular case of interest we can derive from the above theorem the following Griiss
type result:
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Corollary 3.7 (Dragomir, 2008, [30]). With the assumptions of Theorem[3.6] we have

(3.27) <Zpkf (Ar) g (Ap) I> <Zpkf (Ap)x >'<2pkg (Ak)$,$>
k=1
o\ 1/2
=~ 2
<5 D oellg (A zl® = (O prg (Ar) @
k=1 k=1
1
<1 -0
for each v € H with ||z|| = 1, where § := minyepm, a9 (t) and A := maxeepm g (1) -

Proof. Tt is similar with the proof from Corollary [3.3]and the details are omitted. &

The following particular cases that hold for power functions are of interest:

Example 3.5. Let A;, j € {1,...,n} be selfadjoint operators with Sp (A;) C [m,M],j €
{1,...,n} for some scalars m < M and p; > 0,5 € {1,...,n} with Z?lej =1.

If A, j € {1,...,n} are positive (m > 0) and p, q > 0, then

(3.28) (0 <) <ZpkA§+qx,:c> - <ZpkAgx,x> : <ZpkAZx,x>
k=1 k=1 k=1
97 1/2

1 n n
<35 (M? —mP) | > pe | Az — <ZpkAZ:r,x>
k=1 k=1
< 5O =) (a1 = )

for each x € H with ||z| = 1.
If Aj,j€{1,...,n} are positive definite (m > 0) and p,q < 0, then

(3.29) <ZpkAp+qx x> <ZpkAzx,x> . <ZpkAZ:L’,x>
k=1 k=1 k=1
o7 1/2

1
< SRy — ZPkHA o — <ZpkAk:L' I>

foreach x € H with ||z|| = 1.
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IfA;, j € {1,...,n} are positive definite (m > 0) and p < 0, ¢ > 0, then

(3.30) <ZpkAkx x> <ZpkAZx,x> - <ZpkAi+q:r,x>
k=1 k=1
1 1/2

1 M P -
<3 M [t - (S
k=1

foreach x € H with ||z|| = 1.
IfA;, j € {1,...,n} are positive definite (m > 0) and p > 0, ¢ < 0, then

(3.31) (0 <) <ZpkAkx :c> <ZpkAZx,x> - <ZpkAi+qx,x>

k=1 k=1 k=1
57 1/2

1 n
<O =) [ AL - <2pkAkx >
k=1

1 M= —m™1
Lo ey T
[34 (M =) = }

for each x € H with ||z| = 1.

We notice that the positivity of the quantities in the left hand side of the inequalities (3.28)) —
(3.31) follows from Theorem [2.1]

The following particular cases when one function is a power while the second is the logarithm
are of interest as well:

Example 3.6. Ler A;, j € {1,...,n} be positive definite operators with Sp (A;) C [m, M],
Jj €{1,...,n} for some scalars 0 < m < M andp; > 0,j € {1,...,n} with Z;;lpj = 1.
If p > 0, then

(3.32) (0 <) <ZpkAi lnAkx,x> — <ZpkAZa:,x> : <Zpk lnAk:L*,:c>
k=1

k=1 k=1

. . 1/2
Lo (M7 — ) - [y e o Ay = (S, pi A, 7))
<
M n p 2 n P 2 1/2
In /3% [0 pe 4R — (T, e, )
1 M
[< 3" (MP —mP)Iny/ —

- m

foreach x € H with ||z|| = 1.
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If p <0, then
(3.33) <ZpkAka: x> <Zpk lnAka:,:c> — <ZpkA£ lnAkx,x>
k=1 k=1
1 M—P_mP 1/2
3 MImer [Zk Lol Ay | = (S5, prIn Ay, x>]
<

M n p 2 n P 21/2
In /3% [0 pe 4G = (S, e, )
[ 1 M~ —m? M]
<z In1/ =

=2 "Mrmr Vm
for each x € H with ||z| = 1.

The following norm inequalities may be stated as well:

Corollary 3.8 (Dragomir, 2008, [30]). Let A; be selfadjoint operators with Sp (A;) C [m, M|
forj € {1,...,n} and some scalars m < M.If f, g : [m, M] — R are continuous, then for
eachp; > 0,7 € {1,...,n} with Z?Zl p; = 1, we have the norm inequality:

ijf(

where vy := minyepm p f (1), I i= maxicpm g f (t),0 := minte[m’M] g (t)and A = maxcpm g (1) -

<Zpkg (A) z, x> ‘

(3.34) b =) (A-0),

Proof. Utilising the inequality (3.27) we obtain

T

1
b0 =) (A 0)
for each x € H with ||z|| = 1. Taking the supremum over |[z|| = 1 we deduce the desired
inequality (3.34). n
Example 3.7.

a. Let A;, j € {1,...,n} be selfadjoint operators with Sp (A;) C [m, M],5 € {1,...,n} for
some scalarsm < M andp; > 0,5 € {1,...,n} with 377 p; = 1.
IfA;, j €{1,...,n} are positive (m > 0) and p,q > 0, then

(3.35) > ppApt > eAR| D prAf —mP) (M —m9).
k=1 k=1 k=1
IfA;, j € {1,...,n} are positive definite (m > 0) and p, q < 0, then
- 1 Mp—mp M= —m™1
p+q
(3.36) kzl prA? ey S

b. Let Aj, j € {1,...,n} be positive definite operators with Sp (A;) C [m,M],j € {1,...,n}
for some scalars 0 <m < M andp; > 0,7 € {1,...,n} with Z?:ﬂ?j =1.
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If p > 0, then
(3.37) zn:pkAi In Al < zn:pkAi . zn:pk In A|| + L (MP —mP) In M
k=1 = k=1 2 m

4. MORE INEQUALITIES OF GRUSS TYPE

4.1. Some Vectorial Griiss Type Inequalities. The following lemmas, that are of interest in
their own right, collect some Griiss type inequalities for vectors in inner product spaces obtained
earlier by the author:

Lemma 4.1 (Dragomir, 2003 & 2004, [22], [26]]). Let (H, (-, -)) be an inner product space over
the real or complex number field K, u,v,e € H, |le| = 1, and o, B,7,0 € K such that

4.1) Re (Be — u,u — ae) > 0, Re (0e —v,v —ve) >0
or equivalently,

v +0
€

1
4.2) <316-71.

H a+ 0
u— e
2

<zl-al.  |o-

Then

4.3) |{u,v) — (u,e) (e, v)|
[Re (Be — u,u — ae) Re (de — v, v — fye)]% ,

< —-[B—alld—7| -

e~ =

) - 32] | {v.) 252

The first inequality has been obtained in [22] (see also [27, p. 44]) while the second result
was established in [26]] (see also [27, p. 90]). They provide refinements of the earlier result from
[16] where only the first part of the bound, i.e., |3 — a| [0 — 7|, has been given. Notice that,
as pointed out in [26], the upper bounds for the Griiss functional incorporated in (4.3]) cannot be
compared in general, meaning that one is better than the other depending on appropriate choices
of the vectors and scalars involved.

Another result of this type is the following one:

Lemma 4.2 (Dragomir, 2004 & 2006, [23]], [28]). With the assumptions in Lemma [{.1] and if
Re (B@) > 0,Re (67) > 0 then

4.4) |{u,v) — (u,e) (e,v)|

1 [8=al[6—|
T u,e) (e, v)],
4 [Re(8a) Re(67)]2 [, ) (e, v}

IN

[NIES

[(la+ 31 = 2 [Re (5a))# ) (18 + 7] = 2 [Re (07)%) ] * 1w, e) de,v))*

The first inequality has been established in [23] (see [27, p. 62]) while the second one can be
obtained in a canonical manner from the reverse of the Schwarz inequality given in [28]. The
details are omitted.

Finally, another inequality of Griiss type that has been obtained in [24] (see also [27, p. 65])
can be stated as:
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Lemma 4.3 (Dragomir, 2004, [24]). With the assumptions in Lemma and if B # —a,
0 # —y then
1 |8-alli—1 ;
@5 [{u,v) = (u,e) e, v)| < 7 - T [(lull + [{u, e)]) ([[oll + (v, e)])] -
16+ a0 +~]]2
4.2. Some Inequalities of Griiss Type for One Operator. The following results incorporate
some new inequalities of Griiss type for two functions of a selfadjoint operator.

