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Key words and phrasesSingular perturbation problems; Robin initial conditions; Finite difference schemes; Shishkin mesh;

Parameter uniform convergence.

2010Mathematics Subject Classificat or84K10, 34K20, 34K26, 34K28.

ISSN (electronic): 1449-5910
(© 2023 Austral Internet Publishing. All rights reserved.

The third author was supported by the special Account for Research of ASPETE through the funding program “Strengthening research of

ASPETE faculty members.


https://ajmaa.org/
mailto: <geaxatz@otenet.gr>
mailto:<dineshselvaraj24@gmail.com>
mailto:<spanetsos@aspete.gr>
mailto:<winmayi2012@gmail.com>
https://www.ams.org/msc/

2 S. DINESH AND G. E. CHATZARAKIS AND S. L. FANETSOS ANDS. SVAMANI

1. INTRODUCTION

We consider a system of singularly perturbed first-order ordinary differential equations
with the Robin initial conditions. Each equation’s leading term is multiplied by a small positive
parameter, which may or may not be the same. To obtain approximate solutions, a classical
finite difference scheme is applied to a Shishkin mesh (which is piecewise uniform). The error
estimates and parameter-uniform approximations to its derivatives are presented here. To back
up the theory, numerical evidence is provided.

Consider the singularly perturbed linear system and far &,

@?7)1(@ = 0191 (7) + an(2)y1(x) + -+ + a1 (T)yn(T)
(LY)a(z) = o2y5(x) + az(z)y1(z) + - -+ + azn(7)yn(z) = fa(2),

I
==
—
&

L) Lij(z) =

(f’?j)n@) = 03y () + a1 (2)y1(2) + -+ + ann(T)yn (@) = fulz)

where¢ = (0,1] and¢ = [0, 1], with the defined initial conditions
It is expected that the parameters k£ =1,2,--- ,n are distinct.
Assumption 1.1. The functionsu,, fi € C?((), k,I = 1(1)n satisfy the following inequali-
ties

(1)  apr(z) > Z law (z)| for k,1=1(1)n B
(1.3) 1k Vzecd.

(it) ap(x) <0 for k#1 and k,l=1(1)n

Assumption 1.2. « is a positive integer that satisfies the inequality
14 i :
(1.4) O<O‘<knll%%n{za“<x>}

Assumption 1.3.For k = 1(1)n, 0 < o4 < 1the singular perturbation parametess, o, -- , 0,
are assumed to be distinct and the ordering: 0y < 05 < --- < 0,, < 1 is assumed for con-
venience.

The (1.1) and (1]2) problems can alternatively be expressed in operator form

(1.5) Lj=fon¢
with
(1.6) Bj(0) = ¢

whereg(x) = (y1(), y2(x), -+ yn(2))7, G = (p1(x), 9a2(x), -+, pu(x))” and the operators
L, B are defined by
L=ED+ A, B=1-ED,

oo 0 -+ 0
op) . . . d . .
where £ = . . |, I is the identity operator and) = T is the first order
. . s . Xz
0 0 cee Op

differential operator.
The aforementioned problem has been disturbed in the following way. The reduced problem
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achieved by placing each, = 0, k£ = 1,2,...,n in the system[(1]1) is the linear algebraic
system

—

1.7) A(z)r(z) = f(x)
a1 (z) app(z) -+ ap(x)
whereA(x) = () omle) - .:‘ () ,
a1 () apa(z) -+ apn(2)

(@) = (ri(z), ra2(x), - ra(@))" andf(z) = (fi(@), fo(@), - ful@))".

Because the equation (IL.7) has a unique solution for each valuetoé arbitrary robin initial
conditions[(1.R) cannot be enforced. This shows that there are initial layers in the components
of the solution about = 0, where the solution contains overlapping layers.

The layer pattern for the case, oy, - ,0, ISy = (y1,%2, -+ ,y»)?. Each componeny;,
for £ = 1(1)n has an initial layer of widtl®)(o,,), whereas the componenjsfor k = 1(1)n—1
have an extra layer of widt®(s,,_1), and so on.

2. ANALYTICAL RESULTS
The operatoﬁ complies with the following maximum principle.

Lemma 2.1. Let A(z) satisfy(1.3) and (I.4). LetzZ = (Y, 0y,
function of any type in the domain pfsuch thatB)(0) > 0. ThenLy)

thatt(z) > Gonz € C.

