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2 S.S. DRAGOMIR AND C.E.M. PEARCE

1. I NTRODUCTION

Let A be a selfadjoint linear operator on a complex Hilbert space(H; 〈., .〉) . The Gelfand
mapestablishes a∗-isometrically isomorphismΦ between the setC (Sp (A)) of all continuous
functionsdefined on thespectrumof A, denotedSp (A) , and theC∗-algebraC∗ (A) generated
by A and the identity operator1H onH as follows (see for instance [12, p. 3]):

For anyf, g ∈ C (Sp (A)) and anyα, β ∈ C we have
(i) Φ (αf + βg) = αΦ (f) + βΦ (g) ;
(ii) Φ (fg) = Φ (f) Φ (g) andΦ

(
f̄
)

= Φ (f)∗ ;
(iii) ‖Φ (f)‖ = ‖f‖ := supt∈Sp(A) |f (t)| ;
(iv) Φ (f0) = 1H andΦ (f1) = A, wheref0 (t) = 1 andf1 (t) = t, for t ∈ Sp (A) .
With this notation we define

f (A) := Φ (f) for all f ∈ C (Sp (A))

and we call it thecontinuous functional calculusfor a selfadjoint operatorA.
If A is a selfadjoint operator andf is a real valued continuous function onSp (A), then

f (t) ≥ 0 for any t ∈ Sp (A) implies thatf (A) ≥ 0, i.e. f (A) is a positive operatoron H.
Moreover, if bothf andg are real valued functions onSp (A) then the following important
property holds:

(P) f (t) ≥ g (t) for anyt ∈ Sp (A) implies thatf (A) ≥ g (A)

in the operator order ofB (H) . We recall thatA ≥ B in the operator order ofB (H) if
〈Ax, x〉 ≥ 〈Bx, x〉 for anyx ∈ H.

For a recent monograph devoted to various inequalities for continuous functions of selfadjoint
operators, see [12] and the references therein.

For other recent results see the research papers [2], [3], [4], [13], [14], [15], [16] and the
survey papers [1], [9] and [10].

Let U be a selfadjoint operator on the complex Hilbert space(H, 〈., .〉) with the spectrum
Sp (U) included in the interval[m, M ] for some real numbersm < M and let{Eλ}λ be its
spectral family. Then for any continuous functionf : [m, M ] → C, it is well known that we
have the followingspectral representation in terms of the Riemann-Stieltjes integral:

(1.1) 〈f (U) x, y〉 =

∫ M

m−0

f (λ) d (〈Eλx, y〉) ,

for any x, y ∈ H. The functiongx,y (λ) := 〈Eλx, y〉 is of bounded variationon the interval
[m, M ] and

gx,y (m− 0) = 0 andgx,y (M) = 〈x, y〉

for anyx, y ∈ H. It is also well known thatgx (λ) := 〈Eλx, x〉 is monotonic nondecreasingand
right continuouson [m,M ].

2. TRAPEZOIDAL AND OSTROWSKI TYPE I NEQUALITIES IN THE OPERATOR ORDER

Utilising scalar trapezoidal type inequalities, Dragomir obtained in [8] the following results:

Theorem 2.1.LetA be a selfadjoint operator in the Hilbert spaceH with the spectrumSp (A) ⊆
[m, M ] for some real numbersm < M .
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SOME OPERATORORDER INEQUALITIES 3

1. If f : [m,M ] → R is continuous on[m, M ] , then∣∣∣∣f (m) (M1H − A) + f (M) (A−m1H)

M −m
− f (A)

∣∣∣∣(2.1)

≤
[

max
t∈[m,M ]

f (t)− min
t∈[m,M ]

f (t)

]
1H .

2. If f : [m,M ] → C is continuous and of bounded variation on[m,M ] , then∣∣∣∣f (m) (M1H − A) + f (M) (A−m1H)

M −m
− f (A)

∣∣∣∣(2.2)

≤ M1H − A

M −m

A∨
m

(f) +
A−m1H

M −m

M∨
A

(f)

≤

[
1

2
+

∣∣A− m+M
2

1H

∣∣
M −m

]
M∨
m

(f) ,

where
A∨
m

(f) denotes the operator generated by the scalar function[m, M ] 3 t 7−→
t∨
m

(f) ∈

R. The same notation applies for
M∨
A

(f) .

