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ABSTRACT. A mathematical model of HIV/AIDS is governed by a system of ordinary differen-
tial equations in the presence of an antiretroviral treatment (ARV). The theory of optimal control
is applied to an epidemic model of HIV/AIDS which an ARV is used as a control strategy in
order to prevent the spread of HIV/AIDS. The optimality system is derived by applying the
Pontryagin’s Minimum Principle. We analyze the boundedness and positivity of solutions, and
an existence of the optimal control. Numerical simulations are conducted to obtain numerical
solution of the optimally system.
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1. INTRODUCTION

AIDS is one of the infectious diseases caused by the human immunodeficiency virus (HIV),
which suppresses the T cells of the immune system in the body. T cells have important ability
to attack infections. Recently, HIV / AIDS has spread rapidly in Indonesia and has become a
big problem. According to [3], there are640.443 HIV-infected individual in Indonesia.

Mathematical models contribute significantly to understanding HIV-infected behavior. In
2009, the dynamical analysis of HIV / AIDS epidemic models along with treatment had studied
[5]. The population was divided into four compartments: susceptible (S), HIV infection (I),
AIDS (A), and symptomatic (J). In 2014, the study developed by studying dynamical analysis
of HIV / AIDS epidemic models with density dependence of incidence, which is a function
of the total population. In 2016, an HIV / AIDS epidemic model treated as a SIATR model
constructed and analyzed the dynamically. As a result, the endemic occurred since the basic
reproduction numberR0 > 1 [2]. This means that efforts to treat individuals infected with HIV
have not been effective. Therefore, it is important to apply optimal control analysis to minimize
the HIV-infected subpopulation and the cost related to the application of control strategy. In
2015, mathematical models that represent the nonlinear dynamics of immune tumors investi-
gated [9]. They used the boundedness of the solution to derive the existence and uniqueness
of optimal controls, and demonstrated numerical simulations. In 2018, optimal control theory
applied to HIV/AIDS model with two control strategies, ARV and highly active antiretroviral
therapy (HAART) [6]. Unfortunately, they did not analyze the boundedness and positivity of
the solutions. In the analysis control optimal, prove the existence of optimal control is important
part that guarantees the global minimum value of the system.

In this research we study optimal control analysis including proof of the boundedness and
positivity of solutions, and an existence of the optimal control using the model in [2], which
is by changing the constant value of the rate of infected individual received treatment to be a
control variable as function of time. The control strategy in this problem is an ARV that is used
as control strategy in order to minimize HIV/AIDS infection individual and the cost related
to the treatment. An optimal control problem is solve by the Minimum-Pontryagin Principle.
Numerical simulation is applied by the method of sweep backward and forward.

2. OPTIMAL CONTROL FORMULATION

In this section we introduce the HIV/AIDS epidemic model with treatment modified from the
model [2], with an antiretroviral (ARV) treatment as a control variable depends on time. The
HIV/AIDS epidemic model is

Ṡ = Λ− βIS − µ1S − dS,

İ = βIS + α1T − dI − k1I − u(t)I,

Ȧ = k1I − (δ1 + d) A + α2T,(2.1)

Ṫ = u(t)I − α1T − (d + δ2 + α2) T,

Ṙ = µ1S − dR,

whereS(t) is the number of susceptible patients,I(t) is the number of HIV-positive individuals
in the stage of HIV infection,A(t) is the number of individuals with full-blown AIDS but
not receiving ARV,T (t) is the number of individuals being treated andR(t) is the number of
individuals who have changed their sexual habits sufficiently [2].

The following parameters are represented as following.Λ is recruitment rate,d is the natural
death rate,β is the contact rate between the susceptible and infected populations,k1 is the rate at
individuals leave the infection class and become with full-blown AIDS, that is proportion of the

AJMAA, Vol. 17 (2020), No. 2, Art. 16, 11 pp. AJMAA

https://ajmaa.org


OPTIMAL CONTROL ANALYSIS OF HIV/AIDS EPIDEMIC MODEL 3

I becoming with full-blown AIDS,δ1 andδ2 are the disease-induced dead rate for individuals
in compartmentsA(t) andT (t). u(t) is the control variable that shows the rate of individuals
with HIV receive treatment. The spread of HIV/AIDS disease can be controlled by giving the
ARV to the individuals with HIV in order to minimize the number of individual with HIV to be
AIDS. The treatment for population with HIV infection is expressed asu(t). This research is
proposed to minimize the population with HIV infection, full-blown AIDS and the cost related
to the implementation of control strategy. The functional objective is

(2.2) J(u(t)) =

∫ tf

0

(
wu2(t) + I(t) + A(t)