Theorem 4.4 (Dragomir, 2008, [31]]). Let A be a selfadjoint operator on the Hilbert space
(H; (-, -)) and assume that Sp (A) C [m, M] for some scalars m < M. If f and g are contin-
uous on [m, M| and v := mingem g f (1), T' := maxicpma f (1), 6 := mingepm, g g (t) and
A = maxycpm ) g (1) , then

4.6) |(f(A)g(A)z,x) = (f(A)z,x)(g(A)x, )]

. [Pz~ f(A), f (A) 7 = 3z) (Az — g (A) 2,9 (A) = — o)) ,

AN

(Fv)(A5){
‘(f(A)l”lﬁ_%l }<9(A)$7$>_¥ )

foreach x € H with ||z| = 1.
Observe that if v and d are positive, then we also have

@7 (A g(A)z,z) = (f(A)z,x) (g (A) z, 7)]

LR (f (A)z,2) (g (A) v, 7).

IN

N|—=

(VI = v7) (VA= V3) [(f (A) ) g (A) 2,2}
while for ' + v, A + 6 # 0 we have

“.8) [(f(A)g(A)z,z) = (f (A)z,x) {9 (A) z,2)|

<1 L@ eyl + 14 (4) 2, 230) (g (A) 2 + (g (4) 2, )]

AT+ AA 4
foreach x € H with ||z|| = 1.

N

Proof. Since v := mingepn g [ (t), I' := maxepmag f (£), 6 = mingep, g () and A =
MaXye(m a1 g (t) , then by the property (P) we have

in the operator order, which implies that
@49  [fA)—v-UT 1g—f(A)]>0and [A-1yg—g(A)[g(A)—0-1x] >0

are in the operator order.
We then have from #.9).

([f (A) =y-1][C-1g — f(A)]2,2) >0
and
([A-1g —g(A)]lg(A) =6 -1g|z,z) >0,

for each x € H with ||z|| = 1, which, by the fact that the involved operators are selfadjoint, are
equivalent with the inequalities

(4.10) (Te—f(A)a, f(A)x—~x) >0 and (Az—g(A)z,g9(A)x—dz) >0,
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for each x € H with ||z|| = 1.
Now, if we apply Lemma [4.1] for u = f(A)x, v = g(A)x, e = x, and the real scalars
I', v, A and ¢ defined in the statement of the theorem, then we can state that

@10 |(f (A)z,g(A)z) = (f (A)z,z) (2,9 (A) z)| <
[Re Tz — f(A)z, f (A)xz — vyz) Re Ax—g(A)x,g(A):U—(h)]%,

(T =) (A= 4)

[(f (A) z, ) — 2] [{g (A) 2, ) — 552

2

I

for each x € H with ||z|| = 1, which is clearly equivalent with the inequality (4.6).
The inequalities (4.7) and (4.8) follow by Lemma 4.2 and Lemma [4.3] respectively and the
details are omitted. g

Remark 4.1. The first inequality in (4.7]) can be written in a more convenient way as

1 =) (A-09)

(f(A)g(A)z,z)
o e R e
for each x € H with ||z|| = 1, while the second inequality has the following equivalent form
<f (A)Q(A)%@ 1/2
4.13 — A A
(4.13) ‘Kf(A)w,@ () 2. 2 [(f (A) z, z) {g (A) z, z)]

s(ﬁ—ﬁ)(\/z—ﬁ)

for each z € H with ||z|| = 1.
We know, from [29] that if f, g are synchronous (asynchronous) functions on the interval
[m, M], i.e., we recall that

[f (@)= F($)]g () —g(s)] (=) <0 foreacht,s € [m, M],
then we have the inequality
(4.14) (f(A)g(A)z,z) = () (f (A)z,z) (g (A) z,z)

for each x € H with ||z|| = 1, provided f, g are continuous on [m, M| and A is a selfadjoint
operator with Sp (A) C [m, M].
Therefore, if f, g are synchronous, then we have from (4.12)) and (4.13)) the following results:

(f(A)g(A)z, ) 1 I'=7)(A-9)

&1 VT e @) T3 Vb
and
(f(A)g(A)z,x) 1/2
(4.16) 0< T Az, x Az, x
A o) (g (A) w2} [(f (A) z,z) (g (A) z, x)]

g(ﬁ—ﬁ)(\/z—ﬁ)

for each x € H with ||z|| = 1, respectively.
If f, g are asynchronous then

(f(A) g(A)z,z) 1 =y (A-9)
4.17) 0§1_<f(A)x,:v> (g(A)z,x) =1 VIYAS
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and
(4.18) 0< [(f(A)z,z) (g (A)z, )] - /(A)g(A)z,2) 7
[(f (A)z,2) (g (A) z,z)] (A z.2) (g (A) 2. 2)]
< (- ) (13-
for each x € H with ||z|| = 1, respectively.

It is obvious that all the inequalities from Theorem [{4.4]can be used to obtain reverse inequal-
ities of Griiss type for various particular instances of operator functions, see for instance [30]].
However, we give here only a few provided by the inequalities (#.13)) and (4.16]) above.

Example 4.1. Let A be a selfadjoint operator with Sp (A) C [m, M| for some scalars m < M.
If A is positive (m > 0) and p, q > 0, then

(APtag, ) 1 (MP —mP) (M7 — m9)
4.1 < 1<t
(4.19) 0< (Arx, z) - (Adz, x) = VEOCT
and
p+q
(420) 0< <A x, I> o [(Apx7$> X <Aqx’ l‘>]1/2

[(APz, x) - (Adz, a:>]1/2
< () (1)

for each x € H with ||z| = 1.
If A is positive definite (m > 0) and p, q < 0, then

(APt 1) 1 (M —=m™P)(M~9—m™9)
4.21 0< —1< =
“21) ~ (Arx x) - (Adx, ) — 4 M-yt
and
p+q
4.22) (A, ) — [(APz, ) - (A%, )]

S 1/2
[(Arz, z) - (Az, z)]"/

for each x € H with ||z| = 1.

Similar inequalities may be stated for either p > 0,q¢ < O or p < 0,q > 0. The details are
omitted.

Example 4.2. Let A be a positive definite operator with Sp (A) C [m, M| for some scalars
1l<m< M. Ifp >0 then

(4.23) o< Amdzn) 1 (M —m) In
' ~ (Arz,z) - (In Az, ) ~ 4 MimiyInM-Inm
and
p
(4.24) (A7 In Az, 2) — [(APz,z) - (In Az, 2]/

~ [(Arz,z) - (In Az, )]
< (]\4g —mg> [\/lnM— Vinm]|,
foreach x € H with ||z|| = 1.
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4.3. Some Inequalities of Griiss Type for n Operators. The following extension for se-
quences of operators can be stated:

Theorem 4.5 (Dragomir, 2008, [31]]). Let A; be selfadjoint operators with Sp (A;) C [m, M|
for 3 € {1,...,n} and some scalars m < M. If f and g are continuous on [m, M| and
v r= milepn g f (8), T i= maxeem g f (t), 0 := minyep g (1) and A = maxyepm g (1),
then

425 D (f(A)g(A)ayz) =Y (F(A)zp ) - > {g(A)) )
j=1 Jj=1 Jj=1
[é (Ta; — f(Aj) @y, f(4) 25 — yz))
Si (I'=7) (A=6) =9 ><i(Ax]—g(A])x],g(Aj)x—éxj>] ,
=1
3 (F (A 3yomy) = 52| (g () ) = 242,
L 5= =
foreachz; € H,j€{l,....,n} with) 7, z;])* = 1.
If v and 6 are positive, then we also have
4260 D (F(A)g(A)aj ) = (f(A) a2 - > (g (A)) z5,2))
=1 =1 =1
( T il (f (Aj) x5, ;) - Zn:l (9 (4;) 5, 25) ,
= =
<

<\/1:— xﬁ) <\/K— \/5> li (f (Ay) @y, 25) - i (g (Aj)$j>37j>] 5 y

\ j=1 =1

while for I' + v, A + § # 0 we have

n 1/2 n
1 (M=) (A=0) ( )
<= T I.f (Aj) 2| + (f (Aj) 2, 25)
40 +41A+4])2 i 2

1/2

foreachx; € H,j€{1,....,n} with) 7, ;] = 1.
Proof. Asin [41, p. 6], if we put

Al ce 0 1

A= oo :

0 --- A, z,
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then we have Sp (ﬁ) C [m,M], ||z|| =1

