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1. I NTRODUCTION

Consider the Volterra integro-differential equation

(1.1) x′(t) = Ax(t) +

∫ t

0

B(t, s)f(x(s))ds,

wherex : [0, t] → D andD be a set inRn that includes the origin. Suppose there exist a
continuously differentiable Lyapunov functionalV : R+ × D → R+, whereR+ is the set of
non-negative real numbers, that satisfies

(1.2) W1(|x|) ≤ V (t, x(·)) ≤ W2(|x|) +

∫ t

0

ϕ1(t, s)W3(|x(s)|)ds

and

(1.3) V ′(t, x(·)) ≤ −η(t)V (t, x(·)) + F (t)

Here the functionF : [0, t] → Rn is continuous andWi : [0,∞) → [0,∞) are continuous inx
with Wi(0) = 0, Wi(s) > 0 if s > 0 andWi is strictly increasing. Such a functionWi is called
a wedge. ( In this paper wedges are always denoted by W orWi, wherei is a positive integer).
The functionη is continuous and non-negative. Lett0 ≥ 0, then for each continuous function
φ : [0, t0] → Rn, there is at least one continuous functionx(t) = x(t, t0, φ) on an interval[t0, I]
satisfying (1.1) fort0 ≤ t ≤ I and such thatx(t, t0, φ) = φ(t) for 0 ≤ t ≤ t0. From (1.3) one
obtains the variational of parameters formula

(1.4) V (t, x(·)) ≤
[
V (t0, φ) +

∫ t

t0

|F (s)|exp (

∫ s

t0

η(u)du)ds
]
exp (−

∫ t

t0

η(s)ds).

Now, if W1 = ||x||p, for some positive constantp, where|| · || is the Euclidean norm, then by
(1.2) and (1.4) we arrive at

(1.5) ||x|| ≤
[
V (t0, φ) +

∫ t

t0

|F (s)|exp (

∫ s

t0

η(u)du)ds
]1/p

exp
1

p
(−

∫ t

t0

η(s)ds).

Thus, if ∫ t

t0

|F (s)|exp (

∫ s

t0

η(u)du)ds ≤ K,

for some positive constantK, then (1.5) yields that the zero solution of (1.1) is exponentially
asymptotically stable, provided that

∫ t

t0
η(s)ds →∞, ast →∞. The variational of parameters

formula (1.4) was easily obtained from (1.3). However, finding a Lyapunov functionalV such
that (1.3) is satisfied is extremely difficult. The purpose of this paper is to present a systematic
approach to the construction of such a Lyapunov functional.

2. EXPONENTIAL ASYMPTOTIC STABILITY

In this paper we present six theorems and two propositions that provide an easy way of
constructing Lyapunov functionals that meet condition (1.3), which in returns the exponen-
tial asymptotic stability of functional differential equations can be deduced. We make use of
non-negative definite Lyapunov functionals and obtain sufficient conditions that guarantee the
exponential asymptotic stability of the zero solution of the system of functional differential
equations

(2.1) x′(t) = G(t, x(s); 0 ≤ s ≤ t)
def
= G(t, x(·))

wherex ∈ Rn, G : R+ × Rn → Rn is a given nonlinear continuous function int andx with
G(t, 0) = 0. Let t0 ≥ 0, then for each continuous functionφ : [0, t0] → Rn, there is at least one
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continuous functionx(t) = x(t, t0, φ) on an interval[t0, I] satisfying (2.1) fort0 ≤ t ≤ I and
such thatx(t, t0, φ) = φ(t) for 0 ≤ t ≤ t0. It is assumed that att = t0, x′(t) is the right hand
derivative ofx(t). For conditions ensuring existence, uniqueness and continuability of solutions
of (2.1) we refer the reader to [6] and [12] .
In [11], the author studied the boundedness of solutions of systems of differential equations. On
the other hand, the author, in [12] studied the boundedness of solutions of (2.1) by making use
of non-negative definite Lyapunov functionals.
A stereotype of equation (2.1) is equation (1.1). We apply our results to Volterra integro-
differential equations of the form (1.1) withf(x) = xn, wheren is positive and rational. At
the end of the paper we will compare our theorems to those obtained in [13] and show that our
results are different when it comes to applications. For more on the boundedness and stability
of solutions of (1.1), we refer the interested reader to [4], [5], [7], [8], [14], [9] and [10].