)
dt,

wherew represents weight of an ARV. We determine optimal controlu(t)∗ such that

(2.3) J(u∗(t)) = min{J(u(t)) : u(t) ∈ U},

with a set of a control functionU as following

(2.4) U = {u(t) : 0 ≤ u(t) ≤ 1, t ∈ [0, tf ]} ,

wheret is time andtf represents the final time for the control strategy of HIV/AIDS.
We analyze an optimal control problem by following the approach in [10] and [8] which

is the boundedness and positivity of solutions, and an existence of the optimally system for
the optimal control of HIV/AIDS model were derived in tumor model. It makes sense when we
apply that steps into HIV/AIDS model to prove the boundedness and positivity of solutions, and
an existence of the optimal control. The first is we analyze the boundedness of the solutions.

Boundedness of Solutions.To analyze the boundedness of the solution we should determine
the upper bounds of the solutions are called the super solutions. We agree that the super solu-
tions of the system are

˙̄S = Λ,
˙̄I = βIS + α1T,
˙̄A = k1I + α2T,(2.5)

˙̄T = u(t)I,

˙̄R = µ1S,

which are bounded on a finite time interval, and the sub-solutions are zero. Equation (2.5)
shows the boundedness of the system. Furthermore we establish the positivity of the solutions.

Positivity of Solutions. Our goal is to investigate the subpopulations of HIV/AIDS infection.
It is reasonable to set non-negative value for all the variables and parameters of the model (2.1).
The system of equation (2.1) has initial conditionS(0) ≥ 0, I(0) ≥ 0, A(0) ≥ 0, T (0) ≥ 0 and
R(0) ≥ 0. Domain of the system of equation (2.1) isD =

{
(S, I, A, T, R) ∈ <5

+

}
.

The system of equation (2.1) is well-posed such that solutions with nonnegative initial con-
ditions remain nonnegative for all0 < t < ∞ is shown by the following theorem. It makes the
variable of the system, biologically meaningful.

Theorem 2.1.The regionD ⊂ <5
+ is positively invariant with respect to the system of equation

(2.1 and non-negative solution exists for all time0 < t < ∞.
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Proof. Let D ⊂ <5
+ with D =

{
(S, I, A, T, R) ∈ <5

+ : R 6 Λ/c1

}
, then the solutions of

S(t), I(t), A(t), T (t), R(t) of system (2.1) are positive∀t > 0. For example, we choose and
solve the susceptible variable with linear term of the system (2.1) that is

(2.6) Ṡ 6 Λ− (µ1 − d)S = Λ− lS,

with l = µ1 + d. By solving 2.6, we yield

(2.7) S 6
Λ

l
+ je−lt,

we taket → ∞ to give S 6 Λ
l
. HenceS(t) > 0,∀t > 0. Again we can showI(t) > 0,

A(t) > 0, T (t) > 0 andR(t) > 0, ∀t > 0.

Existence of Optimally System.

Theorem 2.2.Given the functional objective in (2.2). There exist an optimal controlu(t)∗ ∈ U
such that equation (2.2 is satisfied if the following conditions are hold

(1) The control setU and the state variables (I(t), A(t), T (t) andR(t)), are not empty.
(2) The control setU is convex and closed.
(3) The right hand side of the state system ( 2.1) is bounded above by linear function in the

form state and control variables.
(4) The integrand of the functional objective in (2.2) is convex onU and bounded below by

−w2 + w1u
2 with w1, w2 > 0.

Proof. We prove each condition following:

(1) By applying Theorem (1), the system (2.1) has bounded coefficients and the solutions
on the finite time interval0 < t < ∞. To show the existence of the solution of the
system (2.1), we can apply the result of [7].

(2) The control set U is closed and convex by definition.
(3) The right hand side of the system (2.1) must be continuous. The denominators of all

fractions of the right hand side of the system consists solely of positive entities. We let
~G(t, ~x) be right hand side of the system (2.1) without control variable

(2.8) ~F (t, ~x) = ~G(t, ~x) +


Λ
0
0
uI
0

 ,

with ~x =
[
S I A T R

]T
. Using the boundedness of the solutions, we get

(2.9) |~F (t, ~x)| ≤

∣∣∣∣∣∣∣∣∣∣


0 0 0 0 0
β1 0 0 α1 0
0 k1 0 α2 0
0 0 0 0 0
ν 0 0 0 0




S
I
A
T
R


∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣


Λ
0
0
uI
0


∣∣∣∣∣∣∣∣∣∣
≤ w1(|~x|+ |u|),

wherew1 depends on the coefficients of the system. Therefore, the right side of the state
equation is bounded above by a sum of the state and control variable.

