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2 S. DINESH AND G. E. CHATZARAKIS AND S. L. PANETSOS ANDS. SIVAMANI

1. I NTRODUCTION

We consider a system ofn singularly perturbed first-order ordinary differential equations
with the Robin initial conditions. Each equation’s leading term is multiplied by a small positive
parameter, which may or may not be the same. To obtain approximate solutions, a classical
finite difference scheme is applied to a Shishkin mesh (which is piecewise uniform). The error
estimates and parameter-uniform approximations to its derivatives are presented here. To back
up the theory, numerical evidence is provided.
Consider the singularly perturbed linear system and for allx ∈ ζ,

(1.1) ~L~y(x) =


(~L~y)1(x) = σ1y

′
1(x) + a11(x)y1(x) + · · ·+ a1n(x)yn(x) = f1(x)

(~L~y)2(x) = σ2y
′
2(x) + a21(x)y1(x) + · · ·+ a2n(x)yn(x) = f2(x),

...

(~L~y)n(x) = σny
′
n(x) + an1(x)y1(x) + · · ·+ ann(x)yn(x) = fn(x)

whereζ = (0, 1] andζ = [0, 1], with the defined initial conditions

(1.2) yk(0)− σky
′
k(0) = ℘k, k = 1, 2, . . . , n.

It is expected that the parametersσk, k = 1, 2, · · · , n are distinct.

Assumption 1.1. The functionsakl, fk ∈ C(2)(ζ), k, l = 1(1)n satisfy the following inequali-
ties

(1.3)
(i) akk(x) >

n∑
l 6=k
k=1

|akl(x)| for k, l = 1(1)n

(ii) akl(x) ≤ 0 for k 6= l and k, l = 1(1)n

∀ x ∈ ζ.

Assumption 1.2.α is a positive integer that satisfies the inequality

(1.4) 0 < α < min
k=1(1)n

x∈ζ

{
n∑

l=1

akl(x)

}
.

Assumption 1.3.For k = 1(1)n, 0 < σk ≤ 1 the singular perturbation parametersσ1, σ2, · · · , σn

are assumed to be distinct and the ordering0 < σ1 < σ2 < · · · < σn ≤ 1 is assumed for con-
venience.

The (1.1) and (1.2) problems can alternatively be expressed in operator form

(1.5) ~L~y = ~f on ζ

with

(1.6) ~B~y(0) = ~℘

where~y(x) = (y1(x), y2(x), · · · , yn(x))T , ~℘ = (℘1(x), ℘2(x), · · · , ℘n(x))T and the operators
~L, ~B are defined by

~L = ED + A, ~B = I − ED,

whereE =


σ1 0 · · · 0
0 σ2 · · · 0
...

... · · · ...
0 0 · · · σn

, I is the identity operator andD =
d

dx
is the first order

differential operator.
The aforementioned problem has been disturbed in the following way. The reduced problem
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L INEAR SYSTEM OF SINGULARLY PERTURBED IVPS WITH ROBIN INITIAL CONDITIONS 3

achieved by placing eachσk = 0, k = 1, 2, . . . , n in the system (1.1) is the linear algebraic
system

(1.7) A(x)~r(x) = ~f(x)

whereA(x) =


a11(x) a12(x) · · · a1n(x)
a21(x) a22(x) · · · a2n(x)

...
an1(x) an2(x) · · · ann(x)

 ,

~r(x) = (r1(x), r2(x), · · · , rn(x))T and ~f(x) = (f1(x), f2(x), · · · , fn(x))T .
Because the equation (1.7) has a unique solution for each value ofx, the arbitrary robin initial
conditions (1.2) cannot be enforced. This shows that there are initial layers in the components
of the solution aboutx = 0, where the solution contains overlapping layers.

The layer pattern for the caseσ1, σ2, · · · , σn is ~y = (y1, y2, · · · , yn)T . Each componentyk

for k = 1(1)n has an initial layer of widthO(σn), whereas the componentsyk for k = 1(1)n−1
have an extra layer of widthO(σn−1), and so on.

2. ANALYTICAL RESULTS

The operator~L complies with the following maximum principle.

Lemma 2.1. LetA(x) satisfy(1.3) and (1.4). Let ~ψ = (ψ1, ψ2, · · · , ψn)T be a vector-valued
function of any type in the domain of~L such that~B~ψ(0) ≥ ~0. Then~L~ψ(x) ≥ ~0 onx ∈ ζ implies
that ~ψ(x) ≥ ~0 onx ∈ ζ.

