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1. INTRODUCTION

Let A be a selfadjoint linear operator on a complex Hilbert spdée(., .)) . The Gelfand
mapestablishes a-isometrically isomorphisn® between the set' (Sp (A)) of all continuous
functionsdefined on thespectrunof A, denotedSp (A) , and theC*-algebraC* (A) generated
by A and the identity operatdry on H as follows (see for instance [12, p. 3]):

Foranyf,g € C (Sp(A)) and anyw, 5 € C we have

O @(of +0g) =0 (f) + 53 (g):

(i) ®(fg)=®(f)®(9) and® (f) = @ (f)

(i) (2 (Nl = IfIl == subsespiay [ (0]

(iv) @ (fo) =1gand® (f;) = A, wheref,(t) =1andf, (t) =t ,fort € Sp(A).

With this notation we define

F(A) == (f) forall f € C(Sp(A))

and we call it thecontinuous functional calculusr a selfadjoint operatas.

If A is a selfadjoint operator anfl is a real valued continuous function ¢ip (A), then
f(t) > 0foranyt € Sp(A) implies thatf (A) > 0, i.e. f(A) is apositive operatoon H.
Moreover, if bothf and g are real valued functions ofip (A) then the following important
property holds:

(P) f(t) > g(t) foranyt € Sp(A) implies thatf (A) > g (A)

in the operator order o3 (H). We recall thatA > B in the operator order oB3 (H) if
(Az,x) > (Bzx,x) foranyz € H.

For arecent monograph devoted to various inequalities for continuous functions of selfadjoint
operators, seé [12] and the references therein.

For other recent results see the research papers [2], [3],14], [13], [14], [15], [16] and the
survey papers [1]/]9] and [10].

Let U be a selfadjoint operator on the complex Hilbert spge(.,.)) with the spectrum
Sp (U) included in the intervalm, M| for some real numbers: < M and let{E,}, be its
spectral family Then for any continuous functiofi : [m, M] — C, it is well known that we
have the followingspectral representation in terms of the Riemann-Stieltjes integral

M
(L.1) (F W)= [ FOVA(Esry).
m—0
for anyxz,y € H. The functiong,, (A\) := (E\z,y) is of bounded variatioron the interval
[m, M] and
Gzy (m - 0) =0 andgw,y (M) = <‘r7 y>

foranyz,y € H. Itis also well known thay, (\) := (E\z, x) is monotonic nondecreasirand
right continuouson [m, M].

2. TRAPEZOIDAL AND OSTROWSKI TYPE INEQUALITIES IN THE OPERATOR ORDER

Utilising scalar trapezoidal type inequalities, Dragomir obtained!in [8] the following results:

Theorem 2.1.Let A be a selfadjoint operator in the Hilbert spaéewith the spectrunsp (A) C
[m, M| for some real numbers, < M.
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1. If f : [m, M] — R is continuous otym, M| , then

o1 VWMMm—ﬁthﬂAﬂmm_fmﬂ
< | o 10~ min 7 0] 10

2. If f : [m, M] — C is continuous and of bounded variation pn, M|, then

f(m)(M1y —A)+ f(M)(A—mly)
22 | v/ -7 (4)
MlH—AA A mlHM
= M—m \/( M — m\A/
|A m+M1 | M
< |5+ \n{

t
Where\/ (f) denotes the operator generated by the scalar fundtionV/] > ¢ — \/ (f) €

R. The same notation applies f?q/ (f)

A
3. If f : [m, M] — C s Lipschitzian with the constadt > 0 on[m, M|, then

03 VmﬂMm—ﬁngﬂAﬂmm_fm>
< SR ()~ ) Tl + S (M) L £ ()

4.If f : [m, M] — R is continuous convex dm:, M| with finite lateral derivatives” (M)
and f. (m) , then we have the inequalities:

f(m)(Mly — A) + f (M) (A= mly)