¥,,)T be a vector-valued
(z) > 0onz e ¢ implies
The following stability conclusion is proved as a direct outcome of the preceding lemma:

Lemma 2.2. Let A(z) satisfy(I.3)and (T.4). Let<) be a vector-valued function of any type in
the domain of_, then for eachk, 1 < k < n andz € C, then

- 1 -
[¥1(2)] < max{|[By (0[], L[}

Lemma 2.3. Let A(z) satisfy(L1.3) and (1.4). Lety be the solution of(1.1), (1.2). Then, for
eachk, k=1,2,--- ,nandz € (, there exists a constant such that

we@l < C{lgll+ 171}
@) < co {Il g1+ 11 711}
i@l < o2 {I @I+ 171+ F I}

Consider the Shishkin decomposition of the solutjof the initial value probleny (1]1) into
smooth and singular components,

(2.1)

<y
I
!
+
wy
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Taking into account the sublayers that occur for the components, the smooth compaent
decomposed further

T'n = Yo,n + OnTnn

_ 1
'n—1 = yO,n—l + O'nrnflm

(2.2) ri=toy+ oary,

as all the components have layers. Since components excepthaveos, _; sublayers, the
components,,_1,7,_2,--- ,r; takes the form

'n—1 = Yon-1 + O-n(rn—l,n + O-n—lrn—l,n—1>

Tn—2 = Yo,n—2 + O'n<7'n72,n + O'nflran,nfl)

(2.3) Tn =Yo1 + 0n(T1n + Op_1T10-1).
Furthery, 2, y._3,--- ,y1 haveo,_, sublayers and hence that leads to the decomposition,
T'n—2 = Yo,n—2 + O-n(rn—Q,n + O-n—l(rn—Q,n—l + O-n—QTn—Q,n—Q»

T"n—3 = Yo,n—3 + O.n<7'n73,n + O'nfl(rnf?),nfl + 0p 2V = rn73,n72))

(2.4) 1 =Yo1 + 0n(T1n + On1(rin_1+ 0n_orin_2)).
Continuing in this manner, it is easy to show that
(2.5) 7= ijo() + 0(z)
whered(z) = (3,(z),02(x), - - -, 0n(x))T
T
01 0102 0p 0203°°:0p - Op 11 Ti2 o Tin 1
3, 0 0 oy 0 0 - Tan 1
That is,
(2.7) 0, =3a(7))"
Ell =(0,0,...,000041 - Ony 01410142 - - Opy e ooy Opp10p, Oy
7?,5 = (0,0, Ce ,Thk,’f’k,k_,_l, ce >Tk7n)-

Then using[(Z2]1)[(2]5) in (T.1), (1.2), the smooth component of the soldi®determined to
satisfy

(2.8) Li=fon¢

with

(2.9) B(0) = Biiy(0) + BI(0)

and the singular componefit= (s, s2,- - - , s,)” is the solution of
(2.10) L3(z) =0 for z e (0,1]
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with
(2.11) B5(0) = ¢ — B(0).
From (2.4),[(2.5),[(2]6) it is established that the componentsk = 1,2,...,n, | = k. k +
1,...,n satisfy the following systems of equations:
o
1171, + Q12720 + - + Q1pTnp = —0—1?/6,1
g2 ,
A21T1n + Q22720 + + -+ + A2pTypn = —U—yo,z
On—1 /
(212) an—11"1,n +ap— 2T2.n +tan nTnn = _O_—yo,n—l
O—nT;,n + Ap1T1n + ay, 2T2.n +---+ ApnTnn = _yé)m
(213) Tn,n<o) - UnT;,n(O) = 0
_0'1 ,
1171,n—1 T Q1272 n—1 + -+ + Ap—1Tn—1n-1 = PA
n—1
_0'2 ,
21" 1;n—1 1+ G22T2 1+ + A2n-1Tn-1n-1 = J—TQ’"
—0Onp—2 /
(214) Ap—2 1711,1171 + Ap—2 27’2,7171 + -+ an72n717an71,n71 = o 7ﬂn—2,n
n—1
Un—ﬂ”;,l,n,l +ap-11"p—1+ -t Ap—1p-1Tn-1n-1 = _T;fl,n
(2.15) Tn1n-1(0) = 011y, 1, 1(0) =0
and so on.
Lastly,
g1 ,
(2.16) 11712 + Q12722 = ——T 3
02
027’/272 + a2 + ara2 = —7“/2,3
(2.17) r92(0) — 027"’2,2<0) =0
and
0'17"171 + a1171,1 = —7’/1’2
(2.18) r11(0) — 0177 ,(0) =0
The solution’s singular componeiitfulfils
L5=0 on¢
(2.19) with B5(0) = B(7 — 7)(0).