The following stability conclusion is proved as a direct outcome of the preceding lemma:

Lemma 2.2. LetA(x) satisfy(1.3)and (1.4). Let~ψ be a vector-valued function of any type in
the domain of~L, then for eachk, 1 ≤ k ≤ n andx ∈ ζ, then

|ψk(x)| ≤ max{||~B~ψ(0)||, 1

α
||~L~ψ||}.

Lemma 2.3. LetA(x) satisfy(1.3) and (1.4). Let ~y be the solution of(1.1), (1.2). Then, for
eachk, k = 1, 2, · · · , n andx ∈ ζ, there exists a constantC such that

|yk(x)| ≤ C
{
‖ ~℘ ‖ + ‖ ~f ‖

}
|y′k(x)| ≤ Cσ−1

k

{
‖ ~℘ ‖ + ‖ ~f ‖

}
|y′′k(x)| ≤ Cσ−2

k

{
‖ ~℘ ‖ + ‖ ~f ‖ + ‖ ~f ′ ‖

}
.

Consider the Shishkin decomposition of the solution~y of the initial value problem (1.1) into
smooth and singular components,

(2.1) ~y = ~r + ~s.
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4 S. DINESH AND G. E. CHATZARAKIS AND S. L. PANETSOS ANDS. SIVAMANI

Taking into account the sublayers that occur for the components, the smooth component~r is
decomposed further

rn = y0,n + σnrn,n

rn−1 = y0,n−1 + σnr
1
n−1,n

...

r1 = u0,1 + σnr
1
1,n(2.2)

as all the components haveσn layers. Since components exceptun haveσn−1 sublayers, the
componentsrn−1, rn−2, · · · , r1 takes the form

rn−1 = y0,n−1 + σn(rn−1,n + σn−1rn−1,n−1)

rn−2 = y0,n−2 + σn(rn−2,n + σn−1rn−2,n−1)

...

rn = y0,1 + σn(r1,n + σn−1r1,n−1).(2.3)

Furtheryn−2, yn−3, · · · , y1 haveσn−2 sublayers and hence that leads to the decomposition,

rn−2 = y0,n−2 + σn(rn−2,n + σn−1(rn−2,n−1 + σn−2rn−2,n−2))

rn−3 = y0,n−3 + σn(rn−3,n + σn−1(rn−3,n−1 + σn−2v = rn−3,n−2))

...

r1 = y0,1 + σn(r1,n + σn−1(r1,n−1 + σn−2r1,n−2)).(2.4)

Continuing in this manner, it is easy to show that

~r = ~y0(x) + ~ð(x)(2.5)

where~ð(x) = (ð1(x),ð2(x), · · · ,ðn(x))T
ð1

ð2
...

ðn

 =


σ1σ2 · · ·σn σ2σ3 · · ·σn · · · σn

0 σ2σ3 · · ·σn · · · σn
...

... · · · ...
0 0 · · · σn



r1,1 r1,2 · · · r1,n

0 r2,2 · · · r2,n
...

... · · · ...
0 0 · · · rn,n


T 

1
1
...
1

 .(2.6)

That is,

ðl = ~σ l
l (~v

l
l )

T(2.7)

~σ l
l = (0, 0, . . . , σlσl+1 . . . σn, σl+1σl+2 . . . σn, . . . , σn−1σn, σn)

~r k
k = (0, 0, . . . , rk,k, rk,k+1, . . . , rk,n).

Then using (2.1), (2.5) in (1.1), (1.2), the smooth component of the solution~r is determined to
satisfy

(2.8) ~L~r = ~f on ζ

with

(2.9) ~B~r(0) = ~B~u0(0) + ~B~ð(0)

and the singular component~s = (s1, s2, · · · , sn)T is the solution of

(2.10) ~L~s(x) = ~0 for x ∈ (0, 1]
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with

(2.11) ~B~s(0) = ~℘− ~B~r(0).
From (2.4), (2.5), (2.6) it is established that the componentsrk,l, k = 1, 2, . . . , n, l = k, k +
1, . . . , n satisfy the following systems of equations:

a11r1,n + a12r2,n + · · ·+ a1nrn,n = −σ1

σn

y′0,1

a21r1,n + a22r2,n + · · ·+ a2nrn,n = −σ2

σn

y′0,2

...

an−1 1r1,n + an−1 2r2,n + · · ·+ an−1 nrn,n = −σn−1

σn

y′0,n−1(2.12)