3. If f : [m,M ] → C is Lipschitzian with the constantL > 0 on [m, M ] , then∣∣∣∣f (m) (M1H − A) + f (M) (A−m1H)

M −m
− f (A)

∣∣∣∣(2.3)

≤ M1H − A

M −m
|f (A)− f (m) 1H |+

A−m1H

M −m
|f (M) 1H − f (A)|

≤ 1

2
(M −m) L1H .

4. If f : [m, M ] → R is continuous convex on[m, M ] with finite lateral derivativesf ′− (M)
andf ′+ (m) , then we have the inequalities:

0 ≤ f (m) (M1H − A) + f (M) (A−m1H)

M −m
− f (A)(2.4)

≤ (M1H − A) (A−m1H)

M −m

[
f ′− (M)− f ′+ (m)

]
≤ 1

4
(M −m)

[
f ′− (M)− f ′+ (m)

]
1H .

When more information is available on the derivative of the function, the following inequali-
ties may be stated as well, see [8]:

Theorem 2.2.LetA be a selfadjoint operator in the Hilbert spaceH with the spectrumSp (A) ⊆
[m, M ] for some real numbersm < M . Assume that the functionf : I → C with [m, M ] ⊂ I̊

(the interior ofI) is differentiable on̊I.
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4 S.S. DRAGOMIR AND C.E.M. PEARCE

1. If the derivativef ′ is continuous and of bounded variation on[m, M ] , then we have the
inequality ∣∣∣∣f (m) (M1H − A) + f (M) (A−m1H)

M −m
− f (A)

∣∣∣∣(2.5)

≤ (A−m1H) (M1H − A)

M −m

M∨
m

(f ′)

≤ 1

4
(M −m)

M∨
m

(f ′) 1H .

2. If the derivativef ′ is Lipschitzian with the constantK > 0 on [m, M ] , then we have the
inequality ∣∣∣∣f (m) (M1H − A) + f (M) (A−m1H)

M −m
− f (A)

∣∣∣∣(2.6)

≤ 1

2
(M −m) (A−m1H) (M1H − A) K

≤ 1

8
(M −m)2 K1H .

The dual case that provides Ostrowski type inequalities in the operator order have been ob-
tained in [7]:

Theorem 2.3.LetA be a selfadjoint operator in the Hilbert spaceH with the spectrumSp (A) ⊆
[m, M ] for some real numbersm < M.

(1) If f : [m, M ] → C is a continuous function of bounded variation on[m,M ] , then we
have the inequality

(2.7)

∣∣∣∣f (A)−
(

1

M −m

∫ M

m

f (t) dt

)
· 1H

∣∣∣∣ ≤
[

1

2
1H +

∣∣∣∣∣A− m+M
2

1H

M −m

∣∣∣∣∣
]

M∨
m

(f)

where
M∨
m

(f) denotes the total variation off on [m, M ] . The constant1
2

is best possible

in (2.7).
(2) If f : [m,M ] → R is an absolutely continuous function such that there exists the real

constantsγ and Γ, γ < Γ with the property thatγ ≤ f ′ (s) ≤ Γ for almost every
s ∈ [m, M ] , then we have the following double inequality in the operator order of
B (H) :

− 1

2
· Γ− γ

M −m

[(
A− MΓ−mγ

Γ− γ
· 1H

)2

− Γγ

(
M −m

Γ− γ

)2

· 1H

]
(2.8)

≤ f (A)−
(

1

M −m

∫ M

m

f (t) dt

)
· 1H

≤ 1

2
· Γ− γ

M −m

[(
A− mΓ−Mγ

Γ− γ
· 1H

)2

− Γγ

(
M −m

Γ− γ

)2

· 1H

]
.
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(3) If f : [m, M ] → C is an absolutely continuous function, then we have in the operator
order the following inequalities∣∣∣∣f (A)−

(
1

M −m

∫ M

m

f (t) dt

)
· 1H

∣∣∣∣(2.9)

≤



[
1
4
1H +

(
A−m+M

2
1H

M−m

)2
]

(M −m) ‖f ′‖∞ if f ′ ∈ L∞ [m, M ] ;

1

(p+1)
1
p

[(
A−m1H

M−m

)p+1
+
(

M1H−A
M−m

)p+1
]
(M −m)

1
q ‖f ′‖q

if f ′ ∈ Lp [m,M ] , 1
p

+ 1
q

= 1, p > 1;[
1
2
1H +

∣∣∣A−m+M
2

1H

M−m

∣∣∣] ‖f ′‖1 .