From the expression$ (2]12)[- (2119) and using lemma 2.3 fdr is found that fork =
L,2,....,n, l=1,2,....0n, k<[, k=0,1,2

(2.20) (@) < C (1 +o ] crq_1> :

q=l+1
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From (2.5), [(2.J7) and (2.20), the following bounds fer k. = 1,2, ..., n, hold
r™| < C form=0,1
|r,(€m)| < Co, ! form=2.
The layer functions associated with the solutipare given byB,(z),1 < k < n,
(2.21) Bi(z) = e /7% 2 €[0,00).

The following basic features of these layer functions should be observed forlevery< | <
nand) <z < z<1.

(1) Bi(x) < By(x), forallz > 0.
(2) Bi(z) > By(z),forall0 < z < x < 0.
(3) Br(0) =1and0 < By(x) < 1forall z > 0.

Next lemma contains bounds on the singular composgeht; and its derivatives.

Lemma 2.4. Let A(z) satisfy(1.3) and (L.4). Then there exists a constafif such that for each
k=1,2,...,n,andx € (,

|sk(2)] < CBn(x)

(o) < 03 22

ousi () < 032 Pl)
q=1 g

Proof. To derive the bound o#, define the two functions
0 (x) = OB, (z) + sp(z), foreachk =1,2,... nandz € (.
For a proper choice of C,

BO (0) > 0.
Also forz € ¢,
(L§ )(z) >0 as — % > 1.
By Lemmﬁi(x) > 0 on¢ and it follows that lemma
(2.22) |sk(z)| < CB,(x).
The bounds om,(gh)(x), h=1,2,...,n are now derived by induction on

To establish the bounds 6f(x), then' equation of the systerfi (2]19)
0080 (1) + ap1(x)81(2) + ana(x)s2(x) + -+ + apn(z)s,(x) = 0 is considered.
From this equation, the bounds gj(z) is derived directly. That is,

(2.23) |s! (z)] < Co, ' By(x).
It is then assumed that the required boundssr; hold for all systems upto order — 1.
Defining§: (81,82, -3 8n—1), thens satisfies the system

E3 (z) + As(z) = §(x)

— —
— = 5

with  B3(0) = Bj(0) — BF(0)
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Here, E, A are the matrices obtained by deleting the last row and last column Farre-
spectively and the components @fare gy = —agms, for 1 < k < n— 1 and7 = g, + 0
the corresponding components ofs similar to [2.5) ofr. Now decompose into smooth
and singular components to gét= 7 + ¢, whereLp = g, Bp(0) = Bio(0) + Bd(0) and
Lt =0, Bi(0) = B5(0) — Bp(0).

Also from the defining equation @f(x), p(0)

. . -+

Introducing the functions) (0) = CB,(z) +
andfork=1,2,...,.n—1

—

p(x), then cIearIyJ]?ézZi(O) — CB,(0) 4+ Bp(0)

Applying Lemmd 2.]L, it follows thaip(z)|| < CB,(z).

Defining the barrier functiond] (z) = 28 1 5@ and usually Lemm .1 fof , the
bounds ofp” are derived.

It is clear from Lemmd 2]4, that this is true for the case- 2. It is assumed that the Lemma
is valid for all systems witlh — 1 equations. Hence the lemma applieg @nd fork =
1,2,...,n—1

n—1
[th(2)| < C Yo, By(a).
q=k
Combining the bounds of;, andt,, it is clear that
5.(2)] < C Yoy Bylo).
q=k
Now from the definition of and using[(Z.22)
[st(2)] < C Yoy By().
q=k

It is thus proved the lemma is true for systemsaoéquations. To estimate the bound of the
second derivative, the’* equation of the systerhs'is differentiated to get

orsp(r) = —(A(2)5y(z) + A'(2)5(2))

and it is seen that the bound ef(x) follows from the bounds of ands'.
The proof of the lemma is completg.