From this point forward, if a function is written without its argument, then the argument is as-
sumed to bet. Let φ : [0, t0] → Rn be continuous, we define|φ| = sup{||φ(s)|| : 0 ≤ s ≤ t0}.
Next, we state the following definition.

Definition 1. We say that the zero solution of system(2.1) is exponentially asymptotically stable
if for a positive constantM, any solutionx(t, t0, φ) of (2.1)satisfies

||x(t, t0, φ)|| ≤ C
(
|φ|, t0

)
e−M(t−t0), for all t ≥ t0,

whereC
(
|φ|, t0

)
is a constant that depends on|φ| and t0 and φ is a given continuous and

bounded initial function. We say that solutions of system(2.1) are uniformly exponentially
asymptotically stable ifC is independent oft0.

If x(t) is any solution of system (2.1), then for a continuously differentiable function

V : R+ × Rn → R+,

we define the derivativeV ′ of V by

V ′(t, x(·)) =
∂V (t, x(·))

∂t
+

n∑
i=1

∂V (t, x(·))
∂xi

Gi(t, x).

Theorem 2.1. Let D be a set inRn containing the origin. Suppose there exist a continuously
differentiable Lyapunov functionalV : R+ ×D → R+ that satisfies

(2.2) λ1||x||p ≤ V (t, x(·)) ≤ λ2W2(|x|) + λ2

∫ t

0

ϕ1(t, s)W3(|x(s)|)ds

and

(2.3) V ′(t, x(·)) ≤ −λ3W4(|x|)− λ3

∫ t

0

ϕ2(t, s)W5(|x(s)|)ds + Le−δt

for some positive constantsp, λ1, λ2, λ3, δ andL. The functionsϕi(t, s) ≥ 0 are scalar-valued
and continuous for0 ≤ s ≤ t < ∞, i = 1, 2. If the inequality

(2.4) W2(|x|)−W4(|x|) +

∫ t

0

(
ϕ1(t, s)W3(|x(s)|)− ϕ2(t, s)W5(|x(s)|)

)
ds ≤ γe−δt

holds for some positiveγ and
∫ t

0
ϕ1(t, s)ds ≤ B for some positive constantB, then the zero

solution of (2.1) is uniformly exponentially asymptotically stable.

AJMAA, Vol. 4, No. 2, Art. 9, pp. 1-13, 2007 AJMAA

http://ajmaa.org


4 YOUSSEFN. RAFFOUL

Proof. Let 0 < M = λ3/λ2 < δ. For any initial timet0 ≥ 0, let x(t) be any solution of (2.1)
with x(t) = φ(t), for 0 ≤ t ≤ t0. Then,

d

dt

(
V (t, x(·))eM(t−t0)

)
=

[
V ′(t, x(·)) + MV (t, x(·))

]
eM(t−t0).

Forx(t) ∈ Rn, using (2.2) we get

d

dt

(
V (t, x(·))eM(t−t0)

)
≤

[
− λ3W4(|x|)− λ3

∫ t

0

ϕ2(t, s)W5(|x(s)|)ds + Le−δt

+ Mλ2W2(|x|) + Mλ2

∫ t

0

ϕ1(t, s)W3(|x(s)|)ds
]
eM(t−t0)

= λ3

[
W2(|x|)−W4(|x|) + Le−δt

+

∫ t

0

(
ϕ1(t, s)W3(|x(s)|)− ϕ2(t, s)W5(|x(s)|)

)
ds

]
eM(t−t0)

≤ (λ3γ + L)e−δteM(t−t0)

≤ (λ3γ + L)e−δ(t−t0)eM(t−t0)

= (λ3γ + L)e(M−δ)(t−t0).(2.5)

Integrating (2.5) fromt0 to t we obtain,

V (t, x(·))eM(t−t0) ≤ V (t0, φ) +
λ3γ + L

M − δ
e(M−δ)(t−t0) − λ3γ + L

M − δ

≤ V (t0, φ) +
λ3γ + L

δ −M
.