Motivated by the above results we investigate in this paper the problem of bounding in the
operator order the following operator transform

f̃ (A) :=
1

2
[f (A)− f ((m + M) 1H − A)]

whereA is a selfadjoint operator in the Hilbert spaceH with the spectrumSp (A) ⊆ [m, M ]
andf : [m, M ] → C is a continuous function on[m, M ] . Some applications for power and
logarithmic functions are provided as well.

The same notation

f̃ (t) :=
1

2
[f (t)− f (m + M − t)]

can be used for the scalar functionf : [m, M ] → C and could be seen as a "measure of
asymmetry" for f.

3. SOME I MMEDIATE BOUNDS FOR f̃ (A)

The following result is a natural consequence of Theorem 2.1:

Theorem 3.1.LetA be a selfadjoint operator in the Hilbert spaceH with the spectrumSp (A) ⊆
[m, M ] for some real numbersm < M .

1. If f : [m, M ] → R is continuous on[m, M ] , then∣∣∣∣f (M)− f (m)

M −m

(
A− m + M

2
1H

)
− f̃ (A)

∣∣∣∣(3.1)

≤
[

max
t∈[m,M ]

f̃ (t)− min
t∈[m,M ]

f̃ (t)

]
1H

≤
[

max
t∈[m,M ]

f (t)− min
t∈[m,M ]

f (t)

]
1H .
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2. If f : [m,M ] → C is continuous and of bounded variation on[m,M ] , then∣∣∣∣f (M)− f (m)

M −m

(
A− m + M

2
1H

)
− f̃ (A)

∣∣∣∣(3.2)

≤

[
1

2
+

∣∣A− m+M
2

1H

∣∣
M −m

]
M∨
m

(
f̃
)

≤

[
1

2
+

∣∣A− m+M
2

1H

∣∣
M −m

]
M∨
m

(f) .

3. If f : [m, M ] → C is Lipschitzian with the constantL > 0 on [m, M ] , then∣∣∣∣f (M)− f (m)

M −m

(
A− m + M

2
1H

)
− f̃ (A)

∣∣∣∣(3.3)

≤ 1

2
(M −m) L1H .

Proof. If we write the inequality (2.1) for̃f we have∣∣∣∣∣ f̃ (m) (M1H − A) + f̃ (M) (A−m1H)

M −m
− f̃ (A)

∣∣∣∣∣(3.4)

≤
[

max
t∈[m,M ]

f̃ (t)− min
t∈[m,M ]

f̃ (t)

]
1H .

Since

f̃ (M) = −f̃ (m) =
f (M)− f (m)

2
,

then

f̃ (m) (M1H − A) + f̃ (M) (A−m1H)

M −m
=

f (M)− f (m)

M −m

(
A− m + M

2
1H

)
and by (3.4) we deduce the first inequality in (3.1).

If we denoteδ = mint∈[m,M ] f (t) and ∆ = maxt∈[m,M ] f (t) then δ ≤ f (t) ≤ ∆ and
−∆ ≤ −f (m + M − t) ≤ −δ which gives that

−1

2
(∆− δ) ≤ f̃ (t) ≤ 1

2
(∆− δ)

therefore

max
t∈[m,M ]

f̃ (t) ≤ 1

2
(∆− δ) and − 1

2
(∆− δ) ≤ min

t∈[m,M ]
f̃ (t)

which implies that
max

t∈[m,M ]
f̃ (t)− min

t∈[m,M ]
f̃ (t) ≤ ∆− δ

and the second inequality in (3.1) is proved.
The first inequality in (3.2) follows from (2.2).
If f is of bounded variation, then obviouslỹf is of bounded variation and

M∨
m

(
f̃
)
≤ 1

2

[
M∨
m

(f) +
M∨
m

(f (m + M − ·))

]
=

M∨
m

(f) .

This proves the last part of (3.2).
Now, if f is Lipschitzian with the constantL > 0 thenf̃ is also Lipschitzian with at least the

same constantL and by (2.3) we deduce the desired result (3.3).
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We need the following notation

ĝ (s) :=
1

2
[g (s) + g (m + M − s)] , s ∈ [m, M ]

whereg : [m,M ] → C.

Theorem 3.2.LetA be a selfadjoint operator in the Hilbert spaceH with the spectrumSp (A) ⊆
[m, M ] for some real numbersm < M.