3. SHISHKIN MESH

A piecewise uniform mesh wittv mesh-intervals is created, and mesh poipts} ., are
generated by splitting the intervalinto n + 1 sub-intervals as shown below

C=10,7]U(r1, 72 U (Too1, Tn] U (T4, 1].

AJMAA Vol. 20(2023), No. 1, Art. 14, 16 pp. AIMAA
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The fitted mesth is given by{z;}) and¢™ = {x;}¥, wheren is the number of transition
points between uniform meshes, and

1
Tn :min{—, &lnN}
2«

andr, fork =1,2,...,n— 1 are presented by

(3.2) T = min {Tkﬂ7 Tk lnN} .
2«

Clearly,

1
0<71<---<7n§§.

Then, on the sub-intervéd, 7], a uniform mesh with mesh-intervals ¢f is placed. Similarly,
a uniform mesh Withzn,Lk+1 mesh intervals is put ofry, 7,11}, 1 < k <n — 1, and a uniform
mesh withy mesh intervals is set ofr,,, 1].

This method yields a class af piecewise uniform Shishkin meshas; whereb denotes an

n-vector withd, = 0 if 7, = &2 andb, = 1, alternatively. It should be emphasised that any
such mesh

(3.2) hy <CN™', foranyl, 1<j<N

(3.3) Ty < CopIn N foranyk, 1<i<n

(3.4) Bi(ti) =Nt if bpy=1

(3.5) T =200 fork <, if b,=0 m=k,...,1L

4. THE DISCRETE PROBLEM

The Initial Value Problemg (1l.1) and (1.2) are discretized using a fitted mesh approach con-
sists of a piecewise uniform fitted mesh and a classical finite difference operator. The backward
Euler finite difference technique on a piecewise uniform fitted mesh defines the discrete solu-
tions on anyM;. The discrete problem fdr=1,2,... N is

O’lD_Y’l(ml) + an(xl)Yl(xl) + -+ aln(xl)Yn(:cl) fl(xl)
oo D™Ys(xy) 4+ agi(x)Yi () + -+ - + agn(2) Yo (x)) = folz))

(4.1)  LVY(x)) =

o DY, (x)) + ani () Yi(z) + -+ + apn(2) Yo (1) = fu())

with

(4.2) Y(0) — EDTY(0) = ¢.

(4.7), [4.2) can also be expressed as an operator form problem

LYY = fon¢™ with
BVY (0) = ¢
whereL" = ED~ + A with
BY =1 — ED'I

AJMAA Vol. 20(2023), No. 1, Art. 14, 16 pp. AIMAA
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andD™, D~ are the distinguishing operators
. V() — Y (- . Y -Y

D Y(z)) = (1) (i 1)7 D+Y(xl) _ (z141) (1)
T — T Tiy1 — 2y

. 1=1,2,...,N.

The discrete findings that follow are comparable to the continuous results.
Lemma 4.1. Let A(z) satisfy(T.3)and (1.4). Let¥ = (¥, U, ..., ¥,)T be any vector-valued
mesh function, such th&" ¥ (0) > 0. ThenLV¥ > § on ¢ implies thatd > Gon¢ .

Lemma 4.2. Let A(z) satisfy(T.3)and (T.4). Let ¥ be any vector-valued mesh functioné%,
then foreach =1,2,...,n,

N 1 oo
() < max { |EYG O LIZVE . 0 <

5. ERROR OF LOCAL TRUNCATION

It can be observed from Lemr@.z that in order to bound the gifor 7|, it is enough to
boundZ™ (Y — ). Notice that, forz; € ¢V

LN(Y () — §(x1)) = E(D™ — D)jji(zy)
and
(L = LN)y)r(a1) = ox(D™ = D)ry(m1) + ox(D™ — D)sy().
This is the first derivative truncated locally. The triangle inequality then says
(LN (Y = §))k(a)] < low(D™ = D)og(a)] + |ok(D™ — D)w(a)].

The discrete solutioty’ may be decomposed int® and .S, which are specified to be solutions
to the following discrete problems, similarly to the continuous example.

(5.1) (LVV)(;) = f(x;) on ¢, BYV(0) = Bii(0)
and
(5.2) (LYS) () =0 on ¢V, BNS(0) = B3(0)

wherer’ands are the solutions of (2.8), (2.9) ard (2.10), (2.11) respectively.