(4) We will prove the integrand of the functionalJ is convex onU . FunctionalJ(u) is
convex when satisfies

(2.10) f(θu1 + (1− θ)u2) 6 θf(u1) + (1− θ)f(u2).
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for all u1, u2 ∈ [0, 1] [1], and for allθ ∈ [0, 1] with a given function

(2.11) f(u) = wu2 + I + A.

We will prove (2.10) as following. By simple algebra, the left hand side of (2.10) can
be written as

(2.12) f(θu1 + (1− θ)u2) = w(θu1 + (1− θ)u2)
2 + I + A,

and the right hand side of (2.10) can be written as

(2.13) θf(u1) + (1− θ)f(u2) = w(θu2
1 + (1− θ)u2

2) + I + A.

From equation (2.12) and (2.13), we compare the term(θu1 + (1− θ)u2) and(θu2
1 +

(1− θ)u2
2) to get inequality

(2.14) (θu1 + (1− θ)u2)
2 6 (θu2

1 + (1− θ)u2
2),

furthermore, by simple algebra we can write equation the left hand side of (2.14) as
following

(2.15) (θu1 + (1− θ)u2)
2 = (u1 − u2)θ)

2 + u2
2 − 2u2

2θ(1− u1/u2),

and the right side of (2.14) can be written as

(2.16) θu2
1 + (1− θ)u2

2 = θu2
1 + u2

2 − θu2
2,

by choosingθ ∈ [0, 1], u1, u2 ∈ [0, 1], we agree((u1 − u2)θ)
2 6 θu2

1 and obviously
−2u2

2θ(1− u1/u2) 6 (−θu2
2). Hence, we get

(θu1 + (1− θ)u2)
2 = (u1 − u2)θ)

2 + u2
2 − 2u2

2θ(1− u1/u2),(2.17)

6 θu2
1 + u2

2 − θu2
2,

= θu2
1 + (1− θ)u2

2.

From equation (2.17) we conclude the integrand of functionalJ is convex onU .
Furthermore, we prove the integrand of functionalJ is bounded. For example, there

is w1 > w, and rememberI andA bounded in the interval[0, 1] such that

(2.18) wū2 + I + A 6 wū2 + Imax + Amax,

whereImax andAmax depend on upper bound ofI andA. HenceU is in the interval
0 6 u 6 1. Sinceu2 = |u|2, we have

(2.19) wū2 + I + A 6 w|ū|2 + Imax + Amax,

if we takeM = w|ū|2 + Imax + Amax such that satisfiesw|ū|2 + Imax + Amax+ 6
M , which gives the integrand of functionalJ is bounded. Finally we have proved an
existence an optimal control of the system. It means we can find the global minimum
of optimal control that minimize the functional objective.

Optimally System. The boundedness and positivity of solutions, and an existence of the opti-
mally system have been proved. Furthermore the problem of optimal control can be solved by
applying the Minimum-Pontryagin Principle as necessary conditions for optimality system. We
introduce the state variablesS(t), I(t), A(t), T (t), andR(t); and define the adjoint variables
that correspond to the state variables areλ1(t), λ2(t), λ3(t), λ4(t) andλ5(t). Furthermore, we
introduce the Hamiltonian function as follows

(2.20) H = f +
5∑

i=1

λigi,
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whereλi andgi are the co-state or we call adjoint variables and the right hand side of equation
(2.1) respectively. Now, we have the Hamiltonian as follows

H = wu(t)2 + I + A + λ1 (Λ− βIS − λ1S − dS)

+λ2 (βIS+α1T − dI − k1I − u(t)I) + λ3 (k1I − (δ1 + d) A + α2T )(2.21)

+λ4 (u(t)I − α1T − (d + δ2 + α2) T ) + λ4 (µ1S − dR) .

The optimally system is obtained when the Hamiltonian function satisfies the following condi-
tions:

• State Equations

(2.22)
∂H

∂λi

= gi, i = 1, 2, 3, . . . ,

with the initial condition isS(0) ≥ 0, I(0) ≥ 0, A(0) ≥ 0, T (0) ≥ 0 andR(0) ≥ 0.
• Co-state Equations

(2.23)
dλi

dt
= −∂H

∂xi

, i = 1, 2, 3, . . . ,

such that we have

dλ1

dt
= −∂H

∂S
= (λ1 − λ2) βI + (λ1 − λ5) µ1 + λ1d,

dλ2

dt
= −∂H

∂I
= −1 + (λ1 − λ2) βS + (λ2 − λ3) k1 + (λ2 − λ4) u(t) + λ2d,

dλ3

dt
= −∂H

∂A
= −1 + λ3 (δ1 + d) ,(2.24)

dλ4

dt
= −∂H

∂T
= (λ4 − λ2) α1 + (λ4 − λ3) α2 + λ4 (d + δ2)

dλ5

dt
= −∂H

∂R
= λ5d,

with transversal condition isλ1(tf ) = λ2(tf ) = λ3(tf ) = λ4(tf ) = λ5(tf ) = 0 where
tf is the final time of the control.