σnr
′
n,n + an 1r1,n + an 2r2,n + · · ·+ an nrn,n = −y′0,n

rn,n(0)− σnr
′
n,n(0) = 0(2.13)

a11r1,n−1 + a12r2,n−1 + · · ·+ a1 n−1rn−1,n−1 =
−σ1

σn−1

r′1,n

a21r1,n−1 + a22r2,n−1 + · · ·+ a2 n−1rn−1,n−1 =
−σ2

σn−1

r′2,n

...

an−2 1r1,n−1 + an−2 2r2,n−1 + · · ·+ an−2 n−1rn−1,n−1 =
−σn−2

σn−1

r′n−2,n(2.14)

σn−1r
′
n−1,n−1 + an−1 1r1,n−1 + · · ·+ an−1 n−1rn−1,n−1 = −r′n−1,n

rn−1,n−1(0)− σn−1r
′
n−1,n−1(0) = 0(2.15)

and so on.
Lastly,

a11r1,2 + a12r2,2 = −σ1

σ2

r′1,3(2.16)

σ2r
′
2,2 + a21r1,2 + a22r2,2 = −r′2,3

r2,2(0)− σ2r
′
2,2(0) = 0(2.17)

and

σ1r
′
1,1 + a11r1,1 = −r′1,2

r1,1(0)− σ1r
′
1,1(0) = 0(2.18)

The solution’s singular component~u fulfils

~L~s = ~0 on ζ

with ~B~s(0) = ~B(~y − ~r)(0).(2.19)

From the expressions (2.12) - (2.19) and using lemma 2.3 for~r, it is found that fork =
1, 2, . . . , n, l = 1, 2, . . . , n, k ≤ l, k = 0, 1, 2

|r(m)
k,l (x)| ≤ C

(
1 + σ−1

l

n∏
q=l+1

σ−1
q

)
.(2.20)
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From (2.5), (2.7) and (2.20), the following bounds forrk, k = 1, 2, . . . , n, hold

|r(m)
k | ≤ C for m = 0, 1

|r(m)
k | ≤ Cσ−1

k for m = 2.

The layer functions associated with the solution~y are given byBk(x), 1 ≤ k ≤ n,

Bk(x) = e−αx/σk , x ∈ [0,∞).(2.21)

The following basic features of these layer functions should be observed for every1 ≤ k < l ≤
n and0 ≤ x < z ≤ 1.

(1) Bk(x) < Bl(x), for all x > 0.
(2) Bk(z) > Bl(x), for all 0 ≤ z < x <∞.
(3) Bk(0) = 1 and0 < Bk(x) < 1 for all x > 0.

Next lemma contains bounds on the singular component~s of ~y and its derivatives.

Lemma 2.4. LetA(x) satisfy(1.3)and (1.4).Then there exists a constantC, such that for each
k = 1, 2, . . . , n, andx ∈ ζ,

|sk(x)| ≤ CBn(x)

|s′k(x)| ≤ C
n∑

q=1

Bq(x)

σq

|σks
′′
k(x)| ≤ C

n∑
q=1

Bq(x)

σq

.

Proof. To derive the bound on~s, define the two functions

θ±k (x) = CBn(x) + sk(x), for eachk = 1, 2, . . . , n andx ∈ ζ.
For a proper choice of C,

~B~θ
±
(0) ≥ ~0.

Also for x ∈ ζ,

(~L~θ
±
)k(x) ≥ 0 as − σk

σn

> −1.

By Lemma 2.1,~θ
±
(x) ≥ ~0 on ζ and it follows that lemma

|sk(x)| ≤ CBn(x).(2.22)

The bounds ons(h)
k (x), h = 1, 2, . . . , n are now derived by induction onn.

To establish the bounds on~s′(x), thenth equation of the system (2.19)

σns
′
n(x) + an1(x)s1(x) + an2(x)s2(x) + · · ·+ ann(x)sn(x) = 0 is considered.

From this equation, the bounds ons′n(x) is derived directly. That is,

|s′n(x)| ≤ Cσ−1
n Bn(x).(2.23)

It is then assumed that the required bounds ons′k, s
′′
k hold for all systems upto ordern − 1.

Defining~̃s = (s1, s2, . . . , sn−1), then~̃s satisfies the system

Ẽ~̃s′(x) + Ã~̃s(x) = ~g(x)

with ~̃B~̃s(0) = ~̃B~̃y(0)− ~̃B~̃r(0)
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Here,Ẽ, Ã are the matrices obtained by deleting the last row and last column fromE,A re-

spectively and the components of~g aregk = −aknsn for 1 ≤ k ≤ n − 1 and ~̃r = ~̃y0 + ~̃ð
the corresponding components of~̃r is similar to (2.5) of~r. Now decompose~̃s into smooth

and singular components to get~̃s = ~p + ~q, where~L~p = ~g, ~B~p(0) = ~B~̃y0(0) + ~B~̃ð(0) and
~L~t = ~0, ~B~t(0) = ~B~̃s(0)− ~B~p(0).
Also from the defining equation of~p(x), ~p(0) = ~0.