Further, fork = 1,2, ..., n,
|(BY (R — )
(BN (S - 3)

(5.3) (EN(B = 7)i(w)| = |ox(D™ = Dry()]

(5.4) (LN(S = 8)(w)| = |on(D™ = D)sy(a1)].

The error at each point; € ZN is denoted by (z;) — 7(z;). Then the local truncation error
LY (Y (z;) — 9(z;)) has the decomposition

LYY = )(2)) = LV(B = #) (@) + LN (S = 8)(a)-

AJMAA Vol. 20(2023), No. 1, Art. 14, 16 pp. AIMAA
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As a result, the smooth and singular components’ local truncation errors may be dealt individu-
ally. In light of this, it's worth noting that the following two independent estimates of the local
truncation of a smooth function hold for every smooth functioé.

(55) (D™ = D)) < 2max €(2)
and
(5.6) (D™~ D)) < 2 mae|¢"(2)

wherel; = z; — x;_4.

The next section bounds the error in the smooth and singular components.

6. ERROR ESTIMATE

There are two components to the proof of the theorem on error estimation. To begin, a
theorem about the smooth component error is established. The singular component’s error is
then determined.

Theorem 6.1. Let A(x) satisfy(1.3) and (1.4). Let+ denote the smooth component of the
solution of (1.7, (1.2)and R denote the smooth component of the solution of the pro@ely
(4.2). Then

(LY(R = 7)i(x)] < ON

The following lemmas must be used in order to calculate the error in the singular component
of the solutiony.
A comparable estimate for the singular component is generated using the geometry"of the
feasible Shishkin meshes. The preparatory Lemmas listed below are necessary.

Lemma 6.2. Let A(x) satisfy(L.3)and (1.4). Then for eactk = 1,2,...,n, [ =1,2,..., N,
on each mesh/;

h
lox(D™ — D)si(z)| < C=.
01
Proof. From the expression (5.6),
(6.1) (B (S — £):(0)] < Clar — z0) max |s}(z)] < CN.

z€[zo,21]

From (5.6) and Lemm[a 2.4, we have

By (x;—
lok(D™ — D)sg(x;)| < Chymax |ogsi(2)] < Chy g Bylri-1) <C—
z€l; py Oq 01

as requiredg

Lemma 6.3. Let A(x) satisfy(T.3)and (I.4). Then for eactk = 1,2,...,n, [ =1,2,...,N
andt = 1,2,...,n — 1, on each mesh/; with b, = 1 there exists a decomposition

t+1

(62) Sk = Z Sk,m

m=1

AJMAA Vol. 20(2023), No. 1, Art. 14, 16 pp. AIMAA
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k=1,2,...,n, t=1,2,...,n — 1 for which the following estimates hold for eaolh 1 <

lokSkm ()| < CBp(x)
|08} m ()] < Coy, Br()

kst (@) S C Y 07 By(2).

q=t+1
Furthermore,

(D = D) < € (Bilorn) + ).

Ot+1

Proof. Sinceb; = 1, we haver; < Ut; andzy 41 € (0,1], fork=1,2,... ¢t

t+1
Definingsy = " sy, where the components,,, 1 < m <t + 1 are given by
m=1
2 (—mp41)t (2)
Wy, t+1($) — Z% 7l Sk (l’t,tﬂ), T e [O,xt,tﬂ)
5k<x>7 S [‘rt,t+17 1]

and foreachn, 2 <m <t

2, (r—tmo1m)’ (1)
Z Tysk (xt—Lt)a S [vam—l,m)

Sk,m(T) = = t+1
se(T) — D0 Stgs T € [Tm_1,1]
q=m+1
and finally,
t+1
Sk,1 = Sk — Z Sk, ON [O, 1]
q=2

From the above expressions we note that for eacl < m <t, sg,, = 00N [Ty -1, 1].
To establish the bounds on the second derivatives we observe that.if], using Lemma 2]4
andz > x4, We obtain

"B "\ B
|41 (@)] < C’Zﬂ < Z ﬂ.
q=1 O-q Uq

qg=t+1

On|0, z444), using Lemma 24 and < z,,,,, we obtain

n

B,(z
|ok8kp41 ()] = lonsy(@ea)| < Z @

q=1 g
~ By(z1441) ~ B,(z)
< Z Zahirl) o Z Za\r)
q=t+1 Tq =1 74
and for eachn = 2, ...k, we see that inv,, 11, 1], s, = 0.
ON [Z—1,m, Tmm+1), USING Lemma 2]4, we obtain
t+1 n
B,(z B, (x
sl ()] < loasl@)] + Y lost ()] < 03 Pl < o Pnl0)
qg=m+1 q=1 q m
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On |0, Zp—1,m), using Lemma 214, and < z,,_, ,,,, We obtain