(1) If f : [m, M ] → C is a continuous function of bounded variation on[m,M ] , then we
have the inequality∣∣∣f̃ (A)

∣∣∣ ≤ [1

2
1H +

∣∣∣∣∣A− m+M
2

1H

M −m

∣∣∣∣∣
]

M∨
m

(
f̃
)

(3.5)

≤

[
1

2
1H +

∣∣∣∣∣A− m+M
2

1H

M −m

∣∣∣∣∣
]

M∨
m

(f) .

(2) If f : [m,M ] → R is an absolutely continuous function such that there exists the real
constantsγ and Γ, γ < Γ with the property thatγ ≤ f ′ (s) ≤ Γ for almost every
s ∈ [m, M ] , then we have the following double inequality in the operator order of
B (H) :

− 1

2
· Γ− γ

M −m

[(
A− MΓ−mγ

Γ− γ
· 1H

)2

− Γγ

(
M −m

Γ− γ

)2

· 1H

]
(3.6)

≤ f̃ (A)

≤ 1

2
· Γ− γ

M −m

[(
A− mΓ−Mγ

Γ− γ
· 1H

)2

− Γγ

(
M −m

Γ− γ

)2

· 1H

]
.

(3) If f : [m, M ] → C is an absolutely continuous function, then we have in the operator
order the following inequalities∣∣∣f̃ (A)

∣∣∣(3.7)

≤



[
1
4
1H +

(
A−m+M

2
1H

M−m

)2
]

(M −m)
∥∥∥(̂f ′)∥∥∥

∞
if f ′ ∈ L∞ [m, M ] ;

1

(p+1)
1
p

[(
A−m1H

M−m

)p+1
+
(

M1H−A
M−m

)p+1
]
(M −m)

1
q

∥∥∥(̂f ′)∥∥∥
q

if f ′ ∈ Lp [m, M ] , 1
p

+ 1
q

= 1, p > 1;[
1
2
1H +

∣∣∣A−m+M
2

1H

M−m

∣∣∣] ∥∥∥(̂f ′)∥∥∥
1

≤



[
1
4
1H +

(
A−m+M

2
1H

M−m

)2
]

(M −m) ‖f ′‖∞ if f ′ ∈ L∞ [m, M ] ;

1

(p+1)
1
p

[(
A−m1H

M−m

)p+1
+
(

M1H−A
M−m

)p+1
]
(M −m)

1
q ‖f ′‖q

if f ′ ∈ Lp [m, M ] , 1
p

+ 1
q

= 1, p > 1;[
1
2
1H +

∣∣∣A−m+M
2

1H

M−m

∣∣∣] ‖f ′‖1 .
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Proof. Follows by Theorem 2.3 applied for̃f and observing that

1

M −m

∫ M

m

f̃ (t) dt = 0

and the fact that ifγ ≤ f ′ (s) ≤ Γ for almost everys ∈ [m, M ] , then(
f̃ (s)

)′
=

1

2
[f (s)− f (m + M − s)]′

=
1

2
[f ′ (s) + f ′ (m + M − s)]

= (̂f ′) (s) ∈ [γ, Γ]

for almost everys ∈ [m,M ] , where we have used the notation

ĝ (s) :=
1

2
[g (s) + g (m + M − s)] , s ∈ [m, M ] .

The last part from (3.7) follows from the fact that

‖ĝ‖q ≤ 1

2

[
‖g‖q + ‖g (m + M − ·)‖q

]
= ‖g‖q

for anyq ∈ [1,∞] .

Finally, we can state the following result as well:

Theorem 3.3.LetA be a selfadjoint operator in the Hilbert spaceH with the spectrumSp (A) ⊆
[m, M ] for some real numbersm < M . Assume that the functionf : I → C with [m, M ] ⊂ I̊

(the interior ofI) is differentiable on̊I.
1. If the derivativef ′ is continuous and of bounded variation on[m, M ] , then we have the

inequality ∣∣∣∣f (M)− f (m)

M −m

(
A− m + M

2
1H

)
− f̃ (A)

∣∣∣∣(3.8)

≤ (A−m1H) (M1H − A)

M −m

M∨
m

(
(̂f ′)

)
≤ 1

4
(M −m)

M∨
m

(
(̂f ′)

)
1H .

2. If the derivativef ′ is Lipschitzian with the constantK > 0 on [m, M ] , then we have the
inequality ∣∣∣∣f (M)− f (m)

M −m

(
A− m + M

2
1H

)
− f̃ (A)

∣∣∣∣(3.9)

≤ 1

2
(M −m) (A−m1H) (M1H − A) K

≤ 1

8
(M −m)2 K1H .

