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2 YOUSSEFN. RAFFOUL

1. INTRODUCTION

Consider the Volterra integro-differential equation

(1.2) T (t) = Ax(t) +/0 B(t, s)f(x(s))ds,

wherex : [0,f] — D and D be a set inR" that includes the origin. Suppose there exist a
continuously differentiable Lyapunov functiondl : R™ x D — R*, whereR™ is the set of
non-negative real numbers, that satisfies

(1.2) Wi(lz]) < V(¢ 2()) < Wa(lz]) +/0 @1 (t, s)Ws(|z(s)])ds
and
(1.3) Vit z(1) < —n@)V(t,x() + F(t)

Here the functior¥ : [0, ¢] — R™ is continuous andV; : [0,00) — [0, c0) are continuous in:
with W;(0) = 0, W;(s) > 0if s > 0 andW; is strictly increasing. Such a functidi; is called
a wedge. (In this paper wedges are always denoted by W, pwherei is a positive integer).
The functionn is continuous and non-negative. lgt> 0, then for each continuous function
¢ :[0,ty] — R™, there is at least one continuous functidm) = x=(t, to, ¢) on an intervalty, I]
satisfying [1.1) fort, < ¢ < I and such that(t, ¢y, ) = ¢(t) for 0 < t < t,. From [1.3) one
obtains the variational of parameters formula

(1.4) Vi(t,z(-)) < [V(to, ¢ /|F )|exp / (u)du)ds}exp (—/ttn(s)ds).

Now, if W, = ||z||P, for some positive constapt where|| - || is the Euclidean norm, then by

(1.2) and[(1.B) we arrive at
1/p t
@) lall < [Vito.0 /m mp/<wwﬂ con (= [ a()ds)

to
Thus, if
t s
F(s)eap ([ nluduyds < .
to to
for some positive constarit’, then [1.5) yields that the zero solution pf (1.1) is exponentially
asymptotically stable, provided thﬁf s)ds — oo, ast — oo. The variational of parameters
formula (1.4) was easily obtained froE(]l 3). However, finding a Lyapunov functidrslch
that (1.3) is satisfied is extremely difficult. The purpose of this paper is to present a systematic
approach to the construction of such a Lyapunov functional.

2. EXPONENTIAL ASYMPTOTIC STABILITY

In this paper we present six theorems and two propositions that provide an easy way of
constructing Lyapunov functionals that meet conditipon](1.3), which in returns the exponen-
tial asymptotic stability of functional differential equations can be deduced. We make use of
non-negative definite Lyapunov functionals and obtain sufficient conditions that guarantee the
exponential asymptotic stability of the zero solution of the system of functional differential
equations

(2.1) r'(t) = G(t,z(s); 0 <s < t) G( z(+))

wherex € R", G : R x R®" — R" is a given nonlinear continuous functionfirmndz with
G(t,0) = 0. Letty, > 0, then for each continuous functign: [0, ¢)] — R", there is at least one
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continuous functiorx(t) = z(t, to, ¢) on an intervalt, ] satisfying (2.1) fort, < t < [ and

such thate(t, ¢y, ¢) = ¢(t) for 0 < ¢t < t,. It is assumed that at= ty, 2'(¢) is the right hand
derivative ofz(t). For conditions ensuring existence, uniqueness and continuability of solutions
of (2.7) we refer the reader tol[6] ard [12] .

In [11]], the author studied the boundedness of solutions of systems of differential equations. On
the other hand, the author, in [12] studied the boundedness of solutidns]of (2.1) by making use
of non-negative definite Lyapunov functionals.

A stereotype of equation (2.1) is equatidon [1.1). We apply our results to Volterra integro-
differential equations of the forni (1.1) with(z) = =™, wheren is positive and rational. At

the end of the paper we will compare our theorems to those obtained in [13] and show that our
results are different when it comes to applications. For more on the boundedness and stability
of solutions of [(1.]L), we refer the interested reader to [4], [5], [7], (8] [14], [9] and [10].

From this point forward, if a function is written without its argument, then the argument is as-
sumed to be. Let¢ : [0,%,] — R be continuous, we define| = sup{||¢(s)|| : 0 < s < t,}.
Next, we state the following definition.