Consequently,

V (t, x(·)) ≤
(
V (t0, φ) +

λ3γ + L

δ −M

)
e−M(t−t0).

From condition (2.2) we haveλ1||x||p ≤ V (t, x(·)), which implies that

||x|| ≤ { 1

λ1

}1/p
(
λ2W2(|φ|)

+λ2W3(|φ|)
∫ t0

0

ϕ1(t0, s)ds +
λ3γ + L

δ −M

) 1
p
e−

M
p

(t−t0), for all t ≥ t0.

Remark 2.1. Condition (2.4) can be easily satisfied ifW2 = W4, W3 = W5 and with the
appropriate growth condition on the functionsϕ1 andϕ2, as the next proposition shows.

Proposition 2.2. For 1 < δ and a bounded continuous given initial functionφ, consider the
scalar nonlinear Volterra integro-differential equation

(2.6) x′ = σ(t)x(t) + e−δt

∫ t

0

B(t, s)x2/3(s)ds, t ≥ 0,

with x(t) = φ(t) for 0 ≤ t ≤ t0. If

2σ(t) + e−δt

∫ t

0

|B(t, s)|ds +

∫ ∞

t

e−δu|B(u, t)|du ≤ −1,
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∫ t

0

∫ ∞

t

e−δu|B(u, s)|duds,

∫ t

0

|B(t, s)|ds < ∞,

and
e−δt|B(t, s)|

3
≥

∫ ∞

t

e−δu|B(u, s)|du,

then the zero solution of(2.6) is uniformly exponentially asymptotically stable.

Proof. To see this we let

V (t, x(·)) = x2 +

∫ t

0

∫ ∞

t

e−δu|B(u, s)|dux2(s)ds.

Then along solutions of (2.5) we have

V ′(t, x(·)) = 2xx′ +

∫ ∞

t

e−δu|B(u, t)|x2(t)du−
∫ t

0

e−δt|B(t, s)|x2(s)ds

≤ 2σ(t)x2 + 2e−δt

∫ t

0

|B(t, s)| |x(t)|x2/3(s)ds

+

∫ ∞

t

e−δu|B(u, t)|x2(t)du−
∫ t

0

e−δt|B(t, s)|x2(s)ds.

Using the fact thatab ≤ a2/2 + b2/2, the above inequality simplifies to

V ′(t, x(·)) ≤ 2σ(t)x2 + e−δt

∫ t

0

|B(t, s)|(x2(t) + x4/3(s))ds

+

∫ ∞

t

e−δu|B(u, t)|x2(t)du−
∫ t

0

e−δt|B(t, s)|x2(s)ds.

(2.7)

To further simplify (2.7) we make use of Young’s inequality, which says for any two nonnegative
real numbersw andz, we have

wz ≤ we

e
+

zf

f
, with 1/e + 1/f = 1.

Thus, fore = 3/2 andf = 3, we get∫ t

0

|B(t, s)|x4/3(s)ds =

∫ t

0

|B(t, s)|1/3|B(t, s)|2/3x4/3(s)ds

≤
∫ t

0

( |B(t, s)|
3

+
2

3
|B(t, s)|x2(s)

)
ds

By substituting the above inequality into (2.6), we arrive at

V ′(t, x(·)) ≤
(
2σ(t) + e−δt

∫ t

0

|B(t, s)|ds +

∫ ∞

t

e−δu|B(u, t)|du
)
x2(t)