GEN —Zuf )il

J=1

Jo (2) 7] Zug Yl

Applying Theorem 4.4 for A and 7 we deduce the desired results. The details are omitted. §

Remark 4.2. The first inequality in (4.26) can be written in a more convenient way as

J L (f (A7) g (A)) g, 25) 1 C=y(A-9
-1 ¢ )3717$j>'2?:1 (9 (Aj) x5, 25) 4 VTYAS

foreach z; € H,j € {1,...,n} with 377 |;]|> = 1, while the second inequality has the
following equivalent form

(4.28) -1 <

> i1 (f (A7) g (Ag) zj, @)

(4.29) 7
| A (A gy - S (9 (Ay) a5, 5)]

n n 1/2
- [Z (f (Ag)zj,25) - > (g (Aj)xjﬁ@]

J=1 Jj=1

< (VT-) (VB9

foreachx; € H,j € {1,...,n} with 37 [|z,[|* = 1.
We know, from [29] that if f, g are synchronous (asynchronous) functions on the interval
[m, M] , then we have the inequality

n n n

(4.30) S A g (A aj ) > () (f(A) a,2) - > (g (Ay) 25,2))

Jj=1 J=1 Jj=1

foreachz; € H,j € {1,...,n} with 377, |;]|> = 1, provided that f, g are continuous on
[m, M| and A; are selfadjoint operators with Sp (A4;) C [m, M|, j € {1,...,n}.
Therefore, if f, g are synchronous, then we have from (4.28)) and (4.29) the following results:

> i (F(A5) g (Ag) zj, 35)

@31) DS ENIIV R AN
L r=y)(a=y)
4 JTHAS
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and
> (f(A5) g (Aj) zj,5)
[2?21 (f (Aj)zj ) - >0 (g (Aj) 2, fﬁj)} v
n n 1/2
- [Z (f(Aj)mjm) - Y (g (Aj)fﬁjal"j)]

j=1 j=1

(V-1 (V5 -3

(4.32) 0<

foreachz; € H,j € {1,...,n} with 377, ||;||> = 1, respectively.
If f, g are asynchronous then

L (f(A5) g (Ag) x5, 75)
433 R VAV R FAEA RS S TV B EEy
1 T=7(A-d)
! I'vAo
and

> i (f(Ay) g (Ay) x5, 35)
S (A s - S (g (Ay) ;)
< (VI -v7) (VA-6)

1/2

foreachz; € H,j € {1,...,n} with > 77, ||;]|> = 1, respectively.

It is obvious that all the inequalities from Theorem [{.5]can be used to obtain reverse inequal-
ities of Griiss type for various particular instances of operator functions, see for instance [30]].
However we give here only a few provided by the inequalities (4.37T]) and (4.32)) above.

Example 4.3. Let A;, j € {1,...,n} be selfadjoint operators with Sp (A;) C [m,M], j €
{1,...,n} for some scalars m < M.
If A; are positive (m > 0) and p, q > 0, then

< Z?:l <A§+qa7j: xj> B
T (Al gy - 300 (Al )
L (MP — ) (M — e

(4.35) 0 1

S ptq ptq

4_1 M= m =2
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and
S (AP )
(4.36) 0< - = - o 1/2
[Zj:l <A§$j7 33]-> : Zj:l <A;1'37ja x]>]

n n 1/2
S (W) -3 (Al >]
1 j=1

j=
< (a1 ) (1)

foreachx; € H,j€{1,....,n} with) 7, |z ]I = 1.
If A is positive definite (m > 0) and p, q < 0, then

AP g
23:1 <Ajmj, xj> : Zj:l <ijjv wj>
1 (M?—m™P)(M~9—m™9)

< .

— 4 M_pgjm_pTﬂ

and
n n 1/2
j=1 j=1

Z?:l <A§+q$’ x>

[Z}Ll (Afs,25) - 35 (Aj, 3’1‘>] -

(M=% —m~%) (M~% —m™%)
M_qum_pQ
foreachz; € H,j € {l,....,n} with) 5, |z ])* = 1.

<

Similar inequalities may be stated for either p > 0,q¢ < O or p < 0,¢q > 0. The details are
omitted.

Example 4.4. Let A be a positive definite operator with Sp (A) C [m, M| for some scalars
l<m< M. Ifp >0, then

> (A In Ay, )

(4.39) 0< — - —1
Zj:l <A§33jv$j> : Zj:l (ln ijja xj>
< 1 (MP—mP)In
4 MEimEvInM-lnm
and
(4.40) 0< Yjo (AfIn Aszy ;)

172
[Z;L:I (A, ;) - Y0 (In Ajag, l’j>]

n n 1/2
> (Abzja) > (In Ay, fﬁj>]
j=1

=1

< (M%—m%) [\/W—\/M]
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foreachx; € H,j€{1,....,n} with) 7, z;]* = 1.

Similar inequalities may be stated for p < 0. The details are omitted.
The following result for n operators can be stated as well:

Corollary 4.6. Let A; be selfadjoint operators with Sp (A;) C [m,M] for j € {1,...,n}
and some scalars m < M. If f and g are continuous on [m, M| and v := minyep, v f (1),
I' == maxyepm g f (), 0 = mingepm g g () and A = maxycpm g (t) , then for any p; >
0,5 € {1,...,n} with }37_, p; = 1 we have

(4.41) <ij > <Zp7 >-<ijg(flj)fﬂ,fr>‘
[z (La = f (4. (4)) 2 = 72)
g%( — ) (A =6) — ><ilpj<Ax—g(Aj>x,g(Aj>x—6x>] ,

Y
\

<ijf(Aj)$ax> -3
=1
for each z € H, with ||z||* = 1.

Moreover, if v and ¢ are positive, then

<ijf(Aj)g(Aj)%l‘> - <ijf(f4j)%l’> ‘ <ijg (Aj)%$>|
i %<Zm (Aj) z, >~<ipjg(Aj)x,x>,

\(ﬁ—ﬁ)(ﬂ—ﬁ)Ki ><Zpyg i)z, >r

while for T + v, A + § # 0 we have

<ijf(Aj)g(Aj>x»x> - <ijf( > < pig (A $>‘

1/2 "
1 (C=9(A-9) g o
RERNTNRNTINTE (pr 17 ”) + <]legf( hE2 >

(ijl\g ch> +<ijg(z4j)x,x>‘

Proof. Follows from Theoremon choosing z; = /p;-x,j € {1,...,n}, wherep; > 0,j €
{1,...,n}, > 0 pj =1land x € H, with [|z]| = 1. The details are omitted.

<lejg (Aj)x,$> — &
J:

(4.42)

IN

(4.43)

1/2

for each z € H, with ||z||* = 1.
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Remark 4.3. The first inequality in (4.42) can be written in a more convenient way as

(Siomf (A7) 9 (A7) 2, ) | (M=) (A—0)

—1l<=.

<Z§L:1 pjf(Aj)fB>w> - <Z§;1pjg (Aj):c,x> 4 VIvAS

for each 2 € H, with ||z|*> = 1, while the second inequality has the following equivalent form

(4.44)

<Z?:1ij(f4j)9(f4j)$’flf>
(S mf (4w - (S pig (4 )

n n 1/2
<ijf(f4j)$a$> : <ij9 (Aj)$a$>]

g(ﬁ—ﬁ)(ﬂ—ﬁ)

(4.45)

1/2

for each 2 € H, with ||z|* = 1.
We know, from [29] that if f, g are synchronous (asynchronous) functions on the interval
[m, M] , then we have the inequality

(4.46) <ijf (45) g (Aj)x,w> > (<) <ijf (45) xl’> - <ijg (45) l‘l’>

for each x € H, with ||z||> = 1, provided that f, g are continuous on [m, M] and A; are
selfadjoint operators with Sp (A,) C [m, M],j € {1,...,n}.
Therefore, if f, g are synchronous then we have from (#.44) and (4.43) the following results:

<z] \pif (A7) g (Aj) @)

(447) < NIRRT )w>—1
o1 T=9(A-9)
=1 VITYAS
and
<Z?:1pjf(Aj)9(Aj)%$>
(4.48) 0<

[<Z?:1pjf(Aj)x’x> ‘ <Z] ;g (4)) xﬂl/z

n n 1/2
<ijf(f4j)%ff> : <ij9 (Aj)%l‘>]

< (Vi-vA) (va- Vi)

for each = € H, with ||z||* = 1, respectively.
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If f, g are asynchronous then

(Siomif (A7) g (A )

(4.49) 0<1—
<Z?:1p] JZ,ZL’> < j= 1p]g Aj)z, x>
1) (A—0)
— 4 VIvAS
and

n n 1/2
(4.50) 0< [<ijf (A)) x,x> . <ijg (A)) x,x>
(Syopif (A7) g (A7) 2. )
|:<Z§L:1 pif (Aj)%l‘> : <Z?:1 ;g (4;) xal’>]
< (VI -v7) (VA - Vi)

for each = € H, with ||z||> = 1, respectively.