Introducing the functions,~ψ
±
(0) = CBn(x)± ~p(x), then clearly,~B~ψ

±
(0) = CBn(0) + ~B~p(0)

and fork = 1, 2, . . . , n− 1

(~L~ψ
±
)k(x) = C

(
n∑

l=1

akl(x)− α

(
σk

σn

))
Bn(x)± ~L~p(x)

≥ ~0 as − σk

σn

≥ −1.

Applying Lemma 2.1, it follows that||~p(x)|| ≤ CBn(x).

Defining the barrier functions,~θ
±
(x) = C Bn(x)

σn
± ~p ′(x), and usually Lemma 2.1 for~θ

±
, the

bounds of~p ′ are derived.
It is clear from Lemma 2.4, that this is true for the casen = 2. It is assumed that the Lemma
2.4 is valid for all systems withn − 1 equations. Hence the lemma applies to~t and fork =
1, 2, . . . , n− 1

|t′k(x)| ≤ C
n−1∑
q=k

σ−1
q Bq(x).

Combining the bounds ofpk andtk, it is clear that

|s̃′k(x)| ≤ C
n∑

q=k

σ−1
q Bq(x).

Now from the definition of~̃s and using (2.22)

|s′k(x)| ≤ C
n∑

q=k

σ−1
q Bq(x).

It is thus proved the lemma is true for systems ofn equations. To estimate the bound of the
second derivative, thekth equation of the system~L~s is differentiated to get

σks
′′
k(x) = −(A(x)~s′k(x) + A′(x)~s(x))k

and it is seen that the bound ons′′k(x) follows from the bounds of~s and~s′.
The proof of the lemma is complete.

3. SHISHKIN MESH

A piecewise uniform mesh withN mesh-intervals is created, and mesh points{xj}N
j=0 are

generated by splitting the intervalζ into n+ 1 sub-intervals as shown below

ζ = [0, τ 1] ∪ (τ 1, τ 2] ∪ · · · (τn−1, τn] ∪ (τn, 1].
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8 S. DINESH AND G. E. CHATZARAKIS AND S. L. PANETSOS ANDS. SIVAMANI

The fitted meshζ
N

is given by{xj}N
0 andζN = {xj}N

1 , wheren is the number of transition
points between uniform meshes, and

τn = min

{
1

2
,
σn

α
lnN

}
andτ k for k = 1, 2, . . . , n− 1 are presented by

τ k = min
{τ k+1

2
,
σk

α
lnN

}
.(3.1)

Clearly,

0 < τ 1 < · · · < τn ≤
1

2
.

Then, on the sub-interval[0, τ 1], a uniform mesh with mesh-intervals ofN
2n is placed. Similarly,

a uniform mesh with N
2n−k+1 mesh intervals is put on(τ k, τ k+1], 1 ≤ k ≤ n− 1, and a uniform

mesh withN
2

mesh intervals is set on(τn, 1].

This method yields a class of2n piecewise uniform Shishkin meshesM~b where~b denotes an
n-vector withbk = 0 if τ k = τk+1

2
andbk = 1, alternatively. It should be emphasised that any

such mesh

hl ≤ CN−1, for any l, 1 ≤ j ≤ N(3.2)

τ k ≤ Cσk lnN for anyk, 1 ≤ i ≤ n(3.3)

Bk(τ k) = N−1 if bk = 1(3.4)

τ k = 2−(l−k+1)τ l+1, for k ≤ l, if bm = 0, m = k, . . . , l.(3.5)

4. THE DISCRETE PROBLEM

The Initial Value Problems (1.1) and (1.2) are discretized using a fitted mesh approach con-
sists of a piecewise uniform fitted mesh and a classical finite difference operator. The backward
Euler finite difference technique on a piecewise uniform fitted mesh defines the discrete solu-
tions on anyM~b. The discrete problem forl = 1, 2, . . . , N is

(4.1) ~LN ~Y (xl) =


σ1D

−Y1(xl) + a11(xl)Y1(xl) + · · ·+ a1n(xl)Yn(xl) = f1(xl)

σ2D
−Y2(xl) + a21(xl)Y1(xl) + · · ·+ a2n(xl)Yn(xl) = f2(xl)

...