−e−δt

∫ t

0

(
|B(t, s)| − 2

3
|B(t, s)|

)
x2(s)ds +

e−δt

3

∫ t

0

|B(t, s)|ds

≤ −x2(t)−
∫ t

0

e−δt|B(t, s)|
3

x2(s)ds + L e−δt,

whereL = 1
3

∫ t

0
|B(t, s)|ds. By takingW2 = W4 = x2(t), W3 = W5 = x2(s), λ1 = λ2 =

λ3 = 1 andϕ1(t, s) =
∫∞

t
e−δu|B(u, s)|du, ϕ2(t, s) = e−δt|B(t,s)|

3
, we see that conditions (2.2)
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and (2.3) of Theorem 2.1 are satisfied withM = 1. It remains to show that condition (2.4)
holds. Sincee−δt|B(t,s)|

3
≥

∫∞
t

e−δu|B(u, s)|du we have that

W2(|x|)−W4(|x|) +

∫ t

0

(
ϕ1(t, s)W3(|x(s)|)− ϕ2(t, s)W5(|x(s)|)

)
ds

= x2(t)− x2(t) +

∫ t

0

( ∫ ∞

t

e−δu|B(u, s)|du− e−δt|B(t, s)|
3

)
x4(s)ds

=

∫ t

0

( ∫ ∞

t

e−δu|B(u, s)|du− e−δt|B(t, s)|
3

)
x4(s)ds ≤ 0.

Thus, condition (2.4) is satisfied forγ = 0. By Theorem 2.1, the zero solution of (2.6) is
uniformly exponentially asymptotically stable.

Note that, if we takeB(t, s) = 1, σ(t) = −(1+te−t+(1/δ)e−δt)
2

, then the first two conditions of
Proposition 2.2 are satisfied. Also, by takingδ = 3, the condition

e−δt|B(t, s)|
3

≥
∫ ∞

t

e−δu|B(u, s)|du,

is satisfied. Thus, we have shown that that the zero solution of

x′ =
−(1 + te−t + (1/δ)e−δt)

2
x(t) +

∫ t

0

e−δtx2/3(s)ds, t ≥ 0,

is uniformly exponentially asymptotically stable.

In the next theorem we show that the zero solution is exponentially asymptotically stable.

Theorem 2.3. Let D be a set inRn containing the origin. Suppose that for positive constants
L, p andδ, there exist a continuously differentiable Lyapunov functionV : R+ ×D → R+ that
satisfies

(2.8) λ1(t)||x||p ≤ V (t, x(·)) ≤ λ2(t)W2(|x|) + λ2(t)

∫ t

0

ϕ1(t, s)W3(|x(s)|)ds

and

(2.9) V ′(t, x(·)) ≤ −λ3(t)W4(|x|)− λ3(t)

∫ t

0

ϕ2(t, s)W5(|x(s)|)ds + Le−δt

for some positive continuous functionsλ1(t), λ2(t), and λ3(t), whereλ1(t) is nondecreasing
andϕi(t, s) ≥ 0 is a scalar-valued function which is continuous for0 ≤ s ≤ t < ∞, i = 1, 2,.
If the inequality

(2.10) W2(|x|)−W4(|x|) +

∫ t

0

(
ϕ1(t, s)W3(|x(s)|)− ϕ2(t, s)W5(|x(s)|)

)
ds ≤ γe−δt

holds for some positive constantγ,
∫ t

0
ϕ1(t, s)ds ≤ B andλ2(t) ≤ N for some positive con-

stantsB andN for all t ≥ 0, then the zero solution of(2.1) is uniformly exponentially asymp-
totically stable.

Proof. Let

M = inf
t∈R+

λ3(t)

λ2(t)
< δ.
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For any initial timet0, let x(t) be any solution of (2.1) withx(t0) = φ(t0). Then,

d

dt

(
V (t, x(·))eM(t−t0)

)
≤

[
− λ3(t)W4(|x|)− λ3(t)

∫ t

0

ϕ2(t, s)W5(|x(s)|)ds + Le−δt

+ Mλ2(t)W2(|x|) + Mλ2(t)

∫ t

0

ϕ1(t, s)W3(|x(s)|)ds
]
eM(t−t0).