This is a direct consequence of Theorem 2.2 and the details are omitted.
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4. OTHER BOUNDS

The following simple bounds for the operator
∣∣∣f̃ (A)

∣∣∣ hold:

Theorem 4.1.LetA be a selfadjoint operator in the Hilbert spaceH with the spectrumSp (A) ⊆
[m, M ] for some real numbersm < M .

(1) If the functionf : [m,M ] → C is continuous, then

(4.1)
∣∣∣f̃ (A)

∣∣∣ ≤ 1

2

[
max

t∈[m,M ]
f (t)− min

t∈[m,M ]
f (t)

]
1H .

(2) If the functionf : [m, M ] → C is continuous and of bounded variation, then

(4.2)
∣∣∣f̃ (A)

∣∣∣ ≤ 1

2

M∨
m

(
f̃
)

1H ≤ 1

2

M∨
m

(f) 1H .

(3) If the functionf : [m, M ] → C is r−H-Hölder continuous, i.e. for fixedr ∈ (0, 1] and
H > 0 we have

|f (t)− f (s)| ≤ |t− s| for anyt, s ∈ [m, M ] ,

then

(4.3)
∣∣∣f̃ (A)

∣∣∣ ≤ 1

21−r
H

∣∣∣∣A− m + M

2
1H

∣∣∣∣r .

(4) If the functionf : [m, M ] → C is absolutely continuous on[m, M ] , then

(4.4)
∣∣∣f̃ (A)

∣∣∣ ≤

∣∣A− m+M

2
1H

∣∣ ‖f ′‖∞ if f ′ ∈ L∞ [m, M ]

1
21−1/q

∣∣A− m+M
2

1H

∣∣1/q ‖f ′‖p

if f ′ ∈ L∞ [m,M ] ,
p > 1, 1

p
+ 1

q
= 1.

Proof. 1. As above, if we denoteδ = mint∈[m,M ] f (t) and∆ = maxt∈[m,M ] f (t) thenδ ≤
f (t) ≤ ∆ and−∆ ≤ −f (m + M − t) ≤ −δ which gives that∣∣∣f̃ (t)

∣∣∣ ≤ 1

2
(∆− δ)

for anyt ∈ [m, M ] .
Applying the property (P) we deduce the desired result.
2. Sincef̃ (M) = −f̃ (m), then we have∣∣∣f̃ (t)

∣∣∣ =

∣∣∣∣∣f̃ (t)− f̃ (M) + f̃ (m)

2

∣∣∣∣∣
≤

∣∣∣f̃ (t)− f̃ (m)
∣∣∣+ ∣∣∣f̃ (M)− f̃ (t)

∣∣∣
2

≤ 1

2

M∨
m

(
f̃
)

,

for anyt ∈ [m, M ] .
Applying the property (P) we deduce the first inequality in (4.2). The second part was proven

before.
3. Utilising the definition, we have∣∣∣f̃ (t)

∣∣∣ =
1

2
|f (t)− f (m + M − t)|

≤ 1

2
H |2t− (m + M)|r =

1

21−r
H

∣∣∣∣t− m + M

2

∣∣∣∣r
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for anyt ∈ [m, M ] .
Applying the property (P) we deduce the desired inequality in (4.3).
4. Sincef is absolutely continuous on[m,M ] , then

∣∣∣f̃ (t)
∣∣∣ =

1

2
|f (t)− f (m + M − t)| = 1

2

∣∣∣∣∫ m+M−t

t

f ′ (s) ds

∣∣∣∣
for anyt ∈ [m, M ] .

Utilising the integral Hölder’s inequality we have

∣∣∣f̃ (t)
∣∣∣ ≤ 1

2

∣∣∣∣∫ m+M−t

t

|f ′ (s)| ds

∣∣∣∣
≤ 1

2
×


|2t− (m + M)| ‖f ′‖∞ if f ′ ∈ L∞ [m, M ]

|2t− (m + M)|1/q ‖f ′‖p

if f ′ ∈ L∞ [m,M ] ,
p > 1, 1

p
+ 1

q
= 1.

=


∣∣t− m+M

2

∣∣ ‖f ′‖∞ if f ′ ∈ L∞ [m, M ]

1
21−1/q

∣∣t− m+M
2

∣∣1/q ‖f ′‖p

if f ′ ∈ L∞ [m, M ] ,
p > 1, 1

p
+ 1

q
= 1.

for anyt ∈ [m, M ] .
Applying the property (P) we deduce the desired inequality in (4.4).