1/2

The above inequalities — (4.50) can be used to state various particular inequalities as
in the previous examples, however the details are left to the interested reader.

5. MORE INEQUALITIES FOR THE CEBYSEV FUNCTIONAL

5.1. A Refinement and Some Related Results. The following result can be stated:
Theorem 5.1 (Dragomir, 2008, [32]). Let A be a selfadjoint operator with Sp (A) C [m, M| for

some real numbers m < M.If f,g : [m, M] — R are continuous with § := mincpm a1 g (t)
and A := maxcim ) g (t) , then

(5.1 C(f,9: 42)] < 5 (A =0){|f (A) = (f(A) z,2) - Lu| 2, 2)

< S (A=0)CY2(f, i &),

N — DN —

forany x € H with ||z|| = 1.
Proof. Since § := minepm a g (t) and A := maxyep, a9 (t) , we have

A0l Liasy),
2 2

(5.2) ’9 (t) —

forany ¢t € [m, M] and any x € H with ||z|| = 1.
If we multiply the inequality (5.2) with | f (¢) — (f (A) z, z)| we get

63 |J0a) — W)@ - 2010+ 272 (A
<SA=3)If ()~ (7 (A)z,2)]

forany ¢t € [m, M| and any x € H with ||z|| = 1.
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Now, if we apply the property (P) for the inequality (5.3)) and a selfadjoint operator B with
Sp(B) C [m, M], then we get the following inequality which is of interest in itself:

S4) [(f(B)g(B)y,y) —(f(A)z,x)(9(B)y,y)

2 By + 22 (7 ()
< 3 (A= 0){If (B~ {F (A)w,2) - 1uly,p).

forany z,y € H with ||z|| = ||y|| = 1.
If we choose in (5.4) y = x and B = A, then we deduce the first inequality in (5.I).
Now, by the Schwarz inequality in / we have

(IF (A) = {f (A)z, z) - 1|z, x) < |[f (A) = (f (A) z,2) - 1| ]
=If (A)z—(f(A)z,z) -z
= [IlF (A) z|* = ( (A) z,2)"]
= CV2(f, [; As)
for any # € H with ||z|| = 1, and the second part of is also proved. 1

1/2

Let U be a selfadjoint operator on the Hilbert space (H, (-, -)) with the spectrum Sp (U)
included in the interval [m, M] for some real numbers m < M and let { E)}, p be its spectral
family. Then for any continuous function f : [m, M] — R, it is well known that we have the
following representation in terms of the Riemann-Stieltjes integral:

M
5 GWea)= [ FNa(Ew).

m—0
for any x € H with ||z|| = 1. The function g, (\) := (E\x, x) is monotonic nondecreasing on
the interval [m, M] and
(5.6) g:(m—0)=0 and g, (M)=1

for any x € H with ||z|| = 1.
The following result is of interest:

Theorem 5.2 (Dragomir, 2008, [32]). Let A and B be selfadjoint operators with Sp (A) , Sp (B) C
[m, M| for some real numbers m < M. If f : [m, M| — R is of r — L—Holder type, i.e., for
a givenr € (0,1] and L > 0 we have
[f(s) = f(O)I < Lls—t["  foranys,t e [m,M],
then we have the Ostrowski type inequality for selfadjoint operators:
m + M
2

S —

57 Lﬂ@—UMMwHSLBM%ﬂm+

forany s € [m, M| and any x € H with ||z|| = 1.
Moreover, we have

5.8) [ (B)yy) = (f (A z,x)| <(f(B) = {f(A)z,2) - 1uly,y)

SLB(M—m)+< mt M

forany x,y € H with ||z|| = ||y|| = 1.

B — e

)
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Proof. We use the following Ostrowski type inequality for the Riemann-Stieltjes integral ob-
tained by the author in [21]:

(59 ﬂ@h@—mm—/f®mmﬂ

r b

| Vi

a

a+b
2

SLB(b—a)Jr‘s

for any s € [a, 0], provided that f is of r — L—Holder type on [a, b] , u is of bounded variation
b
on [a, b] and \/ (u) denotes the total variation of u on [a, b] .

Now, applying this inequality for u (\) = g, (\) := (E\x, z), where € H with ||z|| = 1
we get

s 1= [ st

m—0

1

éL[—(M—m)Jr's—erM

2

: 'V

m—0

which, by (5.5) and (5.6) is equivalent with (5.7).
By applying the property (P) for the inequality (5.7)) and the operator B we have

(U5 (B) =1 (a2} -l < L{ [ 0 =)+ |- | )

gL<[1(M—m)+ B—m+M"1H] y,y>r

2
5 y7y>:|

for any =,y € H with ||z|| = ||y|| = 1, which proves the second inequality in (5.8)).
Further, by the Jensen inequality for convex functions of selfadjoint operators (see for in-
stance [41, p. 5]) applied for the modulus, we can state that

M) [(h (A) 2, 2)| < (|h(A)]z, x)

for any x € H with ||z|| = 1, where  is a continuous function on [m, M| .
Now, if we apply the inequality (M), then we have

([f (B) = (f(A)z,2) - Luly, y)| < (If (B) = (f (A) z,2) - Luly,y),
which shows the first part of (5.8), and the proof is complete. 1

m+ M

-1y

:L[%(M—m)+<3—

Remark 5.1. With the above assumptions for f, A and B, we have the following particular
inequalities of interest:

5.11) V(m;M>—qmmw>s%uM—mf
and
G117 ()~ (W) £ L] O —m)+ [(ara) - L]

for any x € H with ||z| = 1.
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We also have the inequalities:

(5.13) [(f (A)y,y) — (f (A) 2, 2)|
<{If (A) = (f(A)z,2) - 1uly,y)

1 m+ M "
gL{E(M—m)+< 5 yy>} ;

forany z,y € H with ||z|| = ||y|| = 1,
(5.14) ([F (B) = f(A)]z,z)| < (I (B) = (f (A) z,2) - 1n| z, x)

SLB(M—m)+< m;M

A—

B —

Ay

o)

The following corollary of Theorem[5.2]can be useful for applications:

Corollary 5.3 (Dragomir, 2008, [32]). Let A and B be selfadjoint operators with Sp (A) , Sp (B) C
[m, M| for some real numbers m < M. If f : [m, M| — R is absolutely continuous, then we
have the Ostrowski type inequality for selfadjoint operators:

S.17) [ (s) = (f (A) , )]
[% (M—m)—i—}s—%ﬂ Hf/Hoq[m,M] l:ff/ELoo [m>M];

and, more particularly,
(5.15) (IF(A) = {f(A)z,z) - Ly|z, x)

gL[%(M—m)+<‘A—m+2M-1H

for any x € H with ||z|| = 1.
We also have the norm inequality

m+ M

Ay

(5.16) 1) = £l < L[5 00— m)+ -

<

1 m+M |11/4 iffleLp[m7M]7
[3 (M —m) + |s = “EXE N o pg>1,5+ =1,
forany s € [m,M] and any x € H with ||z| = 1, where ||-[|,, ,,, \s are the Lebesgue norms,
Le.,
1P/l oo gy = €55 sup A (2)]]
te[m,M]
and

M 1/p
1l o,y = (/ |h(t)|p> , p>1.

Additionally, we have
(5.18) [(f(B)y,y) = {f (A) z, z)]
<A (B) = {f(A)z,z) - 1u|y,y)
[Mgm + <‘B - % ’ 1H‘ yvyﬂ Hf,Hoo,[m,M] if 1€ Loo[m, MJ;

= if '€ L, [m, M]

1, T
pl ’M]p7q>17p+q_7

=

M5+ (| B — ™M 1g|y,y))
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forany .y € H with ||z|| = ||ly|]| = 1.