But λ3(t)
λ2(t)

≥ M, which implies that−λ3(t) ≤ −Mλ2(t), and hence the above inequality be-
comes after invoking (2.11),

d

dt

(
V (t, x(·))eM(t−t0)

)
≤

[
Mλ2(t)

(
−W4(|x|)−

∫ t

0

ϕ2(t, s)W5(|x(s)|)ds

+ W2(|x|) +

∫ t

0

ϕ1(t, s)W3(|x(s)|)ds
)

+ Le−δt
]
eM(t−t0)

≤ (MNγ + L)e(M−δ)(t−t0).

An integration of the above inequality fromt0 to t yields,

V (t, x(·)) ≤
(
V (t0, φ) +

MNγ + L

δ −M

)
e−M(t−t0).

Sinceλ1(t) is nondecreasing we have fort ≥ t0 ≥ 0 thatλ1(t) ≥ λ1(t0).Thus, by (2.9) we have
λ1(t)||x||p ≤ V (t, x(·)), which implies that

||x|| ≤ { 1

λ1(t0)
}1/p

(
λ2(t0)W2(|φ|)(2.11)

+λ2(t0)W3(|φ|)
∫ t0

0

ϕ1(t0, s)ds +
MNγ + L

δ −M

) 1
p
e−

M
p

(t−t0),

for all t ≥ t0.

The next theorem is a special case of Theorem 2.3.

Theorem 2.4. Suppose the hypothesis of Theorem 2.3 hold except the conditionλ1 is non-
decreasing is replaced by

there exists a positive constanta < M such thatλ1(t) ≥ e−at,∀t ≥ t0 ≥ 0,

then the zero solution of(2.1) is uniformly exponentially asymptotically stable.

Proof. The proof is nearly identical to the proof of Theorem 2.3. It follows from inequality
(2.11) that

||x|| ≤ { 1

λ1(t)
}1/p

(
λ2(t0)W2(|φ|)(2.12)

+λ2(t0)W3(|φ|)
∫ t0

0

ϕ1(t0, s)ds +
MNγ + L

δ −M

) 1
p
e−

M
p

(t−t0)

≤
(
λ2(t0)W2(|φ|)

+λ2(t0)W3(|φ|)
∫ t0

0

ϕ1(t0, s)ds +
MNγ + L

δ −M

) 1
p
e−

(M−a)
p

(t−t0)

for all t ≥ t0.

Theorem 2.5. If the conditionλ2(t) ≤ N, ∀t ≥ 0 for some positive constantN does not hold
and γ = 0 in (2.4) and (2.11) then either Theorem 2.4 or Theorem 2.5 implies that the zero
solution of (2.1) is exponentially asymptotically stable.
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Proof. The proof is easily deduced from either (2.11) or (2.12). To see this, inequality (2.12)
with γ = 0 implies that

||x|| ≤ { 1

λ1(t0)
}1/p

(
λ2(t0)W2(|φ|)

+λ2(t0)W3(|φ|)
∫ t0

0

ϕ1(t0, s)ds +
L

δ −M

) 1
p
e−

M
p

(t−t0),

for all t ≥ t0. The same is true if we consider (2.12).

As an application of the previous Theorem, we furnish the following proposition.

Proposition 2.6. Suppose1 < δ = k1 + k2 for positive constantsk1, k2 with k2 < 1. For
a given bounded continuous initial functionφ, consider the scalar nonlinear Volterra integro-
differential equation

(2.13) x′ = σ(t)x(t) + e−k1t

∫ t

0

B(t, s)x2/3(s)ds, t ≥ 0,

with x(t) = φ(t) for 0 ≤ t ≤ t0. If

2σ(t)− k2 +

∫ t

0

|B(t, s)|ds +

∫ ∞

t

|B(u, t)|du ≤ −1,

∫ t

0

∫ ∞

t

|B(u, s)|duds,

∫ t

0

|B(t, s)|ds < ∞,

and
|B(t, s)|

3
≥

∫ ∞

t

|B(u, s)|du

then the zero solution of(2.13)is uniformly exponentially asymptotically stable.

Proof. Let

V (t, x(·)) = e−k2t
(
x2 +

∫ t

0

∫ ∞

t

|B(u, s)|dux2(s)ds
)
.