Definition 1. We say that the zero solution of syst@hi])is exponentially asymptotically stable
if for a positive constand/, any solutionz(¢, ¢y, ¢) of (2.1) satisfies

(t, 0, 0)[| < C (160 )™, forall £ > t,

WhereC(|<b|,t0 is a constant that depends ¢¢| and ¢, and ¢ is a given continuous and

bounded initial function. We say that solutions of syst@m) are uniformly exponentially
asymptotically stable i’ is independent af,.

If z(¢) is any solution of systenj (3.1), then for a continuously differentiable function
V: Rt xR" — R,
we define the derivative” of V' by

V’(t, z(-) = w T Z %:j())(;l@?m)

Theorem 2.1.Let D be a set inR™ containing the origin. Suppose there exist a continuously
differentiable Lyapunov functional : R* x D — R that satisfies

(2.2) Mllz[|P <Vt z(+) < AWa(lz]) + A2/0 p1(t, s)Ws(|z(s)|)ds
and
(2.3) V(i 2(4) < =A3Way(|z|) — )\3/0 0o (t, s)Ws(|z(s)|)ds + Le™®

for some positive constants;, Ay, A3, d and L. The functionsp, (¢, s) > 0 are scalar-valued
and continuous fob < s <t < oo,i = 1, 2. If the inequality

@4y Walla) = Willa) + [ (it 9Walla(e)) = palt 9Willa(s)) ) s < 7™

holds for some positive and f(f ©,(t,s)ds < B for some positive consta, then the zero
solution of (2.1) is uniformly exponentially asymptotically stable.
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Proof. Let0 < M = X\3/)\s < 4. For any initial timet, > 0, let z(¢) be any solution of (Z2]1)
with x(t) = ¢(¢), for 0 <t < to. Then,

%(V(t,x(-))eM(t_t°)> = [V/(t,2()) + MV (2, 2())| M0,

Forz(t) € R, using [2.2) we get
t

%(V(t,x(-))eM(t—to)) < [—/\3W4(|x|) —/\3/O 0, (t, $)Ws(|z(s)|)ds + Le ™

+ MXMWs(|z|) +M)\2/0 @1(157S)W3(|x<s)|)d8]61\/1(t_to)
= A [W2(|$D — Wy(Jz|) + Le %

/Ot ((,01(75, s)Ws(|z(s)|) — @q(t, S)W5(|x(8)|))d8i| oM (t—to)

()\3,7 + L>6—6t6M(t—to)
—0(t—to) ,M(t—to)
(A3y+ L)e e

ININ +

(2.5)

Integrating [(2.b) front, to ¢ we obtain,
MY+ L sty _ Ay L
M -9 M-
/\3”}/ + L
b—M

V(t,x(-)eM) < Vitg, ¢) +

< V(t()? ¢) +

Consequently,

Vita() < (Vo) + 252 )eMem,

From condition|[(Z.R) we havg, ||z||P < V (¢, z(-)), which implies that

lall < {5177 (GaWallo)

)\3”)/+L

1

P M)

e , forall ¢t > t,.
5—M> ’ =10

AaTTa(16) / " ot s)ds +

Remark 2.1. Condition [2.4) can be easily satisfiedlif, = W, W3 = W5 and with the
appropriate growth condition on the functiopsand,, as the next proposition shows.

Proposition 2.2. For 1 < ¢ and a bounded continuous given initial functignconsider the
scalar nonlinear Volterra integro-differential equation

t
(2.6) ¥ =o(t)x(t) + e‘ét/ B(t,s)z*3(s)ds, t >0,
0
with z(t) = ¢(t) for 0 <t <. If
t

t
za(t)+e—5t/ Bt s)|ds+/ e~ Bu, 1) du < —1,
0
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// ~%U B(u, s)|duds, /|Bts|ds<oo

—dt B
e T
t

then the zero solution gf.§)is uniformly exponentially asymptotically stable.

and

Proof. To see this we let

t 00
V(t,x(-) = 2° + / / e~ B(u, s)|duz?(s)ds
0 Jt
Then along solutions of (2.5) we have

V't,z(-) = 2xx’+/tooe_5“|B(u,t)|x2(t)du—/0 e Y B(t, s)|2%(s)ds

< 20(t)a? + 20 /0 B(t, )| [2(8)22*(s)ds

+/tooe_5“\B(u,t)|a:2(t)du—/0 e B(t, s)|z%(s)ds

Using the fact thatb < a?/2 + b?/2, the above inequality simplifies to

V'(t,z(-) < 20(t):132+e_5t/0 |B(t, s)|(z2(t) + 2*3(s))ds

+ /t e~ Bu, t)|22(t)du — /O e B(t, 5)|22(s)ds
2.7)