The following result the provided upper and lower bounds forf̃ (A) in the operator order of
B (H) also holds:

Theorem 4.2.LetA be a selfadjoint operator in the Hilbert spaceH with the spectrumSp (A) ⊆
[m, M ] for some real numbersm < M . Assume that the functionf : I → C with [m, M ] ⊂ I̊

(the interior ofI) is differentiable on̊I. If the derivativef ′ is continuous and convex on[m, M ]
then

1

2
[f (M)− f (m)] 1H − f ′ (m) + f ′ (M)

2
(M1H − A)(4.5)

≤ f̃ (A)

≤ 1

2
[f (M)− f (m)] 1H − f ′

(
m + M

2

)
(M1H − A)

and

f ′
(

m + M

2

)
(A−m1H)− 1

2
[f (M)− f (m)] 1H(4.6)

≤ f̃ (A)

≤ f ′ (m) + f ′ (M)

2
(A−m1H)− 1

2
[f (M)− f (m)] 1H .
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We also have the inequality

1

2

[
f ′
(

m + M

2

)
(A−m1H)− f ′ (m) + f ′ (M)

2
(M1H − A)

]
(4.7)

≤ f̃ (A)

≤ 1

2

[
f ′ (m) + f ′ (M)

2
(A−m1H)− f ′

(
m + M

2

)
(M1H − A)

]
.

Proof. Let {Eλ}λ be thespectral familyof the operatorA. For x ∈ H, ‖x‖ = 1, consider the
functiong : [m, M ] → R,

g (λ) :=

〈
1

2
(Eλ + Em+M−λ) x, x

〉
.

Theng (λ) = g (m + M − λ) for anyλ ∈ [m, M ] , i.e.,g is symmetrical on[m, M ] andg (λ) ≥
0 for anyλ ∈ [m, M ] .

By the spectral representation (1.1) we also have that∫ M

m−0

g (λ) dλ =

∫ M

m−0

〈
1

2
(Eλ + Em+M−λ) x, x

〉
dλ

=

∫ M

m−0

〈Eλx, x〉 dλ

= 〈Eλx, x〉λ|Mm−0 −
∫ M

m−0

λd 〈Eλx, x〉

= 〈(M1H − A) x, x〉

for anyx ∈ H, ‖x‖ = 1.
We use Fejér’s inequality, see for instance [11, pp. 1-2], which says that ifh : [a, b] → R is

convex andg is symmetrical on[a, b] and nonnegative, then

h

(
a + b

2

)∫ b

a

g (λ) dλ ≤
∫ b

a

h (λ) g (λ) dλ ≤ h (a) + h (b)

2

∫ b

a

g (λ) dλ.

By writing this inequality forh = f ′, we can state that

f ′
(

m + M

2

)∫ M

m−0

g (λ) dλ ≤
∫ M

m−0

f ′ (λ) g (λ) dλ(4.8)

≤ f ′ (m) + f ′ (M)

2

∫ M

m−0

g (λ) dλ,

for anyx ∈ H, ‖x‖ = 1.
Integrating by parts, we observe that

I :=

∫ M

m−0

f ′ (λ) g (λ) dλ = f (λ) g (λ)|Mm−0 −
∫ M

m−0

f (λ) dg (λ)(4.9)

=
1

2
[f (M)− f (m)]

− 1

2

[∫ M

m−0

f (λ) d (〈Eλx, x〉) +

∫ M

m−0

f (λ) d (〈Em+M−λx, x〉)
]

.
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Utilising the change of variablet = m + M − λ and the spectral representation (1.1), we get
that ∫ M

m−0

f (λ) d (〈Em+M−λx, x〉) = −〈f ((m + M) 1H − A) x, x〉

for anyx ∈ H, ‖x‖ = 1 and since∫ M

m−0

f (λ) d (〈Eλx, x〉) = 〈f (A) x, x〉

for anyx ∈ H, ‖x‖ = 1, then by (4.9) we obtain

I =
1

2
[f (M)− f (m)]− 1

2
〈[f (A)− f ((m + M) 1H − A)] x, x〉 ,

for anyx ∈ H, ‖x‖ = 1.
On making use of the inequality (4.8) we can state that

f ′
(

m + M

2

)
〈(M1H − A) x, x〉

≤ 1

2
[f (M)− f (m)]− 1

2
〈[f (A)− f ((m + M) 1H − A)] x, x〉

≤ f ′ (m) + f ′ (M)