• Stationer Condition

(2.25)
∂H

∂u
= 0,

such that we obtain characteristic equation as following

(2.26) u∗(t) =


0 for (λ2−λ4)I

2w
≤ 0,

(λ2−λ4)I
2w

for 0 ≤ (λ2−λ4)I
2w

≤ 1,

1 for (λ2−λ4)I
2w

≥ 1,

or we can write the optimal controlu(t)∗ as

(2.27) u∗(t) = min

{
max

{
0,

(λ2 − λ4) I

2w
, 1

}}
.
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3. NUMERICAL SIMULATION

Since our optimally system is in the form of the system of ordinary differential equation, it is
difficult to solve analytically. Numerical approximation is a good choice to solve the problem.
In [9] said the optimality system is a boundary value problem where we use the forward in time
to solve the state equation (2.1) with initial conditions and backward in time to solve the co-
state or adjoin system (2.22) and (2.23) with terminal or transversal conditions. Indeed, the state
system moves forward with time and the co-states move backward with time and we coupled
both situation in addition to controls which is a quite challenging problem. We solved the
optimality system numerically by using an iterative process with the fourth order Runge-Kutta
scheme. Following is the algorithm to obtain a control that optimally the system

• Step 1: We choose an initial guess for a controlu∗.
• Step 2: We solved the state system (1) by using a forward sweep loop with initial con-

ditions using an initial guess of the control.
• Step 3: After obtaining the solution for the state system, we use backward loop to solve

the co-states or adjoins system using transversal or terminal conditions.
• Step 4: We update a controlu∗ in each iteration by using the values of the optimality

system obtained in the previous iterations.
• Step 5: The procedure is continued iteratively till the convergence is achieved.

In order to obtain the entire procedure of what actually is occurring, the simulation of all-related
populated is observed before we give the ARV treatment and after it. Numerical simulations
will be illustrated by taking the set of parameter values from the article by [2] and we serve the
data in Table 3.1.

Parameter Value Parameter Value
Λ 0.55 δ1 0.0909
d 0.0196 δ2 0.0667
β 0.03 k1 0.15
α1 0.25 µ1 0.03
α2 0.01 c 0.0776

Table 3.1: Descriptions and parameters are from[2]

Figure 1 shows at initial period of a giving control strategy up to the sixth year, the maxi-
mum given optimal control is one. That at the seventh year, the given control strategy ARV
decreases slowly reaches to zero at the final time. It means the control strategy ARV at initial
time is given with the maximum control range because of the infected-HIV and full-blown HIV
(AIDS) subpopulations have the highest level virus, then decreases to zero at the final time when
the infected-HIV and full-blown HIV (AIDS) subpopulations show the good progress that the
symptom of HIV-AIDS does not appear. It is suitable with our analytical solution that a set of
optimal control is in equation (2.4) that isU = {u(t) : 0 ≤ u(t) ≤ 1, t ∈ [0, tf ]}. In the next
subsection we will show the behavior and interpretation of the system when we give the ARV
control strategy or not.

Furthermore when the control strategy in Figure 1 is given to the HIV-infection patient. The
simulation result can be seen in the following figures. Figure 2 (A) shows the change of sus-
ceptible with and without control depend on time. At the beginning susceptible subpopulation
without control decreases up to 0.63 at the fifth year. It is because of several factors for exam-
ple natural death, the susceptible subpopulation changes their sex habit hence can avoid from
HIV/AIDS risk, and susceptible subpopulation become infected subpopulation since they make
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Figure 1: Numerical simulation of control strategy using parameters in Table 3.1.

(A) S subpopulation (B) I subpopulation

Figure 2: Numerical simulation of susceptible and infected subpopulation with and without treatment using para-
meters in Table 3.1

a contact (sex, injection, etc.) with infected-HIV subpopulation. Furthermore the susceptible
subpopulation without control increases after the fifth year until stable. It is because of the
recruitment rate. When susceptible subpopulation is given the ARV control, the susceptible
subpopulation decreases at the beginning. However that decreasing appear up to the fifteenth-
year. Furthermore the susceptible subpopulation with control continuously increases up to 200
year.