. B m—1,m Bm m—1,m Bm
008l (2)] < o )] < €3 Palmtn) < ¢ Bnlmctan) o o Bnl)

p 04 Om Om

On [ILQ, ]_], S/k/,l =0.
On|0, z; 5], using Lemma 2]4,

t+1

" " " . B x B x
0w, @) < loush@)] + 3 [ousp (@) < €30 P < Pl
q=2

Oq 01

q=1

For the bounds on the first derivative, we observe that for each < m <+, on |z, m+1, 1]

Tm,m+1
[ st (s)ds = st manin) = 015k (2) = ~015%,(0)
x

and so,
Tm,m+1 Tm,m+1
kst (2)] < / (ks ()] dz < Co! / Bon(2)dz < CBy(x).

Finally, since

t

jo1(D™ = D)si(a)| < D |ow(D™ = D)sm(1)] + |ox(D™ = D)spes ().

m=1

Using (5.6) on the last term and (b.5) on all other terms on the right hand side, we obtain

t
|ok(D™ = D)si(x)| < C (Z Max o m(2)] + hy max |0k5§§,t+1(2)|) :
m=1

The proof of the lemma is completg.

The desired result follows by applying the bounds on the derivatives.

Lemma 6.4.Let A(x) satisfy(1.3)and(1.4). Then, foreackk =1,2,...,nandl =1,2,...,N
on each mesh/;, we have the estimate

’Uk(Di - D)Sk(l‘l)‘ S CBn($l_1).
Proof. From (5.5) and Lemma 2.4, foreaéh=1,2,...,nandl = 1,2,..., N, we have

"\ By (x_
|ok(D™ = D)sp ()| < Cmax |oys)(2)] < Cop Y Bylt1-1) < OBy (21-1)
z€I; ik Uq

as requireds

Using the above preliminary lemmas on appropriate subintervals we obtain the desired esti-
mate of the singular component of the local truncation error in the following lemma.

Lemma 6.5.Let A(x) satisfy(1.3)and(1.4). Then, foreaclk = 1,2,....,nandl =1,2,... N,
we have the estimate

lox(D™ — D)sp(z;)] < CN'In N.
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Proof. We consider each subinterval separately. First, in the subintérval] we haveh; <
CN~'7, and the result follows from Lemnja 6.2,

h
lox(D™ = D)si(m)| < C—- < CN~'In N.
01

Now, on the intervalr, 75], we haver; < z;_; andh; < CN~'7,. We divide the2"t!
possible meshes into 2 subclasses.

Class (i): On the meshes/; with b; = 0.

b, impliesT, = 27'7,. Hence from[(3}) and Lemma 6.2,

hl CNilTl

lop(D™ — D)sg(x;)| < C— < <CN 'InN.
01

01
Class (ii): On the meshes/; with b; = 1.
b, impliest, = % In N. Hence from Lemm@ﬁ and using equations](3.3) (3.4)

CN_1T2

%)

<CN 'InN.

h
lop(D™ — D)sg(x;)| < CBy(x-1) + U—l < CBy(z-1) +
9

On a general subintervat,,, 7,,11] for 2 < m < n — 1. We haver,, < z;_; andh; <
CON~'7,11. We divideM; into 3 subclasses:

Class (i): M = {M; : by = by = --- = by, = 0}.
From Lemma 62 and (3.5),
h N1 N1
ok (D™ — D)sp(a)] < C= < CN™ T < CN T <CN 'InN.
01 01 01
Class (ii): My = {M5: by = 1,b1 = -+ = by, = 0}

From Lemma 6.3 and using equatiohs [3.3),](3.4) (3.5)

h
lok(D™ — D)si(m1)] < CBy(zi1) + —— < CBy(1) +
Ot+1 Om+1

1
M <ON'mmN.
Ot+1

S CBt (Tm) +

Class (jii): M = {Mj : b, = 1}.
From Lemm and using equatiops [3.3) (3.4),

h CN~'r,,
0:(D™ — D)sp(x1)| < CBp(wi-1) + —— < CBy(7m) + ———"™L < ON“1In N,
Om+1 Om+1
Finally, on the subintervalgr,,, 1], we haver,, < z;_; andh; < CN~'. We divide M into 3
sublassesMg ={Mz:by =by=--- =0, =0}, Mg ={My:b=1by1=-=by=