Now, on utilising Theorem we can provide the following upper bound for the Cebysev
functional that may be more useful in applications:

Corollary 5.4 (Dragomir, 2008, [32]). Let A be a selfadjoint operator with Sp (A) C [m, M]
for some real numbers m < M. If g : [m, M] — R is continuous with 0 := minejm g (t)
and A := maxepm, g (1), thenfor any f : [m, M| — R of r — L—Holder type we have:

Remark 5.2. With the assumptions from Corollary for g and A and if f is absolutely con-
tinuous on [m, M], then we have the inequalities:

m+ M

619 0 < 5(8-0)0 500 -m)+(|a-

forany x € H with ||z|| = 1.

(520) |C(f.g;A;0)| < = (A 5)
[5(M—m+<\A 25 Ll @) 1 oo prag 3 € Loo [m, M];

x if '€ Lo [m, M],

[% (M —m) + <‘A_ % ’ 1H}$’x>]1/q Hf/pr[m,M} p,g>1,-= 1 —i—% ]1

for any x € H with ||z| = 1.

5.2. Some Inequalities for Sequences of Operators. Consider the sequence of selfadjoint
operators A = (Ay,..., A,) with Sp(A;) C [m, M] for j € {1,...,n} and for some scalars
m < M.Ifx = (z1,...,7,) € H" are such that 3 77, |z;]|> = 1, then we can consider the
following Cebysev type functional

n n n

C(f0:A.%) =D (F(A) g (A j ;) = > (F (A j ) - Y (g (Ay) ;).

j=1 j=1 j=1
As a particular case of the above functional and for a probability sequence p = (py,...,Pn),
ie,p; >0forje€{l,...,n}and } 7, p; = 1, we can also consider the functional

C(f.g;A pa): <Zp] ),x>

- <ijf (Aj)l'al’> : <ij9 (Aj)l'al’>
where x € H, ||z]| = 1.

We know, from [29] that for the sequence of selfadjoint operators A = (A4, ..., A,) with
Sp(A;) C [m, M] for j € {1,...,n} and for the synchronous (asynchronous) functions f, g :
[m, M] — R we have the inequality

(5.21) C(f.9;A,x)>(<)0

for any x = (v1,...,2,) € H" with 377, |z;||> = 1. Also, for any probability distribution
p=(p1,...,pn) and any x € H, ||z|| = 1 we have

(5.22) C(f,g:A,px) > (2)0.
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On the other hand, the following Griiss type inequality is valid as well [30]:

(5.23) C(f,9: A, %) <

DN | —

(=) [Clg.gi A (£ 0= (A -0)

for any x = (z1,...,2,) € H" with 377, |z;||> = 1, where f and g are continuous on
[m, M] and v := mingepoan f (1), I' := maxepm g f (1), 0 := mingem g () and A =
maXte[m,Mm] 9 (t) -

Similarly, for any probability distribution p = (p1, ..., p,) and any = € H, ||z|| = 1 we also
have the inequality:

(5.24) IC(f,9:A,px)| <

N | —

1
(=) ClogiApa) (<1028 -0).
We can state now the following new result:

Theorem 5.5 (Dragomir, 2008, [32]). Consider the sequence of selfadjoint operators A =
(Ay,...,A,) with Sp(A;) C [m, M] for j € {1,...,n} and some scalars m < M.If f, g :
[m, M] — R are continuous with 6 := minyep, v g () and A := maxycpm g (1) , then

.Z'j,l'j>

(525 [C(LgAxI< 5 (A-0)) <|f (A7) = S (A ) - Ly

j=1 k=1

< SA-DCP(f f:A),

foranyx = (z1,...,2,) € H" such that ) ;_, lz;])* = 1.
Proof. As in [41} p. 6], if we put

Al 0 1
A= R and T = :

then we have Sp (ﬁ) C [m,M], ||z|| =1,

<f(g>535>=:§:<f(Aj%%»$D» <g(j)535>=:§:<g(Aj%%»$ﬁ,

j=1 j=1
and so on. N
Applying Theoremfor A and 7, we deduce the desired result 1i |

The following particular result is of interest for applications:

Corollary 5.6 (Dragomir, 2008, [32]). Consider the sequence of selfadjoint operators A =
(Aq, ..., A,) with Sp(A;) C [m, M| for j € {1,...,n} and some scalars m < M.If f.g :
[m, M] — R are continuous with 6 := minejm a9 (t) and A := maxem ) g (1), then for

AJMAA, Vol. 6, No. 1, Art. 7, pp. 1-58, 2009 AJMAA


http://ajmaa.org

INEQUALITIES FOR THE CEBYSEV FUNCTIONAL 43

anyp; > 0,5 € {1,...,n}with Y7\ p; =1and v € H with ||z| = 1, we have

(5.26) IC(f,9; A, p,x)|
< %(A —4) <ij f(45) - <Zpkf(f4k)$a1’> i x7$>
j=1 k=1
<L (A-DCP (] f:Apa).

Proof. In we choose in Theorem z; = 0%, j € {1,...,n}, where p; > 0,j €
{1,...,n}, 3" p; = land x € H, with ||z|| = 1 then a simple calculation shows that the
inequality (5.25)) becomes (5.26). The details are omitted. §

In a similar manner we can prove the following result as well:

Theorem 5.7 (Dragomir, 2008, [32]]). Consider the sequences of selfadjoint operators A =
(Ay,...,A,), B = (By,...,B,) with Sp(A;),Sp(B;) C [m,M] for j € {1,...,n} and
some scalars m < M. If f : [m, M| — R is of r — L—Hélder type, then we have the
Ostrowski type inequality for sequences of selfadjoint operators:

forany s € [m, M] and any x = (v1,...,x,) € H" such that 3 7_, z;])* = 1.
Moreover,

m+ M
2

S —

(5.27) ‘f(é’) =D (f(A)) 2y, 25)

Jj=1

SLB(M—m)Jr

n n

(5.28) Z (F(B))ysy;) = D> (f (Ap) e, )
= <|f(Bj) = > (f(Ax) vg, 2x) - 1g ijyj>

1 - m -+ M
gL[E(M—m)JFZQBj— 5 ln

yjayj>] )

foranyx = (x1,...,22),y = (Y1, yn) € H" such that 33, ||z;|* = Y27, ys* = 1.

Corollary 5.8 (Dragomir, 2008, [32]). Consider the sequences of selfadjoint operators A =
(Ay,...,A,), B = (By,...,By,) with Sp(4;),Sp(B;) C [m,M] for j € {1,...,n} and
some scalars m < M.If f : [m, M] — R is of r — L—Holder type, then for any p; > 0,j €
{1,...,n} with 37%_ p; = 1 and x € H with ||z]| = 1 we have the weighted Ostrowski type
inequality for sequences of selfadjoint operators:

(5.29) 'f(S) — <ijf (Aj>x,x>

forany s € [m, M].

m+ M
2

S

SL[%(M—m)%—
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In addition, we have

<Z qu(Bj)y,y> - <Zpkf (Ak)x,x>‘

Jj=1 k=1

< <Z q; | f (Bj) — <Zpkf (Ak)x,x> Ay y,y>
J=1 k=1

SL[%(M—m)+<ZQj mE M y,y>] ,

2
forany g, > 0.k € {1,...,n}with)> }_, qu = land z,y € H with ||z|| = |y|| = 1.

(5.30)

5.3. Some Reverses of Jensen’s Inequality. It is clear that all of the above inequalities can be
applied for various particular instances of functions f and g. However, in the following we only
consider the inequalities

for any « € H with||z|| = 1, where the function f : [m, M| — R is of » — L—Holder type, and

(532) |f ((Av,2)) — (f (A).a)
[ (M —m) + [(Az, 2) — 5|l poasy» 1E S € Lo [, M]

m+ M
2

(5.31) |f ((Az,z)) — (f(A) z,2)| < L E (M —m)+ ‘(Aa:,a:) -

< Sy
- m lff €L [m7M]7
' p q

for any « € H with ||z|| = 1, where the function f : [m, M] — R is absolutely continuous on
[m, M|, which are related to the Jensen inequality for convex functions.