σnD
−Yn(xl) + an1(xl)Y1(xl) + · · ·+ ann(xl)Yn(xl) = fn(xl)

with

~Y (0)− ED+~Y (0) = ~℘.(4.2)

(4.1), (4.2) can also be expressed as an operator form problem

~LN ~Y = ~f on ζN with

~BN ~Y (0) = ~℘

where~LN = ED− + A with

~BN = I − ED+I
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L INEAR SYSTEM OF SINGULARLY PERTURBED IVPS WITH ROBIN INITIAL CONDITIONS 9

andD+, D− are the distinguishing operators

D−~Y (xl) =
~Y (xl)− ~Y (xl−1)

xl − xl−1

, D+~Y (xl) =
~Y (xl+1)− ~Y (xl)

xl+1 − xl

, l = 1, 2, . . . , N.

The discrete findings that follow are comparable to the continuous results.

Lemma 4.1. LetA(x) satisfy(1.3)and(1.4). Let~Ψ = (Ψ1,Ψ2, . . . ,Ψn)T be any vector-valued

mesh function, such that~BN ~Ψ(0) ≥ ~0. Then~LN ~Ψ ≥ ~0 on ζN implies that~Ψ ≥ ~0 on ζ
N

.

Lemma 4.2. LetA(x) satisfy(1.3)and(1.4). Let ~Ψ be any vector-valued mesh function onζ
N

,
then for eachi = 1, 2, . . . , n,

Ψi(xj) ≤ max

{
||~BN ~Ψ(0)||, 1

α
||~LN ~Ψ||

}
, 0 ≤ j ≤ N.

5. ERROR OF L OCAL TRUNCATION

It can be observed from Lemma 4.2 that in order to bound the error||~Y − ~y||, it is enough to
bound~LN(~Y − ~y). Notice that, forxl ∈ ζN

~LN(~Y (xl)− ~y(xl)) = E(D− −D)~y(xl)

and

((~L− ~LN)y)k(xl) = σk(D
− −D)rk(xl) + σk(D

− −D)sk(xl).

This is the first derivative truncated locally. The triangle inequality then says

|(~LN(~Y − ~y))k(xl)| ≤ |σk(D
− −D)vk(xl)|+ |σk(D

− −D)wk(xl)|.

The discrete solution~Y may be decomposed into~R and~S, which are specified to be solutions
to the following discrete problems, similarly to the continuous example.

(5.1) (~LN ~V )(xj) = ~f(xj) on ζN , ~BN ~V (0) = ~B~v(0)

and

(5.2) (~LN ~S)(xl) = ~0 on ζN , ~BN ~S(0) = ~B~s(0)

where~r and~s are the solutions of (2.8), (2.9) and (2.10), (2.11) respectively.

Further, fork = 1, 2, . . . , n,

|(~BN(~R− ~r))k(0)| = |(D −D+)rk(0)|

|(~BN(~S − ~s))k(0)| = |(D −D+)sk(0)|

|(~LN(~R− ~r))k(xl)| = |σk(D
− −D)rk(xl)|(5.3)

|(~LN(~S − ~s))k(xl)| = |σk(D
− −D)sk(xl)|.(5.4)

The error at each pointxl ∈ ζ
N

is denoted by~Y (xl) − ~y(xl). Then the local truncation error
LN(~Y (xl)− ~y(xl)) has the decomposition

~LN(~Y − ~y)(xl) = ~LN(~R− ~r)(xl) + ~LN(~S − ~s)(xl).
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As a result, the smooth and singular components’ local truncation errors may be dealt individu-
ally. In light of this, it’s worth noting that the following two independent estimates of the local
truncation of a smooth functionψ hold for every smooth functionξ.

(5.5) |(D− −D)ξ(xl)| ≤ 2 max
z∈Il

|ξ′(z)|

and

(5.6) |(D− −D)ξ(xl)| ≤
hl

2
max
z∈Il

|ξ′′(z)|

whereIl = xl − xl−1.

The next section bounds the error in the smooth and singular components.

6. ERROR ESTIMATE

There are two components to the proof of the theorem on error estimation. To begin, a
theorem about the smooth component error is established. The singular component’s error is
then determined.

Theorem 6.1. Let A(x) satisfy (1.3) and (1.4). Let ~r denote the smooth component of the
solution of(1.1), (1.2)and ~R denote the smooth component of the solution of the problem(4.1),
(4.2). Then

|(~LN(~R− ~r))k(xl)| ≤ CN−1.

The following lemmas must be used in order to calculate the error in the singular component
of the solution~y.
A comparable estimate for the singular component is generated using the geometry of the2n+1

feasible Shishkin meshes. The preparatory Lemmas listed below are necessary.