(2.4) 0< - ~f
(MlH—A)(A—mlH) , ,
< Y [£2 (M) = £} (m)]
< 3 (M —m) [ (M) ~ 71 (m)] 1

When more information is available on the derivative of the function, the following inequali-
ties may be stated as well, séé [8]:

Theorem 2.2.Let A be a selfadjoint operator in the Hilbert spaéewith the spectrunsp (A) C
[m, M| for some real numbers: < M. Assume that the functioh: I — C with [m, M| C I
(the interior ofI) is differentiable ory.
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1. If the derivativef’ is continuous and of bounded variation pn, M|, then we have the
inequality

f(m)(M1y —A)+ f (M) (A—mly)
M —m

(2.5) ‘ —F(A)

M

< T \ ()

m
M

< T O =m)\ (7)1

m

2. If the derivativef’ is Lipschitzian with the constat > 0 on[m, M], then we have the
inequality

f(m) (Mly — A) + f (M) (A= mly)

2.6 | ki )
< %(M—m) (A—mly) (Ml —A)K
< % (M —m)?Kly.

The dual case that provides Ostrowski type inequalities in the operator order have been ob-
tained in [7]:

Theorem 2.3.Let A be a selfadjoint operator in the Hilbert spaéewith the spectrunsp (A) C
[m, M| for some real numbens. < M.

(1) If f: [m,M] — Cis a continuous function of bounded variation fen, M|, then we
have the inequality

2.7) ‘f(A)—(Ml_m/Mf(t)dt).lH 1

A — mtMy
§1H+ -2 4

M —m

<

m

H:/(f)

M
Where\/ (f) denotes the total variation gfon [m, M] . The constant is best possible

in @7).

(2) If f: [m,M] — R is an absolutely continuous function such that there exists the real
constantsy and I,y < T' with the property thaty < f’(s) < T for almost every
s € [m, M], then we have the following double inequality in the operator order of
B(H) :
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(3) If f: [m,M] — C is an absolutely continuous function, then we have in the operator
order the following inequalities

1 M
(2.9) yﬂm—(M_m Fo)d) 1

m+M 2
i () | O £ € L)

L [y 4 (M) (g =) £

if f'eL,mM], S+.=1p>1

IN

A—mtMy
| 31+ | 5S| 1

Motivated by the above results we investigate in this paper the problem of bounding in the
operator order the following operator transform

f(A) =S If (A) = f((m+ M) 1 — A)]

N | —

where A is a selfadjoint operator in the Hilbert spaflewith the spectruntp (A) C [m, M|
and f : [m, M] — C is a continuous function ofm, M]. Some applications for power and
logarithmic functions are provided as well.

The same notation

[f &) = f(m+ M —1)]

N | —

can be used for the scalar functign: [m, M] — C and could be seen as aéasure of
asymmetryfor f.

3. SOME IMMEDIATE BOUNDS FOR f (A)
The following result is a natural consequence of Thedrein 2.1:
Theorem 3.1.Let A be a selfadjoint operator in the Hilbert spaéewith the spectrunsp (A) C

[m, M| for some real numbers. < M.
1. If f: [m, M] — R is continuous orim, M|, then

(3.1) ‘ﬂMwﬁwm(A_m+M

Y 5 1H)—f(A)‘

< [max F(t)— min f(t)] 1y

te[m,M] te[m,M]

< [max f(t)— min f(t)} 1.

te[m,M] te[m,M)
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2.1f f : [m, M] — Cis continuous and of bounded variation pn, M|, then

(3.2) ‘f o m(m) (A—#lH)—f(A)‘
‘A m+M1H‘_ M .
= 2 M —m \m/<f>
4 ]
<t ww | VO

3.0ff:[m,M]—Cis Lipschitzian with the constatit > 0 on [m, M], then

‘f o (yme

@3 ) - F)