1. Now, if we consider the concave function f : [m, M] C [0,00) — R, f(t) = ¢" with
r € (0,1) and take into account that it is of » — L—Holder type with the constant L = 1, then
from (5.31)) we derive the following reverse of the Holder-McCarthy inequality [46]

for any x € H with ||z|| = 1.
2. Now, if we consider the functions f : [m,M] C (0,00) — R with f(¢) = t* and
s € (—00,0) U (0,00), then they are absolutely continuous and

/ —
1 oo oy = {

m+ M

(533)  0< (A'z,z) — (Az,2) < B (M —m)+ ‘(Ax, 7) —

sM*~t  fors € [1,00),

|s|m*~1 fors € (—o00,0)U(0,1).

M 1/p
1y = 19 ( / tp(*”dt)

1/p
MP—1+1_yp(s—1)+1 . 1,
( p(s—1)+1 ifs 71— p’

[In (22)]"/7 ifs=1-1

m

If p > 1, then

= |s| x
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On making use of the first inequality from (5.32), we deduce for a given s € (—o0, 0)U(0, 00)
m+ M

that
=

{ sM*=t  fors € [1,00),
X

(534) |(Az,2)° — (Az,2)| < [1 (M —m) + '(Ax,x) -

2

|s|m*~1 for s € (—o0,0) U (0,1),

for any x € H with ||z|| = 1.
The second part of (5.32) will produce the following reverse of the Holder-McCarthy in-
equality as well:
:| q

1/p
Mp(sfl)+1_mp(s—l)+1 . 1.
( p(s—1)+1 ) ifs#1- p’

[In (2)]"/ ifs=1-1,

m

m+ M
2

(535) |(Az,2)° — (Az, 2)| < |s| B (M —m) + ‘(Ag:, 7) —

X

for any x € H with ||z|| = 1, where s € (—o0,0) U (0,00),p > 1 and % + é =1
3. Now, if we consider the function f (¢) = Int defined on the interval [m, M] C (0, 00),
then f is also absolutely continuous and

m~! for p = oo,
_ _ 1/p
Hf/Hp,[m,M] = (%) forp > 1,
In (%) forp = 1.

Making use of the first inequality in (5.32]), we deduce

(536)  0<In({Az,z)) — (In(A)z,z) < B (M —m)+ ’<Ax,x> _m ; MH m!

and

(5.37) 0<In((Az,z)) — (In(A) x, z)

m+ M
2

q MP—1 _ p—1 1/p
<[; | (5= o)
for any x € H with ||z|| = 1, where p > 1 and % + % = 1.
Similar results can be stated for sequences of operators, however the details are left to the
interested reader.

< [E(M—mw'(m,@ _

5.4. Some Particular Griiss Type Inequalities. In what follows, we provide some particular
cases that can be obtained via the Griiss type inequalities established before. For this purpose,
we select only two examples as follows.

Let A be a selfadjoint operator with Sp (A) C [m, M] for some real numbers m < M. If
g : [m, M] — Ris continuous with ¢ := minyep, a7 g (£) and A := maxec(m g (t) , then for

AJMAA, Vol. 6, No. 1, Art. 7, pp. 1-58, 2009 AJMAA


http://ajmaa.org

46 S.S. DRAGOMIR

any f : [m, M] — R of r — L—Holder type we have the inequality:
(5.38) [(f (A)g(A)z,z) = (f (A)z,z) - (g (A) z, )]

g%(A—(S)LB(M—m)Jr<’A—

m+ M

-1y

ro)]

for any x € H with ||z|| = 1.
Also, if f is absolutely continuous on [m, M|, then we have the inequalities:

(5.39) |{f(A

)9 (A)z,x) = (f (A)z, ) - (g (A) z,2)| < 5 (A 5)
[5 (1

—m) + (JA= 25 e )] a3 S € Lo [m, M)

X . if f'eL,[m,M],
B+ (A= 25 1)) W S

for any x € H with ||z|| = 1.

1. If we consider the concave function f : [m, M] C [0,00) — R, f (t) =" with r € (0,1)
and take into account that it is of » — L—Holder type with the constant L. = 1, then from (5.38)
we derive the following result:

(5.40) |(A"g(A)z,z) — (ATz, x} (g (A)z, )|
5(8-0) |5 00— m)+ (

for any x € H with ||z|| = 1, where g : [m, M] — R is continuous with § := mincpm a1 g (t)

and A := maxejm,m g (1) -

Now, consider the function g : [m, M] C (0,00) — R, g (t) = t* with p € (—o0,0)U(0, c0).
Obviously,

A_m—i—M

gy

MP —mP  if p > 0,
A—§=

Mz e <o,
and by (5.40) we get for any x € H with ||z|| = 1 that
(5.41) 0< (A Pz, 2) — (A'z, x) - (APz, )
1 1 M "
< §(Mp—mp) {§(M—m)+<‘z4— mEM :13,37>] ;
when p > 0 and
(5.42) 0 < (A"z,z)- (APz,z) — (A™Pz, )
1 M7P—-—m™" |1 m + M "
<3 W[§<M—m>+<'A— L ”>1 7

when p < 0.

If g : [m,M] C (0,00) — R, g(t) = Int, then by (5.40) we also obtain the inequality for
the logarithm:
(5.43) 0<(A"lnAz,z) — (A"z,x) - (In Az, x)

Sln\/g- B(M—m)+<'A—mJ;M-1H

for any x € H with ||z| = 1.
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2. Now consider the functions f,g : [m, M| C (0,00) — R, with f (¢) =t*and g () = ¥
with s,w € (—00,0) U (0, 00) . We have

sM*=t  fors € [1,00),
1 N sy =
Ml |s|m*~1 fors € (—o00,0)U(0,1).
and, forp > 1,

1/p
MP(s—1)+1_p(s—1)+1 . 1
< P(—1)+1 > if s 7£ 1-— P!

M\11/p o1 1
[ln (E)} ifs=1 b
If w > 0, then by the first inequality in (5.39) we have

||f,Hp,[m,M] = ‘8| X

(5.44) |<A5+wx, z) — (A°z,z) - (A%, x>|
m+ M

gy

S%(Mw—m“’) B(M—m)+<’,4—

)

{ sM*=t  fors € [1,00),
X

|s|m*~t fors € (—o00,0)U(0,1),
for any x € H with ||z|| = 1.
If w < 0, then by the same inequality we also have
(5.45) |(A*"Vz,x) — (A°x,x) - (A¥x, z)]
1 M™™—m™™ |1
< - | = (M - A—
e (30 “)|
{ sM*=t  fors € [1,00),
X

m+ M

|s|m*~! fors € (—o0,0) U (0,1),

for any x € H with ||z|| = 1.
Finally, if we assume that p > 1 and w > 0, then by the second inequality in (5.39) we have

(5.46) |(A*Vx,x) — (A°x,x) - (A¥x, z)|

1 1 + M 1/q
§§||(Mw—m“’){§(M—m)+<‘A—m2 . xx>}
1/p
MP(s—1)+1_yp(s—1)+1 .
o ( P(5—1)+1 ) ifs 71— 1177
[In (20)]" ifs=1-1,
while for w < 0, we also have
(547 |[(ATVz,x) — (A%x,x) - (AVz, z)|
1 M wo_ _w 1 m + M 1/(]
<§|| Y= [ + 1Hx,x>}

1/p
Mp(s 1)+1_mp(s 1)+1 . 1
G-D)+1 if s §é 1 ;,

) ifs=1-1,
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where ¢ > 1 with % + i = land z € H with ||z]| = 1.

6. BOUNDS FOR THE CEBYSEV FUNCTIONAL OF LIPSCHITZIAN FUNCTIONS

6.1. The Case of Lipschitzian Functions. The following result can be stated:

Theorem 6.1 (Dragomir, 2008, [33]). Let A be a selfadjoint operator with Sp (A) C [m, M]
for some real numbers m < M. If f : [m, M| — R is Lipschitzian with the constant L > 0
and g : [m, M| — R is continuous with § := minyep, a9 () and A := maxyepm g (1),
then

61 [C( g AD)] < 5 (A=) L(0as (A),2) < (A~ 5) LC (e,e; A;)

forany x € H with ||z|| = 1, where
lay(t) = (|t -1g — Alz,x)
is a continuous function on [m, M|, e (t) =t and
(6.2) C (e, e; A;x) = || Az|]* — (Az, 2)* (> 0).

Proof. First of all, by the Jensen inequality for convex functions of selfadjoint operators (see
for instance [41, p. 5]) applied for the modulus, we can state that

M) (A (A)z,2)| < (|h(A)]z, )

for any x € H with ||z|| = 1, where & is a continuous function on [m, M] .
Since f is Lipschitzian with the constant L > 0, then for any ¢, s € [m, M| we have

(6.3) [f @) = (&) < L]t —s].