Lemma 6.2. LetA(x) satisfy(1.3)and (1.4). Then for eachk = 1, 2, . . . , n, l = 1, 2, . . . , N ,
on each meshM~b

|σk(D
− −D)sk(xl)| ≤ C

hl

σ1

.

Proof. From the expression (5.6),

|(BN(~S − ~s)k(0)| ≤ C(x1 − x0) max
z∈[x0,x1]

|s′′k(z)| ≤ CN−1.(6.1)

From (5.6) and Lemma 2.4, we have

|σk(D
− −D)sk(xl)| ≤ Chl max

z∈Il

|σks
′′
k(z)| ≤ Chl

n∑
q=1

Bq(xl−1)

σq

≤ C
hl

σ1

as required.

Lemma 6.3. LetA(x) satisfy(1.3) and (1.4). Then for eachk = 1, 2, . . . , n, l = 1, 2, . . . , N
andt = 1, 2, . . . , n− 1, on each meshM~b with bt = 1 there exists a decomposition

sk =
t+1∑
m=1

sk,m(6.2)
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k = 1, 2, . . . , n, t = 1, 2, . . . , n− 1 for which the following estimates hold for eachm, 1 ≤
m ≤ r

|σksk,m(x)| ≤ CBm(x)

|σks
′
k,m(x)| ≤ Cσ′mBm(x)

|σks
′′
k,m(x)| ≤ C

n∑
q=t+1

σ−1
q Bq(x).

Furthermore,

|σk(D
− −D)sk(xl)| ≤ C

(
Bt(xl−1) +

hl

σt+1

)
.

Proof. Since,bt = 1, we haveσt <
σt+1

2
andxk,k+1 ∈ (0, 1], for k = 1, 2, . . . , t.

Definingsk =
t+1∑
m=1

sk,m, where the componentsst,m, 1 ≤ m ≤ t+ 1 are given by

wk,t+1(x) =


2∑

t=0

(x−xt,t+1)t

t!
s
(t)
k (xt,t+1), x ∈ [0, xt,t+1)

sk(x), x ∈ [xt,t+1, 1]

and for eachm, 2 ≤ m ≤ t

sk,m(x) =


2∑

t=0

(x−xm−1,m)t

t!
s
(t)
k (xt−1,t), x ∈ [0, xm−1,m)

sk(x)−
t+1∑

q=m+1

st,q, x ∈ [xm−1, 1]

and finally,

sk,1 = sk −
t+1∑
q=2

sk,q on [0, 1].

From the above expressions we note that for eachm, 1 ≤ m ≤ t, sk,m = 0 on [xm,m−1, 1].
To establish the bounds on the second derivatives we observe that in[xt,t+1], using Lemma 2.4
andx ≥ xt,t+1, we obtain

|σks
′′
k,t+1(x)| ≤ C

n∑
q=1

Bq(x)

σq

≤
n∑

q=t+1

Bq(x)

σq

.

On [0, xt,t+1], using Lemma 2.4 andx ≤ xt,t+1, we obtain

|σks
′′
k,t+1(x)| = |σks

′′
k(xt,t+1)| ≤

n∑
q=1

Bq(xt,t+1)

σq

≤
n∑

q=t+1

Bq(xt,t+1)

σq

≤
n∑

q=t+1

Bq(x)

σq

and for eachm = 2, . . . , k, we see that in[xm,m+1, 1], s′′k,m = 0.
On [xm−1,m, xm,m+1], using Lemma 2.4, we obtain

|σks
′′
k,m(x)| ≤ |σks

′′
k(x)|+

t+1∑
q=m+1

|σks
′′
k,q(x)| ≤ C

n∑
q=1

Bq(x)

σq

≤ C
Bm(x)

σm

.
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On [0, xm−1,m], using Lemma 2.4, andx ≤ xm−1,m, we obtain

|σks
′′
k,m(x)| ≤ |σks

′′
k(xm−1,m)| ≤ C

n∑
q=1

Bq(xm−1,m)

σq

≤ C
Bm(xm−1,m)

σm

≤ C
Bm(x)

σm

.

On [x1,2, 1], s′′k,1 = 0.
On [0, x1,2], using Lemma 2.4,

|σks
′′
k,1(x)| ≤ |σks

′′
k(x)|+

t+1∑
q=2

|σks
′′
k,q(x)| ≤ C

n∑
q=1

Bq(x)

σq

≤ C
B1(x)

σ1

.