When the susceptible subpopulation make a contact with HIV-infected subpopulation hence
the HIV-infected subpopulation without the ARV control strategy increases. Moreover the suc-
cessful of the treatment for the infected subpopulation increases the infected subpopulation.
The treatment process is successful when the infected subpopulation make a treatment and the
result is still infected subpopulation. And the other hand the process is fail when the infected
subpopulation become full-blown HIV (AIDS). Furthermore the infected subpopulation without
control decreases at the final time. It is because the infected subpopulation become full-blown
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(A) S subpopulation (B) I subpopulation

Figure 3: Numerical simulation of full-blown HIV (AIDS) and treatment subpopulations with and without treatment
using parameters in Table 3.1.

HIV (AIDS) and there is a natural death. When there is a risk of the change of the infected
subpopulation become full-blown HIV (AIDS), the ARV control will be given into the infected
subpopulation until the infected subpopulation with control decreases started from the first year
up to 200 year.

Figure 3 (A) explains the full-blown HIV (AIDS) subpopulation without control increases
starting from the first year up to seventh year. It is because the infected subpopulation becomes
full-blown HIV (AIDS) and there is the fail of the treatment on the HIV-infected subpopula-
tion. After the seventh years the full-blown HIV (AIDS) decreases because of the death factor,
such that full-blown HIV (AIDS) reaches 2.1582 at the final time. The consumption of ARV
treatment for HIV-infected subpopulation can make full-blown HIV (AIDS) decreases faster
than without giving treatment (control). It means the treatment for HIV-infected subpopulation
effectively decreases full-blown HIV (AIDS) in Figure 3 (A) because of giving treatment as in
Figure 1.

For the treatment subpopulation, we can analyze from Figure 3 (B). We see that the treatment
subpopulation decreases and reaches zero value. It means there is no HIV-infected subpopu-
lation doing the treatment process. If we give the treatment into HIV-infected subpopulation
then the treatment subpopulation increases since the first day giving the ARV. Or we can say
when the population of HIV-infection and full-blown HIV are treated with the ARV, it totally
changes all population into the treatment population. It is because there are successful and fail
of the treatment. Hence the treatment subpopulation decreases. The other hand death factor can
decrease treatment subpopulation at final time.

Figure 4 (A) tells us that recovered subpopulation without giving control decreases since the
first day of giving ARV. It means only a little the susceptible subpopulation have been changed
their sexual habit. It is different when we give the control into recovered subpopulation. The
control strategy on the recovered subpopulation increases since the 60th year up to 200th year.
Even thought at the initial time the recovered subpopulation with control decreases, the giving
control into HIV-infected subpopulation can increases recovered subpopulation.

The behavior of the solution in this research numerically similar as the solution given by [2].
The strength of our research is we can give the result the effectiveness of control strategy by
giving the ARV treatment into HIV/AIDS populations such that the cost is minimum.
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(A) R subpopulation (B) The cost related to control

Figure 4: (A) Numerical simulation of recovered subpopulations with and without treatment. (B) Numerical
simulation of the objective functionalJ(u∗(t)) in equation (2.3) as a cost function subject to the state system (2.1)
when the combined ARV treatment is administered by using parameters in Table 3.1.

An optimal control purpose is to find the optimal control that minimize the functional. In the
same way, we want to find the cost of the treatment that minimize the functional such that the
effectiveness of the control strategy can be reached.

Figure 4 (B) tells us the functional objective decreases continuously from around 3600 at
iteration 1-9 then stay stable around 1100 up to final time. It shows the cost function of the
control strategy and the effectiveness of the ARV treatment applied for HIV-infected and full-
blown HIV (AIDS) subpopulations. Finally we can give the result that giving the ARV treatment
as control strategy for HIV-infected and full-blown HIV (AIDS) significantly increasing the
recovered population. It show that the effectiveness and the successful of the ARV treatment
can be reached as control strategy on HIV/AIDS epidemic model.

4. CONCLUSIONS

The epidemic model of HIV/AIDS has been derived. Optimal control analysis have been
done by proving the boundedness and positivity of solutions. We have proved an existence an
optimal control of the system. It means we can find the global minimum of optimal control that
minimize the functional objective. The Minimum-Pontryagin principle has applied to get the
optimally system such that the functional objective can reach the minimum of the individual
with HIV infection, full-blown HIV (AIDS), and the cost of the treatment given to the individ-
ual with HIV/AIDS infection. The numerical simulation shows that the system with a given
control ARV treatment can decrease the individual with HIV infection significantly. Our result
coincides with that of [2] so that the effectiveness of an ARV treatment can be shown.
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