Now, if we fix ¢ € [m, M] and apply the property (P) for the inequality (6.3) and the operator
A, we obtain

6.4) UF () 1n = F(A)w,z) < Lt 1y — Alw,a).

for any x € H with ||z| = 1.
Utilising the property (M) we get

1f (&) = (f Az, x)| = [(f(t) - 1g — f(A)z, )] < ([ f (1) - 1 — f (A)|z, 7)
which together with (6.4) gives
(6.5) [f () = (f(A) z,2)| < Llas (t)

for any ¢t € [m, M| and for any x € H with ||z| = 1.
Since ¢ := mingepn,a g (1) and A := max;ejm,ar g (t) , we also have

A+6| 1
. — —(A—
©6) o) - 252 <5 -0)
for any t € [m, M] and for any = € H with ||z| = 1.
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If we multiply the inequality (6.5) with (6.6) we get

61 f0ew - Wrrgw -2l 0+ 2 (e
< %(A—é)LﬁA,I(t) :%(A—é)L<|t-1H—A|:c,x)
< %(A—d)L<|t-1H—A|2x,x>1/2
1 1/2

(A 0) L ((Ax,z) — 2 (Az,z) t + t*)

forany ¢t € [m,M] and for any x € H with ||z|| = 1.
Now, if we apply the property (P) for the inequality and a selfadjoint operator B with
Sp(B) C [m, M], then we obtain the following inequality which is of interest in itself:

©8) (B9 (B) )~ {F () 0) (o (B) )
A By + 2 e
< % (A—6)L{las (B)y,y)
%@ ) L{ (A%, x) Ly — 2 (Ar,2) B+ B?) " y,y)
1

(A 0) L ((A’z,z) — 2 (Az,z) (By,y) + (B%y,y)),
for any x,y € HWlth llz]| = |ly|| = 1.
Finally, if we choose in (6.8) y = x and B = A, then we deduce the desired result . ]

In the case of two Lipschitzian functions, the following result may be stated as well:

Theorem 6.2 (Dragomir, 2008, [33]]). Let A be a selfadjoint operator with Sp (A) C [m, M]
for some real numbers m < M. If f,g : [m, M] — R are Lipschitzian with the constants
L, K > 0, then

(6.9) |IC(f,g9;A;2)| < LKC (e,e; A; x)
forany x € H with ||z| = 1.
Proof. Since f, g : [m, M| — R are Lipschitzian, then
[f@&) = f(s) <Ljt—s| and |g(t) —g(s)| < K[t —s]
for any ¢, s € [m, M|, which gives the inequality
1F)gt)—fFt)g(s)—f(s)g(t)+f(s)g(s)] < KL(t* —2ts + %)

forany t,s € [m, M].
Now, fix ¢ € [m, M] and if we apply the properties (P) and for the operator A we get
successively

(6.10) [F () g(t) = (g(A)xz,z) f(t) = (f(A)z,2) g () + ([ (A) g (A) z,2)|
=[F®g@)-1a=f)g(A) = fF(A)g @)+ f(A)g(A)]z,2)|
<({f@®)g@)-1u—ft)g(A) = F(A)g )+ f(A)g(A)lx,z)
< KL{(t? 1y — 2tA+ A%) z,2) = KL (t* — 2t (Az, z) + (A’z, )
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for any x € H with ||z| = 1.
Further, fix € H with ||z|| = 1. On applying the same properties for the inequality (6.10)
and another selfadjoint operator B with Sp (B) C [m, M], we have

6.11) [(f(B)g(B)y,y) —(g(A)z,z)(f (B)y,y)
—(f(A)z,2) (g (B)y,y) + (f(A) g (A) z, )]

= [[f (B)g(B) = (g(A)z,z) f(B) = (f (A)z,2) g (B) + (f (A) g (A) z,2) Lu] y, y)|
<(f(B)g(B)—(g(A)z z) f(B)—(f(A)z,z)g(B)+ (f(A)g(A)z,z)luly,y)
< KL{(B*>=2(Az,z) B+ (A’z,2) 1) y,y)

= KL ({(B%,y) — 2(Az,z) (By,y) + (A*z,z))

for any z,y € H with ||z|| = ||y|| = 1, which is an inequality of interest in its own right.
Finally, on making B = A and y = «x in (6.11)) we deduce the desired result (6.9). §

6.2. Some Inequalities for Sequences of Operators. Consider the sequence of selfadjoint
operators A = (Ay,..., A,) with Sp(A;) C [m, M] for j € {1,...,n} and for some scalars
m < M.Ifx = (z1,...,2,) € H" are such that )7 ||;]|> = 1, then we can consider the
following Cebysev type functional

n n n

C(f,0:A,%) =D (F(A) g (A j ) = > (F(Ay)wjy) - Y (g (A)) aj,a5)

j=1 j=1 j=1

As a particular case of the above functional and for a probability sequence p = (p1,...,Pn),
ie,p;>0forje{l,...,n}and Z?Zl pj = 1, we can also consider the functional

C(f,g;A,pa) = <ijf (4)) g (Aj)x,x>

- <ijf(Aj)~’Uax> : <ij9 (Aj)ﬂfax> :

where x € H, ||z|| = 1.

We know, from [29] that for the sequence of selfadjoint operators A = (A4,...,A,) with
Sp(A;) C [m, M] for j € {1,...,n} and for the synchronous (asynchronous) functions f, g :
[m, M] — R we have the inequality

(6.12) C(f,g:A,x) > ()0

for any x = (v1,...,2,) € H" with 3°7 |z;||> = 1. Also, for any probability distribution
p=(p1,...,pn) and any x € H, ||z|| = 1 we have

(6.13) C(f.g:A,p2) > ()0
On the other hand, the following Griiss type inequality is valid as well [29]:

1 1
619 1CUgAX] <5 (0= [C s Ax (<09 @a-0)
for any x = (z1,...,2,) € H" with > 77, [EAR where f and g are continuous on

=1,
[mv M] and v o= minte[m,M] f(t)’ I' = maxXiem,M] f(t)’ 0 = minte[m,M]g(t) and A :=
maXye(m,m) 9 (1) -
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Similarly, for any probability distribution p = (p1,...,p,) and any = € H, ||z|| = 1 we also
have the inequality:

619 CUAPD] <5 €= ClogApal” (<101 (B-9).

1
2
We can now state the following new result:

Theorem 6.3 (Dragomir, 2008, [33]). Let A = (Ai,...,A,) be a sequence of selfadjoint
operators with Sp (A;) C [m,M] for j € {1,...,n} and some scalars m < M. If f :
[m, M] — R is Lipschitzian with the constant L > 0 and g : [m,M] — R is continu-
ous with 6 := minsem s g (t) and A = maxyem,a g (t) , then

(6.16) 70 A )| < 5 (A=) LD (fan (A) 70,2

k=1
< (A —0)LC (e, e; A;x)
forany x = (r1,...,2,) € H* with 377 |z;]|* = 1, where

n

Cas (t) ==Y (It 1y — Ayl z;,2;)

Jj=1

is a continuous function on [m, M|, e (t) =t and

n 2
C (e, e; A;x) ZHA%H —(Z ij,xj) (>0).
7j=1

Proof. As in [41} p. 6], if we put
Al e 0 T
A= Do and T = : ,
0o --- A, Tn

then we have Sp (Z) C [m, M], ||z|| = 1,

(F(A) g (A)7) = 34 (4 ()3,

Jj=1

<f (;{) z, 5> =Y (F(A)zj,a5), <g (g) z, 5> = (g (A)) xj,15),
j=1 j=1
and so on. B
Applying Theoremfor A and ¥ we deduce the desired result 1) ]

As a particular case we have:

Corollary 6.4 (Dragomir, 2008, [33]). Letr A = (A4,...,A,) be a sequence of selfadjoint
operators with Sp (A;) C [m,M] for j € {1,...,n} and some scalars m < M. If f :
[m, M] — R is Lipschitzian with the constant L > 0 and g : [m, M| — R is continu-
ous with § := minycpn 1 g (t) and A := maxyepm ) g (1) , then forany p; > 0,5 € {1,...,n}

AJMAA, Vol. 6, No. 1, Art. 7, pp. 1-58, 2009 AJMAA


http://ajmaa.org

52 S.S. DRAGOMIR

with Y% pj = Land v € H with ||z|| = 1, we have
1 n
k=1
< (A=0)LC (e, 6;A,p.x)

where

(ape (t) = <ij It 1y — Aj| z, x>
j=1

is a continuous function on [m, M| and

n n 2
C(e,e; A, px) = ij | Az;]|* - <ijAja:, x> (>0).
j=1 j=1

Proof. In we choose in Theorem z; = 0%, j € {1,...,n}, where p; > 0,j €
{1,...,n}, >0 pj = land x € H, with |z|| = 1, then a simple calculation shows that the
inequality @]} becomes (6.17). The details are omitted. §

In a similar manner we obtain the following results as well:

Theorem 6.5 (Dragomir, 2008, [33]). Let A = (A4,...,A,) be a sequence of selfadjoint
operators with Sp (A;) C [m,M] for j € {1,...,n} and some scalars m < M.If f,g :
[m, M| — R are Lipschitzian with the constants L, K > 0, then

(6.18) |IC (f,9;A,x)| < LKC (e,e; A, x),
Joranyx = (z1,...,2,) € H" with 377, ;]| = 1.