To further simplify [2.7) we make use of Young’s inequality, which says for any two nonnegative
real numbersv andz, we have

we 2t .
wz§—+7, with 1/e+1/f = 1.
e

Thus, fore = 3/2 and f = 3, we get
t t
[ 1Bl s)ds = [ B(es) B )P s
0 0
t
|B(t,s)] | 2 2
< =L 2B
< /0 ( 3 —|—3\ (t,s)|x (s))ds
By substituting the above inequality info (R.6), we arrive at
t o]
Vito() < (200)+e™ [ |Bolds+ [ e IButdn)
0 t
t —it t
—e_&/ (\B(t,s)\—g\B(t,s)|)x2(s)ds+e—/ |B(t, )|ds
0 3 0
—ot
S —$2(t)—/ ‘B;(t $)| 2( )d +L6_5t,
0

whereL = L [/ yB (t,s)|ds. By taking W, = W, = 22(t), W5 = W5 = 22(s), Ay = Ay =
A3 =1landg, (t,s) = [~ e B(u, s)|du, ¢y(t,s) = w, we see that conditiong (2.2)
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and [2.B) of Theorern 2.1 are satisfied with = 1. It remains to show that conditiof (2.4)
. —dt 00
holds. Sincg—2&3) > [ ¢=0u| B(y, 5)|du we have that

Wal(jal) — Walla]) + / (1(t. )Wal(5)]) = alt, ) Ws(|(s)]) ) ds

= 2(t) — 2*(t) + /Ot (/too e B(u, s)|du — w>x4(s)ds

_ /Ot (/too =0 B(u, 5)|du — %)x‘*(s)ds <0.

Thus, condition[(2}4) is satisfied for = 0. By Theoren| 21, the zero solution ¢f (2.6) is
uniformly exponentially asymptotically stablg.

Note that, if we takeB(t, s) = 1, o(t) = < +WA<T) then the first two conditions of
Proposition 2.p are satisfied. Also, by takifig- 3, the condition

— B(t >
€ | 3( 75>’ Z/ 6_6U|B(u, s)|du,
t

is satisfied. Thus, we have shown that that the zero solution of

. 1 —t 1 —it t
4= ( +te™ " + ( /5)6 )l'(t) +/ 6_6t$2/3(8)d8, t> 07
0

2
is uniformly exponentially asymptotically stable.

In the next theorem we show that the zero solution is exponentially asymptotically stable.

Theorem 2.3.Let D be a set inR™ containing the origin. Suppose that for positive constants
L,p andé, there exist a continuously differentiable Lyapunov funclionR* x D — R that
satisfies

28)  M@Iz[[F <Vt () < Ao (O)Ws(|2]) + A2(t)/0 p1(t, s)Ws(lx(s)|)ds

and
(2.9) VIt x(-) < =As(®)Wa(lz]) - Aa@)/@ o(t, s)Ws (| (s)|)ds + Le™*"

for some positive continuous functioRs(t), Ao(t), and A3(¢), where\(¢) is nondecreasing
andy;(t,s) > 0 is a scalar-valued function which is continuous fox s <t < 00,1 = 1, 2,.
If the inequality

(220)  Wallal) ~ Wi(lel) + / (010t )Wale(5)]) = alt, s)Ws(|a(s)]) ) ds < 7e ™

holds for some positive constant fot ©1(t,s)ds < B and \y(t) < N for some positive con-
stantsB and N for all ¢ > 0, then the zero solution o2.1) is uniformly exponentially asymp-
totically stable.

Proof. Let

M = inf As(t) < 9.
teR+ Ao (t)
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For any initial timet,, letz(¢) be any solution of (2]1) with:(t,) = ¢(to). Then,

GVt ) < [=xaOWilel) = dat) [ ealtWallal)ds + Le™

+ M)\g(t)WQ(|x|)+M/\2(t)/o o, (t, s)Wa(|z(s)|)ds|eM 10,

But izgg > M, which implies that—\;(t) < —M Xy(¢), and hence the above inequality be-

comes after invokind (2.11),

%@@@WMHﬂzgPMﬂK—MWﬂjK%@ﬂ%W®WS

t
0
< (MN~ + L)eM-9)t=to),
An integration of the above inequality froty to ¢ yields,

Vit () < <v(t0,¢)+%>e_mtﬁo).