For the bounds on the first derivative, we observe that for eachm, 1 ≤ m ≤ t, on [xm,m+1, 1]∫ xm,m+1

x

σks
′′
k,m(s)ds = σis

′
k,m(xm,m+1)− σks

′
k,m(x) = −σks

′
k,m(x)

and so,

|σks
′
k,m(x)| ≤

∫ xm,m+1

x

|σksk,m(z)|dz ≤ Cσ−1
m

∫ xm,m+1

x

Bm(z)dz ≤ CBm(x).

Finally, since

|σk(D
− −D)sk(xl)| ≤

t∑
m=1

|σk(D
− −D)sk,m(xl)|+ |σk(D

− −D)sk,t+1(xl)|.

Using (5.6) on the last term and (5.5) on all other terms on the right hand side, we obtain

|σk(D
− −D)sk(xl)| ≤ C

(
t∑

m=1

max
z∈Il

|σks
′
k,m(z)|+ hl max

z∈Il

|σks
′′
k,t+1(z)|

)
.

The proof of the lemma is complete.

The desired result follows by applying the bounds on the derivatives.

Lemma 6.4.LetA(x) satisfy(1.3)and(1.4). Then, for eachk = 1, 2, . . . , n andl = 1, 2, . . . , N
on each meshM~b, we have the estimate

|σk(D
− −D)sk(xl)| ≤ CBn(xl−1).

Proof. From (5.5) and Lemma 2.4, for eachk = 1, 2, . . . , n andl = 1, 2, . . . , N , we have

|σk(D
− −D)sk(xl)| ≤ Cmax

z∈Il

|σks
′
k(z)| ≤ Cσk

n∑
q=k

Bq(xl−1)

σq

≤ CBn(xl−1)

as required.

Using the above preliminary lemmas on appropriate subintervals we obtain the desired esti-
mate of the singular component of the local truncation error in the following lemma.

Lemma 6.5.LetA(x) satisfy(1.3)and(1.4). Then, for eachk = 1, 2, . . . , n andl = 1, 2, . . . , N,
we have the estimate

|σk(D
− −D)sk(xl)| ≤ CN−1 lnN.
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Proof. We consider each subinterval separately. First, in the subinterval(0, τ 1] we havehl ≤
CN−1τ 1 and the result follows from Lemma 6.2,

|σk(D
− −D)sk(xl)| ≤ C

hl

σ1

≤ CN−1 lnN.

Now, on the interval(τ 1, τ 2], we haveτ 1 ≤ xl−1 andhl ≤ CN−1τ 2. We divide the2n+1

possible meshes into 2 subclasses.
Class (i): On the meshesM~b with b1 = 0.
b1 impliesτ 1 = 2−1τ 2. Hence from (3.5) and Lemma 6.2,

|σk(D
− −D)sk(xl)| ≤ C

hl

σ1

≤ CN−1τ 1

σ1

≤ CN−1 lnN.

Class (ii): On the meshesM~b with b1 = 1.

b1 impliesτ 1 =
σ1

α
lnN . Hence from Lemma 6.3 and using equations (3.3) and (3.4)

|σk(D
− −D)sk(xl)| ≤ CB1(xl−1) +

hl

σ2

≤ CB1(xl−1) +
CN−1τ 2

σ2

≤ CN−1 lnN.

On a general subinterval(τm, τm+1] for 2 ≤ m ≤ n − 1. We haveτm ≤ xl−1 andhl ≤
CN−1τm+1. We divideM~b into 3 subclasses:
Class (i):M0

~b
= {M~b : b1 = b2 = · · · = bm = 0}.

From Lemma 6.2 and (3.5),

|σk(D
− −D)sk(xl)| ≤ C

hl

σ1

≤ CN−1τm+1

σ1

≤ CN−1τ 1

σ1

≤ CN−1 lnN.

Class (ii): M r
~b

= {M~b : bt = 1, bt+1 = · · · = bm = 0}.
From Lemma 6.3 and using equations (3.3), (3.4) and (3.5)

|σk(D
− −D)sk(xl)| ≤ CBt(xl−1) +

hl

σt+1

≤ CBt(τm) +
CN−1τm+1

σm+1

≤ CBt(τm) +
CN−1τ t+1

σt+1

≤ CN−1 lnN.

Class (iii): Mm
~b

= {M~b : bm = 1}.
From Lemma 6.3 and using equations (3.3) and (3.4),

|σi(D
− −D)sk(xl)| ≤ CBm(xl−1) +

hl

σm+1

≤ CBm(τm) +
CN−1τm+1

σm+1

≤ CN−1 lnN.