Then along solutions of (2.13) we have after using the inequalityab ≤ a2/2 + b2/2,

V ′(t, x(·)) ≤
(
2σ(t)− k2

)
x2(t)e−k2t − k2

∫ t

0

∫ ∞

t

|B(u, s)|dux2(s)ds

+2e−(k1+k2)t

∫ t

0

|B(t, s)||x(t)|x2/3(s)ds + e−k2t

∫ ∞

t

|B(u, t)|x2(t)du

−e−k2t

∫ t

0

|B(t, s)|x2(s)ds

≤
(
2σ(t)− k2

)
x2(t)e−k2t − k2

∫ t

0

∫ ∞

t

|B(u, s)|dux2(s)ds

+e−(k1+k2)t

∫ t

0

|B(t, s)|dsx2(t) + e−(k1+k2)t

∫ t

0

|B(t, s)|x4/3(s)ds

+e−k2t

∫ ∞

t

|B(u, t)|x2(t)du− e−k2t

∫ t

0

|B(t, s)|x2(s)ds
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By using Young’s inequality we arrive at

e−(k1+k2)t

∫ t

0

|B(t, s)|x4/3(s)ds = e−(k1+k2)t

∫ t

0

|B(t, s)|1/3|B(t, s)|2/3x4/3(s)ds

≤ e−(k1+k2)t

∫ t

0

( |B(t, s)|
3

+
2

3
|B(t, s)|x2(s)

)
ds

Substituting the above inequality into the inequality satisfied byV ′, we arrive at

V ′(t, x(·)) ≤
(
2σ(t)− k2 +

∫ t

0

|B(t, s)|ds +

∫ ∞

t

|B(u, t)|du
)
e−k2tx2(t)

−
∫ t

0

|B(t, s)|
3

x2(s)ds

≤ −x2(t)− e−k2t

∫ t

0

B(t, s)|
3

x2(s)ds + L e−(k1+k2)t,

whereL = 1
3

∫ t

0
|B(t, s)|ds. By taking W2 = W4 = x2(t), W3 = W5 = x2(s), λ1(t) =

λ2(t) = λ3(t) = e−k2t andϕ1(t, s) =
∫∞

t
|B(u, s)|du, ϕ2(t, s) = |B(t,s)|

3
, we see that condi-

tions (2.8), (2.9) (2.10) of 2.4 are satisfied withM = 1 andγ = 0. If we takek2 < M , then
the hypothesis of Theorem 2.3 is satisfied witha = k2 and hence the zero solution of (2.13) is
uniformly exponentially asymptotically stable.

Theorem 2.7.AssumeD ⊂ Rn contains the origin and there exists a type I Lyapunov function
V : D → [0,∞) such that for all(t, x) ∈ [0,∞)×D:

(2.14) λ1‖x‖p ≤ V (x),

(2.15) V̇ (t, x) ≤ −λ3V (x) + Le−δt;

whereλ1, λ3, p, δ > 0, L ≥ 0 are constants and0 < ε < min{λ3, δ}. Then the trivial solution
of (2.1) is uniformly exponentially asymptotically stable.

Proof. For any initial timet0, let x(t) be any solution of (2.1) inD with x(t0) = φ(t0). Define
ε such that0 < ε < min{λ3, δ}. Then,

d

dt

(
V (t, x(·))eεt

)
= V ′(t, x(t))eεt + εV (x(t))eεt,

≤
(
− λ3V (x(t)) + L−δt + εV (x(t))

)
eεt, by ((2.15)),

= eεt[εV (x(t))− λ3V (x(t)) + Le−δt]

≤ Le(ε−δ)t.

Integrating both sides of the above inequality fromt0 to t we obtain

V (x(t))eεt ≤ V (φ)eεt0 +
L

ε− δ
e(ε−δ)t − L

ε− δ
e(ε−δ)t0

≤ V (t0, φ)eεt0 +
L

δ − ε
e(ε−δ)t0

≤
(
V (t0, φ) +

L

δ − ε

)
eεt0 .