2
〈(M1H − A) x, x〉 ,

for anyx ∈ H, ‖x‖ = 1, which is equivalent with (4.5).
Now, if we replace in the inequality (4.5) the operatorA with the operator(m + M) 1H −A,

then we get the inequality

f ′
(

m + M

2

)
(A−m1H)

≤ 1

2
[f (M)− f (m)] 1H +

1

2
[f (A)− f ((m + M) 1H − A)]

≤ f ′ (m) + f ′ (M)

2
(A−m1H) ,

which is equivalent with (4.6).
Finally, we observe that the inequality (4.7) is obtained by adding the inequalities (4.5) with

(4.6).

The following result may be stated as well:

Theorem 4.3.LetA be a selfadjoint operator in the Hilbert spaceH with the spectrumSp (A) ⊆
[m, M ] for some real numbersm < M . Assume that the functionf : I → C with [m, M ] ⊂ I̊

(the interior ofI) is differentiable on̊I.

(1) If |f ′| is convex on[m, M ] , then

(4.10)
∣∣∣f̃ (A)

∣∣∣ ≤ (M −m)

[
|f ′ (m)|+ |f ′ (M)|

2

]1

4
+

(
A− m+M

2
1H

M −m

)2
 .

(2) If |f ′| is concave on[m, M ] , then

(4.11)
∣∣∣f̃ (A)

∣∣∣ ≤ (M −m)

∣∣∣∣f ′(m + M

2

)∣∣∣∣
1

4
+

(
A− m+M

2
1H

M −m

)2
 .
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(3) If |f ′| is quasiconvex on[m, M ] , then

(4.12)
∣∣∣f̃ (A)

∣∣∣ ≤ (M −m) max {|f ′ (m)| , |f ′ (M)|}

1

4
+

(
A− m+M

2
1H

M −m

)2
 .

Proof. Integrating by parts in the Riemann integral, we get the following representation:

f̃ (t) = f̃ (t)− 1

M −m

∫ M

m

f̃ (s) ds(4.13)

=
1

M −m

∫ t

m

(s−m)
(
f̃ (s)

)′
ds +

1

M −m

∫ M

t

(s−M)
(
f̃ (s)

)′
ds

=
1

M −m

∫ t

m

(s−m) (̂f ′) (s) ds +
1

M −m

∫ M

t

(s−M) (̂f ′) (s) ds

for anyt ∈ [m, M ] .
Taking the modulus in (4.14) we get

∣∣∣f̃ (t)
∣∣∣(4.14)

≤ 1

M −m

∫ t

m

(s−m)
∣∣∣(̂f ′) (s)

∣∣∣ ds +
1

M −m

∫ M

t

(M − s)
∣∣∣(̂f ′) (s)

∣∣∣ ds

≤ 1

M −m

∫ t

m

(s−m) |̂f ′| (s) ds +
1

M −m

∫ M

t

(M − s) |̂f ′| (s) ds

for anyt ∈ [m, M ] .
1. If |f ′| is convex on[m,M ] , then

|f ′ (s)| ≤ (s−m) |f ′ (M)|+ (M − s) |f ′ (m)|
M −m

and

|f ′ (m + M − s)| ≤ (s−m) |f ′ (m)|+ (M − s) |f ′ (M)|
M −m

for anys ∈ [m, M ] .
If we add the above two inequalities and divide by2, then we get

(4.15) |̂f ′| (s) ≤ 1

2
[|f ′ (m)|+ |f ′ (M)|]

for anys ∈ [m, M ] .
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On making use of (4.14) and (4.15) we deduce∣∣∣f̃ (t)
∣∣∣ ≤ 1

2

1

M −m
[|f ′ (m)|+ |f ′ (M)|](4.16)

×
[∫ t

m

(s−m) ds +

∫ M

t

(M − s) ds

]
=

1

2

1

M −m
[|f ′ (m)|+ |f ′ (M)|]

×

[
(t−m)2 + (M − t)2

2

]

=
1

2
[|f ′ (m)|+ |f ′ (M)|]