Finally, on the subintervals(τn, 1], we haveτn ≤ xl−1 andhj ≤ CN−1. We divideM~b into 3
sublasses:M0

~b
= {M~b : b1 = b2 = · · · = bn = 0}, M t

~b
= {M~b : bt = 1, bt+1 = · · · = bm =

0 for some1 ≤ t ≤ n− 1} andMn
~b

= {M~b : bn = 1}. OnM0
~b

, the result follows from (3.3),
(3.4) and Lemma 6.2. OnM t

~b
, the result follows from (3.3), (3.4) and (3.5) and Lemma 6.2.

OnMn
~b

, the result follows from the equation (3.3), (3.4) and Lemma 6.3.
The following result gives the~σ− uniform error estimate.

Theorem 6.6.Let~y be the solution of the continuous problem(1.1), (1.2)and~Y be the solution
of the discrete problem(4.1), (4.2). Then

||(~LN(~Y − ~y))|| ≤ CN−1 lnN.

Proof. From Lemma 4.2, it is clear that, in order to prove the above theorem it suffices to to
prove that||(~LN(~Y −~y))|| ≤ CN−1 lnN . But, ||(~LN(~Y −~y))|| ≤ ||(~LN(~R−~r))||+ ||(~LN(~S−
~s))||. Hence using theorem 6.1 and the above preliminary lemmas, the above result is derived.

AJMAA, Vol. 20 (2023), No. 1, Art. 14, 16 pp. AJMAA

https://ajmaa.org


14 S. DINESH AND G. E. CHATZARAKIS AND S. L. PANETSOS ANDS. SIVAMANI

7. NUMERICAL I LLUSTRATION

The numerical technique provided above is explained in this section with an example.

Example 7.1.Consider the initial value problem

σ1y
′
1(x) + (3 + x2)y1(x)− y2(x)− y3(x) = 1,

σ2y
′
2(x)− y1(x) + (3 + 2x)y2(x)− y3(x) = 3 + x,

σ3y
′
3(x)− y1(x)− y2(x) + 4y3(x) = 2

∀ x ∈ (0, 1]

with

y1(0)− σ1y
′
1(0) = 1

y2(0)− σ2y
′
2(0) = 1

y3(0)− σ3y
′
3(0) = 1.

Figure 1 depicts the numerical result reached by using the fitted mesh methods (4.1) and (4.2)
to the Example 7.1. In Table 1, the convergence order and the error constant are computed and
displayed.

Table 7.1:

Values of DN
σ , D

N , pN , p∗ and CN
p∗ generated for the example.

η Number of mesh pointsN
72 144 288 576

0.125E+00 0.302E-01 0.213E-01 0.139E-01 0.853E-02
0.312E-01 0.115E-01 0.705E-02 0.417E-02 0.240E-02
0.781E-02 0.114E-01 0.699E-02 0.414E-02 0.238E-02
0.195E-02 0.114E-01 0.698E-02 0.413E-02 0.238E-02
0.488E-03 0.114E-01 0.697E-02 0.413E-02 0.238E-02

DN 0.302E-01 0.213E-01 0.139E-01 0.853E-02
pN 0.502E+00 0.617E+00 0.706E+00
CN

p 0.881E+00 0.881E+00 0.813E+00 0.706E+00
The order of~σ -uniform convergencep∗ = 0.5022405E + 00
Computed~σ -uniform error constant,CN

p∗ = 0.8808367E + 00

8. CONCLUSION

The initial value problems for a singularly perturbed linear system with robin initial con-
ditions are numerically approximated using the numerical approaches presented in this paper.
By resolving a number of initial value problems with robin initial conditions, the solutions to
the given singularly perturbed problems are obtained numerically. These techniques need little
problem preparation and are relatively simple to use on any computer. We used the classical
finite difference approach to resolve the perturbed initial value problems. Any standard ana-
lytical or numerical technique can be applied, in fact. We are able to solve the original initial
value problem numerically by using the initial condition. To illustrate the applicability of the
current strategy, some numerical experiments have been presented. Tables are used to display
the results of computations. Although the solutions are computed at all places with mesh sizeh
and the approximation and precise solutions are compared, we have only provided the findings
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Figure 1: The figure displays the numerical solution for the problem (7.1), computed for N = 1152. The solution
components y1(x); y2(x) and y3(x) has initial layers.

for a small subset of the values. The findings reveal that the current approach agrees quite well
with the precise answer, demonstrating the approach’s effectiveness.

9. FUTURE WORK

Systems with source terms of discontinuity at multiple points need further investigations.
The numerical study of the continuation approach for solving semi-linear problems and two-
dimensional problems is challenging, and work is ongoing.
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