Corollary 6.6. Let A = (Ay,..., A,) be a sequence of selfadjoint operators with Sp (A;) C
im, M| for j € {1,...,n} and some scalars m < M.If f,g : [m, M] — R are Lipschitzian
with the constants L, K > 0, then for any p; > 0,5 € {1,...,n} with 2?21 p; = 1 we have

(6.19) |C(f,9:A,p.x)| < LKC (e,€; A, p,x),
for any v € H with ||z| = 1.
6.3. The Case of (o, &) —Lipschitzian Functions. The following lemma may be stated.

Lemma 6.7. Let u : [a,b] — R and p,® € R with ® > ¢. The following statements are
equivalent:

(i) The function u — €32 - e, where e (t) = t,t € [a,b], is 3 (® — ) —Lipschitzian;
(11) We have the inequality:

o< u(t) —u(s)

(6.20) < ; < ® foreach t,s€ la,b] witht#s;
-5
(ii1)) We have the inequality:
(6.21) et—3s)<u(t)—u(s) <®(t—s) foreach t,s€ la,b witht > s.

Following [44], we can introduce the concept:

Definition 6.1. The function u : [a,b] — R which satisfies one of the equivalent conditions (i)
— (iii) is said to be (¢, ) —Lipschitzian on [a, b] .
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Notice that in [44], the definition was introduced on utilising the statement (ii1) and only the
equivalence (i) <> (iii) was considered.

Utilising Lagrange’s mean value theorem, we can state the following result that provides
practical examples of (¢, ®) —Lipschitzian functions.

Proposition 6.8. Let u : [a,b] — R be continuous on [a, b] and differentiable on (a,b) . If

(6.22) —o0o <7v:= inf (1), sup u' (t) =: T < oo,
te(a,b) te(a,b)

then u is (v, ") —Lipschitzian on [a, 1] .
The following result can be stated:

Theorem 6.9 (Dragomir, 2008, [33])). Let A be a selfadjoint operator with Sp (A) C [m, M|
for some real numbers m < M. If f : [m, M| — R is (¢, ®) —Lipschitzian on [a,b] and
g : [m, M] — R is continuous with 6 := minycpm a9 (1) and A 1= maxycp ) g (t) , then

P 1

< 3 (A=) (@) Ole,e: Aix)
forany v € H with ||z| = 1.

The proof follows by Theoremapplied for the 1 (® — ¢) —Lipschitzian function f—£1%.
e (see Lemmal6.7) and the details are omitted.

Theorem 6.10 (Dragomir, 2008, [33]]). Let A be a selfadjoint operator with Sp (A) C [m, M]
for some real numbers m < M and f,q : [m, M] — R. If f is (¢, ®) —Lipschitzian and g is
(1, W) —Lipschitzian on [a, ] , then

(624) |C(f,g:A52) — ?C (e,9; A; )
oA+ 252 YT V0 e )
2 2 2
<1 (@) (U -4)Clee Ain),

for any x € H with ||z| = 1.

The proof follows by Theoremapplied for the 1 (® — ¢) —Lipschitzian function f—£1%.

e and the § (¥ — ¢) —Lipschitzian function g — % - e. The details are omitted.
Similar results can be derived for sequences of operators, however they will not be presented

here.

6.4. Some Applications. It is clear that all the inequalities obtained in the previous sections
can be applied to obtain particular inequalities of interest for different selections of the functions
f and g involved. However we will present here only some particular results that can be derived
from the inequality

(6.25) IC(f,9:A;2)] < LKC (e,e; As ),

that holds for the Lipschitzian functions f and g, the first with the constant . > 0 and the
second with the constant K > 0.
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1. Now, if we consider the functions f, g : [m, M| C (0,00) — R with f (t) =t?,g(t) = t?
and p,q € (—00,0) U (0,00), then they are Lipschitzian with the constants L = || f’||_, and
K =|¢l, - Since f'(t) = pt?~*, g (t) = ¢t then

i pMP~1 forp € [1,00),
= lp|mP~1 forp € (—o0,0) U (0,1)

and
gMI™1  for g € [1,00),
19"l =

|g|m9~! forq € (—o0,0) U (0,1).
Therefore we can state the following inequalities for the powers of a positive definite operator
A with Sp (A) C [m, M] C (0,00).
If p,q > 1, then

(6.26) (0 <) (APT2, 2) — (APz, ) - (A%, 2) < pgMPT172 (|| Az||® — (Az,z)?)

for each z € H with ||z|| = 1.
If p>1landq € (—o00,0)U(0,1), then

(6.27) [(AP9z, 2) — (APx, ) - (A%, 2)| < plg| MP"'m?™ (|| Az||* — (Az, 2)?)

for each x € H with ||z|| = 1.
If p € (—o00,0) U (0,1) and g > 1, then

(6.28) |(APH9z, 2) — (APz, ) - (Alz,z)| < |p|gM* 'mP (||AxH2 - <Ax,x)2)

for each x € H with ||z|| = 1.
If p,g € (—00,0) U (0,1), then

(6.29) |(APHag, o) — (APx, z) - (A%, 2)| < |pg| mPTe~? (||Ax||2 — (Ax,m)Q)

for each x € H with ||z|| = 1.
Moreover, if we take p = 1 and ¢ = —1 in (6.27), then we get the following result

(6.30) (0 <) (Az,z) - (A w2y =1 <m™> (HAQ(:H2 — (Ax, :L'>2)
for each z € H with ||z|| = 1.

2. Consider now the functions f, g : [m, M| C (0,00) — R with f (t) = t",p € (—00,0) U

(0,00) and g (t) = Int. Then g is also Lipschitzian with the constant K = |¢'|| = m™".

Applying the inequality we then have for any x € H with ||z|| = 1 that

(6.31) (0 <) {APIn Az, z) — (AP, x) - (In Az, z) < pMP~'m~! (HAxH2 - <Ax,x>2)
ifp>1,

(6.32) (0 <) (APIn Az, 2) — (APz,x) - (In Az, ) < pmP 2 (HAxH2 — (Az, x>2)
if pe (0,1) and

(6.33) (0 <) (APx,2) - (In Az, z) — (AP In Az, x) < (—p) mP? (HAJ:H2 — <A£L‘,$>2)

ifp € (—00,0).
3. Now consider the functions f,g : [m, M] C R — R given by f (t) = exp (at) and
g (t) = exp (Bt) with a, § nonzero real numbers. It is obvious that

7 o { exp (aM) fora >0,
o = laf x

exp (am) fora <0
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and
exp (BM) for 5> 0,
19"l = 151 x {
exp (fm) for B <0
Finally, on applying the inequality (6.25]) we get
(6.34) (0 <) (exp [( + B) A] z, z) — {exp (@A) z, z) - {exp (BA) , 7)

exp [(a+ ) M| fora, 5 >0,

< laf| (|Az]]* = (Az,z)*) x {
( ) exp [(a+ B)m] fora, 5 <0

and

(6.35) (0 <) (exp (aA) z,z) - (exp (BA) x,x) — (exp [(a + B) A] z, z)

exp (aM + pm) fora > 0,5 <0,

< lf| (Al — (Az,)?) x {
exp (am + M) fora < 0,5 >0

for each z € H with ||z|| = 1.
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