Since), () is nondecreasing we have for ¢, > 0 that\,(t) > X\ (#).Thus, by[(2.P) we have
A (®)]]x] [P < V (¢, 2(-)), which implies that

1 Ol W)

Ai(to)
v MNy+ LNy s

—i—)\z(to)Ws(’(ﬁ’)/ 901@0,5)618—1-#) e~ (1)
0 —

(2.11) lzl] < A

forall t > ty. 1
The next theorem is a special case of Thedrer 2.3.

Theorem 2.4. Suppose the hypothesis of Theofenj 2.3 hold except the condijtisnnon-
decreasing is replaced by

there exists a positive constamt< M such that\, (t) > e Vt >t > 0,
then the zero solution gf.7)is uniformly exponentially asymptotically stable.
Proof. The proof is nearly identical to the proof of Theorém|2.3. It follows from inequality
(2.11) that
1
212) ol < {5717 (Ralto)Wallo])

A1 (t)
+)\2(t0)W3(|¢|> /0 0 gOl(t(), S)ds —+ %) 56—%(t—t0)
< (Malt)Wa(lg)

Wit [ MNy+ LN oo,
+Xa(to) 3(|¢|)/ wl(to,s)ds+#> o~ 5 (t=to)
0 —

forall ¢t > ty. 1

Theorem 2.5. If the condition\,(t) < N,Vt > 0 for some positive constat does not hold
andvy = 0 in (2.4) and (2.11) then either Theorern 2.4 or Theor¢m]|2.5 implies that the zero
solution of (2.1)) is exponentially asymptotically stable.

AIJMAA Vol. 4, No. 2, Art. 9, pp. 1-13, 2007 AJMAA


http://ajmaa.org

8 YOUSSEFN. RAFFOUL

Proof. The proof is easily deduced from eithér (4.11)[or (2.12). To see this, inequality (2.12)
with v = 0 implies that

P (o) Wa(l¢)

|||

<
- {>\1( to)
ot )W(|¢|)/t0 (t,5)ds + ) =0
2\to 3 0 ¥1 (o, S— M )

forall t > t,. The same is true if we considér (2/11).

As an application of the previous Theorem, we furnish the following proposition.

Proposition 2.6. Supposel < § = k; + k, for positive constantg, k; with k;, < 1. For
a given bounded continuous initial functign consider the scalar nonlinear Volterra integro-
differential equation

(2.13) a' = o(t)x(t) +e ™! /t B(t,s)x*3(s)ds, t >0,
0

with z(t) = ¢(t) for 0 <t <. If

t o0
20(t) — ko +/ |B(t, s)|ds +/ |B(u,t)|du < —1,
0 ¢

t o0 t
/ / |B(u, s)|duds, / |B(t,s)|ds < oo,
0 Ji 0

B, 5)] > /tOO|B(u, s)|du

and

3 2
then the zero solution g2.13)is uniformly exponentially asymptotically stable.

Proof. Let
V(tx())—e’@f - +// us\dux()ds).

Then along solutions of (Z-13) we have after using the inequality a*/2 + v /2,
Vit z() < (20(t) - ky)a? / / (u, 3)|duz®(s)ds

+2€—(k1+k2)t/ |B " S)||ZE( )|ZE2/3( )d8+€_k2t/ |B(U,t>|x2(t)du
t

k2t/|Bt5|x
(20(t) — ko) 2*( // B(u, s)|dux®(s)ds

Lo thatha / IB(t, s)|dsa(t) + ¢+ / IB(t, )| (s)ds
0

+e‘k2t/ |B(u,t)|z*(t)du — _th/ |B(t, s)|z*(s
¢

IA
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By using Young’s inequality we arrive at

t t
e(’“””)t/ |B(t, s)|z"?(s)ds = e('“””)t/ |B(t,s)['?|B(t, s)|**2%/3(s)ds
0 0

L 7|B(t,s)] 2
< o~ (khitk2)t ’—’ 2 2
< e /0 < 3 + 3|B(z€, s)|x (s))ds

Substituting the above inequality into the inequality satisfied’bywe arrive at

Vit z(r) < <2a(t) — ko + /t |B(t, s)|ds + /too |B(u,t)]du) k2t (1)