0 forsomel <t¢ <n—1}andM} = {Mj:b, =1}. On Mg, the result follows from[(3]3),
(3:4) and Lemma 6]2. Ont}, the result follows from[(3]3)[(34) and (B.5) and Le 6.2.
On M7, thg result ollqws from the _equatlo.Q);(]3.4) and Le 6.3.

The following result gives th&— uniform error estimateg

Theorem 6.6. Letj/ be the solution of the continuous probléal)), (T.2)andY be the solution
of the discrete problerfd.1), (4.2). Then

I(EN(Y =) < CN ' InN.

Proof. From Lemmd 42, it is clear that, in order to prove the above theorem it suffices to to
prove that|(L™ (Y —))|| < CN~ In N. But, ||(LY (Y =) || < [[(LY(R=7))[|+[[(L7(S -
§))||. Hence using theorem 6.1 and the above preliminary lemmas, the above result is derived.
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7. NUMERICAL |LLUSTRATION
The numerical technique provided above is explained in this section with an example.
Example 7.1. Consider the initial value problem
oy (@) + 3+ 2y (x) — y2(2) — ys(z) = 1,
o2 (x) — y1(x) + (3+ 27)ya(x) — ys(x) =3+ =,
o3ys(x) — y1(x) — yo(@) + dys(z) =2

Ve (0,1]

with
y1(0> - Uly/1<o) =1
Y2(0) — 0295(0) 1
y3(0) — 033/:/),(0) =1

Figure[] depicts the numerical result reached by using the fitted mesh me¢thods (4.1)jand (4.2)
to the Examplé 7]1. In Table 1, the convergence order and the error constant are computed and
displayed.

Table 7.1:

N N N * N
Values of DY, D, p*, p* and C,. generated for the example.

n Number of mesh pointsV
144 288

72 576

0.125E+00

0.302E-01

0.213E-01

0.139E-01

0.853E-02

0.312E-01

0.115E-01

0.705E-02

0.417E-02

0.240E-02

0.781E-02

0.114E-01

0.699E-02

0.414E-02

0.238E-02

0.195E-02

0.114E-01

0.698E-02

0.413E-02

0.238E-02

0.488E-03

0.114E-01

0.697E-02

0.413E-02

0.238E-02

DN

0.302E-01

0.213E-01

0.139E-01

0.853E-02

pN

0.502E+00

0.617E+00

0.706E+00Q

CN

0.881E+00

0.881E+00

0.813E+00

0.706E+00

p
The order of & -uniform convergencep* = 0.5022405F + 00
Computed -uniform error constantC ' = 0.8808367E + 00

8. CONCLUSION

The initial value problems for a singularly perturbed linear system with robin initial con-
ditions are numerically approximated using the numerical approaches presented in this paper.
By resolving a number of initial value problems with robin initial conditions, the solutions to
the given singularly perturbed problems are obtained numerically. These techniques need little
problem preparation and are relatively simple to use on any computer. We used the classical
finite difference approach to resolve the perturbed initial value problems. Any standard ana-
lytical or numerical technique can be applied, in fact. We are able to solve the original initial
value problem numerically by using the initial condition. To illustrate the applicability of the
current strategy, some numerical experiments have been presented. Tables are used to display
the results of computations. Although the solutions are computed at all places with mefsh size
and the approximation and precise solutions are compared, we have only provided the findings
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ul

u2
1.8 u3 7

1.6 - *

0.8 - -

0.6 1 1 1 1 1 1 1 1 1

Figure 1: The figure displays the numerical solution for the problen (7.1), computed for N = 1152. The solution
components y1(x); y2(x) and y3(x) has initial layers.

for a small subset of the values. The findings reveal that the current approach agrees quite well
with the precise answer, demonstrating the approach’s effectiveness.

9. FUTURE WORK

Systems with source terms of discontinuity at multiple points need further investigations.
The numerical study of the continuation approach for solving semi-linear problems and two-
dimensional problems is challenging, and work is ongoing.
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