Dividing both sides of the above inequality byeεt yields

V (x(t)) ≤
(
V (t0, φ) +

L

δ − ε

)
e−ε(t−t0).
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The proof is completed by invoking condition (2.14).

Proposition 2.8. To illustrate the application of Theorem 2.7, for a bounded continuous given
initial functionφ, we consider the scalar nonlinear Volterra integro-differential equation

(2.16) x′(t) = σ(t) x(t) +

∫ t

0

B(t, s) f(s, x(s))ds + g(t, x(t))

with x(t) = φ(t) for 0 ≤ t ≤ t0, whereσ(t) is continuous fort ≥ 0 andB(t, s) is continuous
for 0 ≤ s ≤ t < ∞. We assumef(t, x(t)) andg(t, x(t)) are continuous inx andt and satisfy

(2.17) |g(t, x(t))| ≤ β(t) |x(t)|1/2,

and

(2.18) |f(t, x(t))| ≤ γ(t) |x(t)|,

whereγ(t) andβ(t) are positive and bounded. Suppose there exist constantsk > 1 andλ3 > 0
such that

(2.19) σ(t) +
1

2
+ k

∫ ∞

t

|B(u, t)|duγ(t) ≤ −λ3 < 0

and letk = 1 + ε for someε > 0 and suppose

(2.20) |B(t, s)| ≥ λ

∫ ∞

t

|B(u, s)|du

whereλ ≥ kλ3

ε
> 0, 0 ≤ s < t ≤ u < ∞, and

(2.21)
∫ t0

0

∫ ∞

t0

|B(u, s)|duγ(s)ds ≤ ρ < ∞ for all t0 ≥ 0.

Then all solutions of(2.16)are uniformly exponentially asymptotically stable.

Proof. Define

(2.22) V (t, x(·)) = |x(t)|+ k

∫ t

0

∫ ∞

t

|B(u, s)|du|f(s, x(s))|ds

Using (2.17)–(2.20), along the solutions of (2.16) we have,

V ′(t, x(·)) =
x(t)

|x(t)|
x′(t) + k

∫ ∞

t

|B(u, t)|du|f(t, x(t))| − k

∫ t

0

|B(t, s)||f(s, x(s))|ds

≤ σ(t)|x(t)|+
∫ t

0

|B(t, s)||f(s, x(s))|ds + |g(t, x(t))|

+k

∫ ∞

t

|B(u, t)|du|f(t, x(t))| − k

∫ t

0

|B(t, s)||f(s, x(s))|ds

≤
[
σ(t) +

1

2
+ k

∫ ∞

t

|B(u, t)|duγ(t)
]
|x(t)|

+(1− k)

∫ t

0

|B(t, s)||f(s, x(s))|ds +
β2(t)

2
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≤ −λ3|x(t)| − ε

∫ t

0

|B(t, s)||f(s, x(s))|ds +
β2(t)

2

≤ −λ3|x(t)| − ελ

∫ t

0

∫ ∞

t

|B(u, s)|du|f(s, x(s))|ds +
β2(t)

2

≤ −λ3

[
|x(t)|+ k

∫ t

0

∫ ∞

t

|B(u, s)|du|f(s, x(s))|ds
]
+

β2(t)

2

= −λ3V (t, x(·)) +
β2(t)

2
.

If β2(t) ≤ e−δt for positive constantδ, then by takingλ1 = 1, p = 1 and L = 1/2, the
hypothesis of Theorem 2.7 is satisfied and the proof is concluded.

We end this paper by discussing how our theorems fair against some of the results in the liter-
ature. In particular, Burton and Somolinos [3] considered the scalar Volterra integro-differential
equation

(2.23) x′(t) = −h(t)x(t)− b(t)x3(t) +

∫ t

0

C(at− s)x(s)ds, t ≥ 0

whereh(t), b(t) andC(at− s) are continuous on their respective domains. They obtained con-
ditions that guaranteed the uniform asymptotic stability of the zero solution of (2.23) fora > 1
and only asymptotic stability for0 < a < 1. They had to assume thatb(t) ≥ b0 > 0,∀t ≥ 0
for some positive constantb0. For the sake of completeness we state one of their major theorems.