/\Bts|2

Bt
< — ) —k‘zt/ (35)’ 2( )ds+Le_(k1+k2)t,
0

whereL = L [7|B(t,s)|ds. By taking Wy, = W, = 2%(t), Wy = W5 = 2%(s), (1) =
Xo(t) = Ng(t) = et andp, (t,5) = [ |B(u, s)|du, py(t,s) = 2L we see that condi-

tions (2.8), [(2.P)[(2.70) df 2|4 are satisfied with = 1 and~ = 0. If we takek, < M, then
the hypothesis of Theorem 2.3 is satisfied witk %k, and hence the zero solution §f (2.13) is
uniformly exponentially asymptotically stablg.

Theorem 2.7. AssumeD C R" contains the origin and there exists a type | Lyapunov function
V : D — [0,00) such that for all(¢, z) € [0, 00) x D:

(2.14) M|zl < V(z),

(2.15) V(t,z) < =XV (z) 4+ Le™®;

whereA;, A3, p,6 > 0, L > 0 are constants and < ¢ < min{\s,d}. Then the trivial solution
of (2.1)is uniformly exponentially asymptotically stable.

Proof. For any initial timet,, let z(¢) be any solution of (2]1) i with x(t,) = ¢(to). Define
e such that) < ¢ < min{\s,d}. Then,

%(V(t,x(-))est> = V(tz(t)et + eV (a(t))e,

< (= MV() + L7+ 2V(2())e, by (@I5).
= eV(a(t) — AV (x(t) + Le™™]

S Le(&‘—(s)t'
Integrating both sides of the above inequality freyo ¢ we obtain
L L
et < eto (6—5)t _ (E—5)t0
V(z(t))e™ < V(p)e™ + ¢ ¢
L
< eto (Efa)to
>~ V(t0,¢>€ + 5 — 86
L
< eto
>~ (V(t07¢)+5_8>e .
Dividing both sides of the above inequality by yields
< *E(tfto).
V) < (Viteo)+5=—)e

AIJMAA Vol. 4, No. 2, Art. 9, pp. 1-13, 2007 AJMAA


http://ajmaa.org

10 YOUSSEFN. RAFFOUL

The proof is completed by invoking conditign (2} 14).

Proposition 2.8. To illustrate the application of Theoregm 2.7, for a bounded continuous given
initial function ¢, we consider the scalar nonlinear Volterra integro-differential equation

(2.16) 2'(t) = o(t) z(t) —I—/ B(t,s) f(s,z(s))ds + g(t, z(t))

0
with z(t) = ¢(t) for 0 <t < ty, whereo(t) is continuous fot > 0 and B(t, s) is continuous
for0 < s <t < co. We assumé(t, z(t)) andg(t, z(t)) are continuous inc and¢ and satisfy
(2.17) lg(t,x(1))] < B(1) (1),
and
(2.18) [F(&z(8)] <A (@) ()],

wherey(t) and5(t) are positive and bounded. Suppose there exist constast$ andA; > 0
such that

(2.19) o(t) + % + k:/too |B(u, t)|duy(t) < —X3 <0

and letk = 1 + ¢ for somee > 0 and suppose

(2.20) B(t,s)| > A/too |B(u, s)|du

kA
whereh > 222 >0, 0< s <t < u < 0o, and
€

(2.21) / / (u, s)|duy(s)ds < p < oo forallty > 0.

Then all solutions of2.16)are uniformly exponentially asymptotically stable.

Proof. Define

(2.22) Vit,e()) = la(t)] + k / [ 1B sl s ) s
Using [Z-I7)4(Z:20), along the solutions B (2.16) we have,
Vitat) = ok a0k [ 1Bl — k[ 1B )G ols)lds
< o))+ [ 1Bl6. )| F(ssa5)lds + ot 2(0)
+h [ 1B olaul e -k [ Bt )55, 2()lds
<

[a(t) + 1 + k:/oo |B(u,t)]du7(t)} |z (t)|

27",
=) [ 1Bl a(sDlds + 5

AJMAA Vol. 4, No. 2, Art. 9, pp. 1-13, 2007 AJMAA
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F)

< el = [ 1B (s, a(s)lds + 25

)

IA

sl |_6/\/ / (u, s)|dulf (s, z(s))|ds + 2(

< Xt \+k/ / (u, )| dul f (s, 2(5))|ds] + 52“)

= V() + 20

If 5%(t) < e~% for positive constan®, then by takingh\; = 1, p = 1 andL = 1/2, the
hypothesis of Theorefn 2.7 is satisfied and the proof is concluded.