1

4
+

(
t− m+M

2

M −m

)2
 (M −m)

for anyt ∈ [m, M ] .
Applying the property (P) we deduce the desired inequality in (4.10).
2. If |f ′| is concave on[m, M ] , then

|̂f ′| (s) =
1

2
[|f ′ (s)|+ |f ′ (m + M − s)|] ≤

∣∣∣∣f ′(m + M

2

)∣∣∣∣
for anys ∈ [m, M ] and by (4.14) we deduce

∣∣∣f̃ (t)
∣∣∣ ≤ 1

M −m

∣∣∣∣f ′(m + M

2

)∣∣∣∣(4.17)

×
[∫ t

m

(s−m) ds +

∫ M

t

(M − s) ds

]

=

∣∣∣∣f ′(m + M

2

)∣∣∣∣
1

4
+

(
t− m+M

2

M −m

)2
 (M −m)

for anyt ∈ [m, M ] .
Applying the property (P) we deduce the desired inequality in (4.11).
3. If |f ′| is quasiconvex on[m, M ] , then

|̂f ′| (s) =
1

2
[|f ′ (s)|+ |f ′ (m + M − s)|] ≤ max {|f ′ (m)| , |f ′ (M)|}

for anys ∈ [m, M ] from where we similarly get the desired result (4.12).

5. APPLICATIONS

Consider the functionf : [m, M ] → R with [m, M ] ⊂ (0,∞) given byf (t) = ln t. Then
f ′ (t) = 1

t
is convex and on making use of Theorem 4.2 we get for anyA a selfadjoint operator

in the Hilbert spaceH with the spectrumSp (A) ⊆ [m,M ] that
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ln

√
M

m
1H − m + M

2mM
(M1H − A)(5.1)

≤ 1

2
{ln A− ln [(m + M) 1H − A]}

≤ ln

√
M

m
1H − 2

m + M
(M1H − A)

and

2

m + M
(A−m1H)− ln

√
M

m
1H(5.2)

≤ 1

2
{ln A− ln [(m + M) 1H − A]}

≤ m + M

2mM
(A−m1H)− ln

√
M

m
1H .

We also have the inequality

1

2

[
2

m + M
(A−m1H)− m + M

2mM
(M1H − A)

]
(5.3)

≤ 1

2
{ln A− ln [(m + M) 1H − A]}

≤ 1

2

[
m + M

2mM
(A−m1H)− 2

m + M
(M1H − A)

]
.

Now, if we use the first statement in Theorem 4.3, then we get
1

2
|ln A− ln [(m + M) 1H − A]|(5.4)

≤ (M −m)
m + M

2mM

1

4
+

(
A− m+M

2
1H

M −m

)2
 .

Further, if we consider the power functionf : [m,M ] ⊂ (0,∞) → R, f (t) = tp, p > 0 then
f ′ (t) = ptp−1and forp ≥ 2 we have thatf ′ is convex and by Theorem 4.2 we have for anyA a
selfadjoint operator in the Hilbert spaceH with the spectrumSp (A) ⊆ [m, M ] that

1

2
(Mp −mp) 1H − p

mp−1 + Mp−1

2
(M1H − A)(5.5)

≤ 1

2
[Ap − ((m + M) 1H − A)p]

≤ 1

2
(Mp −mp) 1H − p

(
m + M

2

)p−1

(M1H − A)

and

p

(
m + M

2

)p−1

(A−m1H)− 1

2
(Mp −mp) 1H(5.6)

≤ 1

2
[Ap − ((m + M) 1H − A)p]

≤ p
mp−1 + Mp−1

2
(A−m1H)− 1

2
(Mp −mp) 1H .
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We also have the inequality

1

2
p

[(
m + M

2

)p−1

(A−m1H)− mp−1 + Mp−1

2
(M1H − A)

]
(5.7)

≤ 1

2
[Ap − ((m + M) 1H − A)p]

≤ 1

2
p

[
mp−1 + Mp−1

2
(A−m1H)−

(
m + M

2

)p−1

(M1H − A)

]
.

Now, if we apply the first statement from Theorem 4.3, then we get forp ≥ 2 that
1

2
|Ap − ((m + M) 1H − A)p|(5.8)

≤ p (M −m)
mp−1 + Mp−1

2

1

4
+

(
A− m+M

2
1H

M −m

)2
 .

By the second statement of the same theorem we also have for1 ≤ p < 2 that
1

2
|Ap − ((m + M) 1H − A)p|(5.9)

≤ p (M −m)

(
m + M

2

)p−1
1

4
+

(
A− m+M

2
1H

M −m

)2
 .
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