Theorem 2.9. [3] Assume

(2.24) C ∈ L1[0,∞), a > 1, h(t) ≥ 0,

(2.25) b(t) ≥ b0 > 0,

(2.26) 2h(t) ≥ [1 + (1/a)]

∫ ∞

(a−1)t

|C(v)|dv,

and

(2.27)
∫ ∞

t

|C(u)|du ∈ L1[0,∞),

then the zero solution of(2.23)is uniformly asymptotically stable.

On page 5 of [3], the authors made the assertion that their results and in particular, Theorem
[3] apply to functionsb(t)xn whenn is the quotient of odd positive integers.
Thus, for the sake of simplicity we consider the the scalar Volterra integro-differential equation

(2.28) x′(t) = −h(t)x(t)− b(t)x1/3(t) +

∫ t

0

C(at− s)x(s)ds, t ≥ 0.

In the next theorem, by displaying a suitable Lyaponuv function and by making use of the
results of Theorem 2.1, we show that the zero solution of (2.28) is uniformly exponentially
asymptotically stable, where the condition (2.25) is not required. On the other hand, to arrive at
our result, which gives a stronger type of stability, we will have to strengthen condition (2.26)
and require that the functionb(t) decays exponentially. The exponential decay ofb(t) should be
of no surprise to anyone since we are trying to make all solutions decay exponentially to zero.
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Theorem 2.10.Assume(2.24)and (2.27)hold. If for constantsδ, k > 1, the inequalities

(2.29) − 2h(t) +
4|b(t)|

3
+ [1 + (k/a)]

∫ ∞

(a−1)t

|C(v)|dv ≤ −1,

(2.30) (−1 + k)

∫ t

0

|C(at− s)|ds ≥ (k/a)

∫ ∞

(a−1)t

|C(v)|dv,

and

(2.31) |b(t)| ≤ e−δt

hold, then the zero solution of(2.28)is uniformly exponentially asymptotically stable.

Proof. Let x(t) be any solution of (2.28) withx(t) = φ(t) for 0 ≤ t ≤ t0, whereφ(t) is a
given continuous and bounded initial function.
Consider the Lyapunov functional

V (t, x(·)) = x2(t) +
k

a

∫ t

0

∫ ∞

at−s

|C(u)|dux2(s))ds.

Then along the solutions of (2.28) we have

V ′(t, x(·)) ≤ −2h(t)x2(t) + 2|b(t)|x4/3(t) + 2|x(t)|
∫ t

0

|C(at− s)||x(s)|ds

+
k

a

∫ ∞

(a−1)t

|C(v)|dvx2(t)− k

∫ t

0

|C(at− s)|x2(s)ds.

By noticing that

2|x(t)|
∫ t

0

|C(at− s)||x(s)|ds ≤
∫ t

0

|C(at− s)|(x2(t) + x2(s)ds,

and using Young’s inequality withf = 3 ande = 3/2 we arrive at

2|b(t)|x4/3(t) = 2|b(t)|1/3|b(t)|2/3x4/3(t)

≤ 2|b(t)|
3

+
4|b(t)|

3
x2(t).

Using these results we find that the bound forV ′(t, x(·)) reduces to

V ′(t, x(·)) ≤
[
− 2h(t) +

4|b(t)|
3

+ [1 + (k/a)]

∫ ∞

(a−1)t

|C(v)|dv
]
x2(t)

− (−1 + k)

∫ t

0

|C(at− s)||x2(s)|ds +
2

3
|b(t)|

≤ −x2(t)−
∫ t

0

(−1 + k)|C(at− s)||x2(s)|ds +
2

3
|b(t)|.

It is easy to verify that all the conditions of Theorem 2.1 are satisfied forL = 4
3
, M = 1, W2 =

W4 = x2(t), W3 = W5 = x2(s), λ1 = λ2 = λ3 = 1, ϕ1(t, s) = (k/a)
∫∞

at−s
|C(u)|du, ϕ2(t, s) =

(−1 + k)|C(at− s)|, andγ = 0.
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