We end this paper by discussing how our theorems fair against some of the results in the liter-
ature. In particular, Burton and Somolinos [3] considered the scalar Volterra integro-differential
equation

(2.23) () = —h(t)z(t) / Clat — s)x(s)ds, t > 0
whereh(t), b(t) andC'(at — s) are continuous on their respective domains. They obtained con-
ditions that guaranteed the uniform asymptotic stability of the zero solutign of (2.23)for

and only asymptotic stability fob < a < 1. They had to assume thaft) > by > 0,Vt > 0
for some positive constahg. For the sake of completeness we state one of their major theorems.

Theorem 2.9.[3] Assume

(2.24) C € L'0,00),a > 1,h(t) >0

(2.25) b(t) > by > 0,

(2.26) 2h(t) = 1+ (1/a)) [ ICG)d
(a—1)t

and

(2.27) /t |C(u)|du € L]0, 00),

then the zero solution g2.23)is uniformly asymptotically stable.

On page 5 ofl[3], the authors made the assertion that their results and in particular, Theorem
[3] apply to functiond(t)z™ whenn is the quotient of odd positive integers.
Thus, for the sake of simplicity we consider the the scalar Volterra integro-differential equation

(2.28) o' (t) = —h(t)x(t) — b(t)z'3(t) + /Ot C(at — s)x(s)ds, t > 0.

In the next theorem, by displaying a suitable Lyaponuv function and by making use of the
results of Theorer 2.1, we show that the zero solutiorj of {2.28) is uniformly exponentially
asymptotically stable, where the conditipn (2.25) is not required. On the other hand, to arrive at
our result, which gives a stronger type of stability, we will have to strengthen condition (2.26)
and require that the functidirit) decays exponentially. The exponential decay(of should be

of no surprise to anyone since we are trying to make all solutions decay exponentially to zero.
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Theorem 2.10.AssuméZ.24)and (2.27)hold. If for constant$, £ > 1, the inequalities

(2.29) —zh(t)+@+[1+(1€/a>]/m C()|dv < —1,
(a—1)t

2.30 -1+ k C(at — s)|ds > (k/a h C(v)|dwv,

(230) 1ok [ 10t —sds 2 Gy [ 100

and

(2.31) b(t)] < e

hold, then the zero solution @2.28)is uniformly exponentially asymptotically stable.

Proof. Let z(¢) be any solution of( (2.28) witk(t) = ¢(t) for 0 <t < to, whereg(t) is a
given continuous and bounded initial function.
Consider the Lyapunov functional

V(t,z(-)) // u)|dux®(s))ds.

Then along the solutions df (2]28) we have

VI(ta(-) < —2h(t)2*(t) + 2|b(t)|*2(t) + 2/ (t)] /t |Clat = s)[[z(s)]ds

k_ o0
+—/ |C (v)|dva?(t / |C(at — s)|x*(s)ds
a J(a—1)t

(1)) / Clat — s)|(s)|ds < / Clat — )| (£2(t) + 22(s)ds,

By noticing that

and using Young's inequality witli = 3 ande = 3/2 we arrive at

20b(t)]a"2(t) = 20b()]V*[b()]7 P (2)

2b(t) | 4b(®)] o
< 3 + 3 x=(t).

Using these results we find that the boundfd(t, z(-)) reduces to

V(tz() < [—2h(t>+@+u+(k/an/(:m|0(v>1dv]x2(t>

- (—1+k)/0 ]C(at—s)||x2(s)|ds+;]b(tﬂ

t
2
< —2(t) — / (=1 +k)|C(at — s)||2*(s)|ds + g’b(t)’
0
It is easy to verify that all the conditions of Theor2 1 are satisfiealfﬁr— M=1W;=

Wy =a2(t), Wy =Ws =2%(s), i =X = X\3 = Lpy(t,8) = (k/a) [, s’C( u)du, @y(t,s) =
(=14 k)|C(at — s)|,andy = 0. &
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