M —m

Proof. If we write the inequalityl) fof we have

3.4 VW“M“‘ﬁfﬁM”A”m”—fM>
< | o 70 = min 7]
Since

then

2
f(m) (M1 = 4)+ J (M) (A=mlu) _ fOM)=f(m) (, m+M,
M —m M —m 2 "
and by [3.4) we deduce the first inequality[in (3.1).
If we denoted = minep,an f(£) @and A = maxyepn g f (1) thend < f(t) < A and
—A < —f(m+ M —t) < —6 which gives that

SRS ORI

N | —

therefore .
max f (t) < (A—d)and—§(A—5)< min £ (t)

1
te[m, M) 5 T t€[m,M)]
which implies that
max f(t)— min f(t)<A—0

te[m, M) te[m, M)
and the second inequality in (B.1) is proved.
The first inequality in[(3]2) follows fronj (2].2).
If fis of bounded variation, then obviousfyis of bounded variation and
M

\AZ(f) [\/ +\/ (m+M—-)=\(f).

m

This proves the last part df (3.2). )
Now, if f is Lipschitzian with the constarit > 0 then f is also Lipschitzian with at least the
same constant and by [2.8) we deduce the desired regult|(3s3).
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We need the following notation

9(5) = 5l (s) + g (m+ M )]s € [m, M

whereg : [m, M] — C.

Theorem 3.2.Let A be a selfadjoint operator in the Hilbert spaéewith the spectrunsp (A) C
[m, M| for some real numbers, < M.

(1) If f: [m, M] — Cis a continuous function of bounded variation fon, /], then we
have the inequality

~ A mtMyq Mo

39) Fe) < g+ 52tV )
: A — mtMq :M

<ol S|V o

(2) If f:[m,M] — R is an absolutely continuous function such that there exists the real
constantsy andI',y < T with the property thaty < f’(s) < T for almost every
s € [m, M], then we have the following double inequality in the operator order of

B(H) :
2 2
(A_ﬁﬂjﬁﬂ.m>_4w(M‘”O 44
I'—~ I'—~

(3.6) - % :

(3) If f: [m,M] — C is an absolutely continuous function, then we have in the operator
order the following inequalities

@n |

(i () | o - m) )

if f'€ Lo [m, M];

<] [+ (A 0 - >%u>
if '€ L,[m, M|, 1_1 p> 1
s+ [ ||

\
( —MHQ / ; /
i () | = m e £ € Lol )

IA

( ll)l [(AJQT;H)HI ( z\yi;@A)pH} (M m)é Hf/”q
p+1)P
if f/€L,[m,M], %—i—é_— 1, p>1;

\[1H+‘

(],
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Proof. Follows by Theore3 applied fgrand observing that

M~
Ml_m/ Ft)dt =0

and the fact that ify < f’ (s) < T for almost every € [m, M|, then

(F@) =

[f (s) = f(m+ M —s)]

[/ (5) + [ (m+ M — s)]

= () (s) el T]

for almost every € [m, M|, where we have used the notation

N = DN -

§(s) :—%[g(s)—l—g(m—l—M—s)],se i, M].

The last part from[(3]7) follows from the fact that

- 1
lgll, =5 [lglly +llg (m+ M =)l
=l
foranyq € [1,00]. &
Finally, we can state the following result as well:

Theorem 3.3.Let A be a selfadjoint operator in the Hilbert spaéewith the spectrunyp (A) C
[m, M| for some real numbers, < M. Assume that the functigh: I — C with [m, M] C I
(the interior of ) is differentiable o

1. If the derivativef’ is continuous and of bounded variation pn, M|, then we have the

inequality

(3.8) ‘f(M>_f(m> (A— m+M1H) —f(A)’

M—-—m 2

. (A— mlle})—(]\il}[ — A) \M/ ((T))

m

gi(M—m)<4/<CfT)> 14,

m

2. If the derivativef’ is Lipschitzian with the constat > 0 on[m, M], then we have the
inequality

(3.9)

fM)=f(m) ([, m+M_ "\ =
‘ - A Ly f(4)
< 5 (M = m) (A~ mly) (M1 — A) K
E
8
This is a direct consequence of Theofenj 2.2 and the details are omitted.

< — (M —m)*Kly.
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4. OTHER BOUNDS
The following simple bounds for the operat‘(fr(A)‘ hold:

Theorem 4.1.Let A be a selfadjoint operator in the Hilbert spaéewith the spectrunsp (A) C
[m, M| for some real numbers, < M.

(1) If the functionf : [m, M] — C is continuous, then

@.1) F] <5 | mox 70— min £0) 10

2 |te[m,M] te[m,M]

(2) If the functionf : [m, M] — C is continuous and of bounded variation, then

(4.2) ’f(A)‘ g%\ﬂ;(f) 1H§%\A;(f) 1y

(3) If the functionf : [m, M] — C isr — H-Hoélder continuous, i.e. for fixed € (0, 1] and
H > 0 we have

[f () = f(s)] < |t = s| foranyt, s € [m, M],

then
. 1 m—+M_ |
(4.3) ( f(A)’ < s H|A- 14
(4) If the functionf : [m, M] — C is absolutely continuous dm, M], then
A= 25 1|1 £] it f' € Loo [, M]
(4.4) 7)< f £ € Lo m, M),

A = =5 [V 1,

ST p>11+ = 1.

Proof. 1. As above, if we denoté = minycp, a f (t) @ndA = maxiep,,ar f (t) thend <
f)y<Aand-A< —f(m+M—1t) <=4 Which gives that
Fw]<i@a-9

for anyt € [m, M].
Applying the property[(P) we deduce the desired result.
2. Sincef (M) = —f (m), then we have

f<M>+f<m>‘

O

fo| = .

() = Fom)| + |7 () = F e ]
- 2

l\DIH

V()
for anyt € [m, M].

Applying the property{(P) we deduce the first inequality in](4.2). The second part was proven
before.
3. Utilising the definition, we have

F@] = S0~ mt M)

1
< SHPt—(m+ M) =

T

21'r
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foranyt € [m, M].
Applying the property[(P) we deduce the desired inequality irj (4.3).
4. Sincef is absolutely continuous dm, M|, then

rol -1

U@—ﬂm+M—m=1[W f(s)ds

2

for anyt € [m, M].
Utilising the integral Holder’s inequality we have

m+M—t
[ 1 (s)]ds
2 — (m+ M) [l I ' € Loo [, M)

1

fo) < 5

IN

if f'€ Lo [m,M],
p>1,]%—|-%:1.

[t = =] ] if £ € Loo [m, M]

| —

26 — (m+ )71 £,

- . M 11/d if /€ Lo [m,M],
21-17q ’t_ 5 ‘ Hf/Hp p>1,%+%:1.

for anyt € [m, M].
Applying the property[(P) we deduce the desired inequality i (4.4).

The following result the provided upper and lower boundsff()ﬂ) in the operator order of
B (H) also holds:

Theorem 4.2.Let A be a selfadjoint operator in the Hilbert spaéewith the spectrunsp (A) C
[m, M| for some real numbers: < M. Assume that the functioh: I — C with [m, M] C I

(the interior ofI) is differentiable on/ . If the derivativef’ is continuous and convex dm, M]
then

(@5) Ltrn) - pm) g - TEESOD g
< f(4)
< 51700 - sl - 7 ("5 (a1 - a)
and
@6 7 (") (A ma) = 516 00— £ ()] L
< f(A
< L TOD 4ty = 217 00) = f ()] 1
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We also have the inequality

4.7) %[f (mZM) (A—mly)— f/(m);f/(M) (MlH—A)}
< f(4)
<5 [P LED G - g (M) 1 - )

Proof. Let { £, }, be thespectral familyof the operatord. Forz € H, ||z|| = 1, consider the
functiong : [m, M| — R,

g0 = <% (Ex+ Emiria) 1, x> |

Theng (A\) = g (m + M — X) forany\ € [m, M],i.e.,g is symmetrical ofim, M] andg (\) >
0 forany\ € [m, M].
By the spectral representatign (|1.1) we also have that

M Moy
/ g\ dx = / <§ (Ex + Ensn-a) , $> dA
m—0 m—0

_ / Y B da

m—0
M
= (Byz, o) MM, — / A (Ez, )
m—0
= (Mlyg — A)z,x)

foranyz € H, ||z|| = 1.
We use Fejér’s inequality, see for instance [11, pp. 1-2], which says that[i, b — R is
convex ang; is symmetrical orja, b] and nonnegative, then

h(a+5)lZMdesL3wMgumxs@@éﬁﬁ@/MMde

2 a

By writing this inequality forh = f’, we can state that

ae) (") [ swas [ s
A0 [ o

foranyz € H, ||z| = 1.
Integrating by parts, we observe that

(4.9) I / T WM = FN) g~ / g )
S 1P (M) — f (m)

U]:f (A) d ((Exz,x)) + /m_o FN) d((Em+M_Ax7I>)} .

AJMAA Vol. 11, No. 1, Art. 1, pp. 1-17, 2014 AJMAA
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Utilising the change of variable= m + M — X and the spectral representatipn [1.1), we get
that

/waMG&mwwwﬂz—ﬁﬂm+Mﬂﬂ—M%@

foranyz € H, ||z|| = 1 and since

| 0B = (e

foranyz € H, ||z| = 1, then by [(4.9) we obtain

T= 217 (M) = £ om)] = 3 (I (A) = f ((m+ M) 1y = A]r,),
foranyz € H, ||z|| = 1.

On making use of the inequality (4.8) we can state that

7 (m J; M) (Mly — A)z,2)

SLFOD) — £ (m)] = 5 ([ (4) = £ ((m+ M) Ly — A)] )
LT oy,

foranyz € H, ||z| = 1, which is equivalent with (4]5).
Now, if we replace in the inequalit (4.5) the operatbwith the operatofm + M) 1 — A,
then we get the inequality

f (m—i—M) (A—mlpy)

<

2
< U (M) = ()] L+ 5 [ (A) = (o + M) 1 — 4
PO

2
which is equivalent with[ (4]6).
Finally, we observe that the inequalify (4.7) is obtained by adding the inequdliti¢s (4.5) with
@.8)-

The following result may be stated as well:
Theorem 4.3.Let A be a selfadjoint operator in the Hilbert spaéewith the spectrunsp (A) C

[m, M] for some real numbers: < M. Assume that the functigh: I — C with [m, M] c I
(the interior ofI') is differentiable ory.

(1) If |f'] is convex onm, M|, then

@10) | ()] < ar -y [LRLE O [1+(§——f§%l£>2].

2 4 M —m

(2) If | f'| is concave orm, M|, then
,(m+ M 1 A - mEdq
() i (S5 |

AJMAA Vol. 11, No. 1, Art. 1, pp. 1-17, 2014 AJMAA
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(3) If | f'| is quasiconvex ofm, M| , then

(4.12) ‘f(A)‘ < (M —m)max {|f' (m)],|f (M)[} [%ﬁ (A_Mm—_?mlH> ] '

Proof. Integrating by parts in the Riemann integral, we get the following representation:

(413)  F)=F(t) -~ / 7 (s)ds

m/s— ) (7o w+M£m[%»wﬂG@)w
L [ e-m @ty [ - T

—-m M —m

foranyt € [m, M].
Taking the modulus ir] (4.14) we get

(4.14) )f(t)‘
SM—m/m s—m ds+M1_m/tM(M—s)(/f’\)(s)’ds
gﬂ{lnzsz_ ) Pl(5)ds +— / (M = 5)[F] () ds

foranyt € [m, M].
1. If | f’| is convex ornlm, M| , then

(o] < T QDL+ O = )| ()

and

1 (m M- s < BT

foranys € [m, M].
If we add the above two inequalities and divideyhen we get

(1 (m)| + [ (M))]]

[\JI»—t

(4.15) 7] (s) <

foranys € [m, M].
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On making use of (4.14) and (4]15) we deduce

@16)  [F0] < got 17 om)l 4 17 ()]
x[/( —m)ds—i—/t (M—s)ds}
1 1 )
= S5 [ )l + £ (aD)]
(t—m)* + (M = t)
8 2
= 17 m)l + 17 ()] Fﬁ (tA}T_nTm> ] (M —m)

foranyt € [m, M].
Applying the property[(P) we deduce the desired inequality in {4.10).
2. If | f'| is concave orm, M|, then
, ([ m+ M
2

P (s) = S (1f ()] +1f (m+ M = s)|) <

1
2

for anys € [m, M] and by |(4.14) we deduce
1 m+ M
M — 2
M
{/ ds—l—/ (M—s)ds}
m t

_ m4+M 2
U (mgMﬂ FJF (tM—in> ] (M —m)
for anyt € [m, M].

Applying the property[(P) we deduce the desired inequality in {4.11).
3. If | | is quasiconvex ofm, M], then

(4.17) HOIE

F1(s) = 5 UF @)+ 1f (m+ M = s)[] < max {|f' ()], | (M)]}

l\DIH

for anys € [m, M] from where we similarly get the desired res{ilt (4.1).

5. APPLICATIONS

Consider the functiorf : [m, M| — R with [m, M] C (0,00) given by f (¢) = Int. Then
fr(t) = % is convex and on making use of Theor@ 4.2 we get forAmyselfadjoint operator
in the Hilbert spacéd? with the spectrunbp (A) C |m, M| that
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| M m + M

< %{lnA—ln[(m+M)1H—A]}

M 2
<1 — 1y — Mlyg— A
= mH m—i—M( H )
and

(5.2) - i 3 (A—mlg) —In \/ng
< %{lnA—ln[(m—l—M) 1y — A]}

m+ M M
< A— —Iny/—1g.
o ( mly) —In mlg

We also have the inequality

1 2 m+ M
®-3) 2 {m o At = (M A>1
< %{lnA—ln[(m—l—M) 1y — Al}

Now, if we use the first statement in Theorem| 4.3, then we get

(5.4) %|lnA—ln ((m+ M) 1, — A

2
m+M |1 A miMy
< (M — — —_ 2 - .
< (M=m) 5o {4+< M—m
Further, if we consider the power functigh: [m, M] C (0,00) — R, f () = t*,p > 0 then

f'(t) = ptP~'and forp > 2 we have thaif’ is convex and by Theorefm 4.2 we have for ahg
selfadjoint operator in the Hilbert spaéewith the spectruntp (A) C [m, M| that

(5.5) % (MP = mP) 1 — pw (M1 — A)

< 2147 — (m+ M) 1y — A"

< %(Mp—mp)lH—p<m+M)p_l (M1y — A)
and
(5.6) p (’";M)p (A= miy) O )1

< 3 AP = ((m+ M) 1y — A

< pw (A—mly)— % (MP — mP) 1.
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We also have the inequality

1 m+ M\ mp=1 4+ \p-t
(5.7) ~p (A=mly) — ———— (M1, — A)
2 2 2
1
< 5147 = ((m+ M) Ly — AY)
1 [mPt 4 Mr! MNP
< g0 |t Gt - (M) - )
Now, if we apply the first statement from Theorgm|4.3, then we gei for2 that
1
2
mP~t 4+ MP7 |1 A—miMy,
< p(M— R - 2 77
<p(M—m) 2 i ( M—m
By the second statement of the same theorem we also haveSor < 2 that
1
(5.9) 5]A”—((m+M)1H—A)”|
2
m + M p-l 1 A — Ml]{
<p(M-— Z -2 77
<p( m)( 9 ) 4+< M—m
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