


Paper's Title:
Maximal Inequalities for Multidimensionally Indexed Demimartingales and the HájekRényi Inequality for Associated Random Variables
Author(s):
Tasos C. Christofides and Milto Hadjikyriakou
Department of Mathematics and Statistics
University of Cyprus
P.O.Box 20537, Nicosia 1678, Cyprus
tasos@ucy.ac.cy
miltwh@gmail.com
Abstract:
Demimartingales and demisubmartingales introduced by
Newman and
Wright (1982) generalize the notion of martingales and
submartingales respectively. In this paper we define
multidimensionally indexed demimartingales and demisubmartingales
and prove a maximal inequality for this general class of random
variables. As a corollary we obtain a HájekRényi inequality
for multidimensionally indexed associated random variables, the bound of which,
when reduced to the case of single index, is sharper than the bounds already
known in the literature.
Paper's Title:
Weak solutions of non coercive stochastic NavierStokes equations in R^{2}
Author(s):
Wilhelm Stannat and Satoshi Yokoyama
Technische Universität Berlin,
Strasse des 17. Juni 136, 10623 Berlin,
Germany.
Graduate School of Mathematical Sciences,
The University of Tokyo,
Komaba, Tokyo 1538914,
Japan.
Email: stannat@math.tuberlin.de
Email: satoshi2@ms.utokyo.ac.jp
Abstract:
We prove existence of weak solutions of stochastic NavierStokes equations in R^{2} which do not satisfy the coercivity condition. The equations are formally derived from the critical point of some variational problem defined on the space of volume preserving diffeomorphisms in R^{2}. Since the domain of our equation is unbounded, it is more difficult to get tightness of approximating sequences of solutions in comparison with the case of a bounded domain. Our approach is based on uniform a priori estimates on the enstrophy of weak solutions of the stochastic 2DNavierStokes equations with periodic boundary conditions, where the periodicity is growing to infinity combined with a suitable spatial cutofftechnique.
Paper's Title:
A note on Inequalities due to Martins, Bennett and Alzer
Author(s):
József Sándor
BabeşBolyai University of Cluj, Department of Mathematics and Computer Sciences
Kogălniceanu Nr.1, ClujNapoca,
Romania.
jjsandor@hotmail.com
jsandor@member.ams.org
Abstract:
A short history of certain inequalities by Martins, Bennett as well as Alzer, is provided. It is shown that, the inequality of Alzer for negative powers [6], or Martin's reverse inequality [7] are due in fact to Alzer [2]. Some related results, as well as a conjecture, are stated.
Paper's Title:
Reverse of Martin's Inequality
Author(s):
ChaoPing Chen, Feng Qi, and Sever S. Dragomir
Department of Applied Mathematics and Informatics,
Research Institute of Applied
Mathematics,
Henan Polytechnic University,
Jiaozuo City, Henan 454010, China
chenchaoping@sohu.com;
chenchaoping@hpu.edu.cn
Department of Applied Mathematics and Informatics,
Research Institute of Applied
Mathematics,
Henan Polytechnic University,
Jiaozuo City, Henan 454010, China
qifeng@hpu.edu.cn
Url: http://rgmia.vu.edu.au/qi.html
School of Computer Science and Mathematics,
Victoria University of Technology,
P. O. Box 14428, Melbourne City Mc,
Victoria 8001, Australia
Sever.Dragomir@vu.edu.au
Url: http://rgmia.vu.edu.au/SSDragomirWeb.html
Abstract:
In this paper, it is proved that
_{ }for all natural numbers n, and all real r < 0.
Paper's Title:
Iterative Approximation of Zeros of Accretive Type Maps, with Applications
Author(s):
Charles Ejike Chidume, Chinedu Godwin Ezea, and Emmanuel Ezzaka Otubo
African University of Science and
Technology, Abuja,
Nigeria.
Email: cchidume@aust.edu.ng
Email: chinedu.ezea@gmail.com
Email: mrzzaka@yahoo.com
Department of Mathematics,
Nnamdi Azikiwe University,
Awka,
Nigeria
Email: chinedu.ezea@gmail.com
Ebonyi State University,
Abakaliki,
Nigeria
Email: mrzzaka@yahoo.com
Abstract:
Let E be a reflexive real Banach space with uniformly Gâteaux differentiable norm. Let J:E→ E^{*} be the normalized duality map on E and let A:E^{*}→ E be a map such that AJ is an accretive and uniformly continuous map. Suppose that (AJ)^{1}(0) in nonempty. Then, an iterative sequence is constructed and proved to converge strongly to some u^{*} in (AJ)^{1}(0). Application of our theorem in the case that E is a real Hilbert space yields a sequence which converges strongly to a zero of A. Finally, nontrivial examples of maps A for which AJ is accretive are presented..
Paper's Title:
On SubspaceSupercyclic Operators
Author(s):
Mansooreh Moosapoor
Assistant Professor,
Department of Mathematics,
Farhangian University, Tehran,
Iran.
Email: mosapor110@gmail.com
m.mosapour@cfu.ac.ir
Abstract:
In this paper, we prove that supercyclic operators are subspacesupercyclic and by this we give a positive answer to a question posed in ( L. Zhang, Z. H. Zhou, Notes about subspacesupercyclic operators, Ann. Funct. Anal., 6 (2015), pp. 6068). We give examples of subspacesupercyclic operators that are not subspacehypercyclic. We state that if T is an invertible supercyclic operator then T^{n} and T^{n} is subspacesupercyclic for any positive integer n. We give two subspacesupercyclicity criteria. Surprisingly, we show that subspacesupercyclic operators exist on finitedimensional spaces.
Paper's Title:
Some criteria for Subspacehypercyclicity of C_{0}semigroups
Author(s):
Mansooreh Moosapoor
Department of Mathematics,
Farhangian University, Tehran,
Iran.
Email: m.mosapour@cfu.ac.ir
mosapor110@gmail.com
Abstract:
We research subspacehypercyclic C_{0}semigroups in this paper. We present various types of subspacehypercyclicity criteria for C_{0}semigroups. Some of them are stronger than the criteria introduced before. Also, we state that if a C_{0}semigroup (T_{t}}_{t≥ 0} satisfies in any of them, then (T_{t}⊕T_{t}}_{t≥ 0} is subspacehypercyclic.
Paper's Title:
Oscillation and Boundedness of Solutions to First and Second Order Forced Dynamic Equations with Mixed Nonlinearities
Author(s):
Ravi P. Agarwal and Martin Bohner
Department of Mathematical Sciences, Florida Institute of Technology
Melbourne, FL 32901,
U.S.A.
bohner@mst.edu
URL:http://web.mst.edu/~bohner
Department of Economics and Finance, Missouri University of Science and Technology
Rolla, MO 65401,
U.S.A.
agarwal@fit.edu
Abstract:
Some oscillation and boundedness criteria for solutions to certain first and second order forced dynamic equations with mixed nonlinearities are established. The main tool in the proofs is an inequality due to Hardy, Littlewood and Pólya. The obtained results can be applied to differential equations, difference equations and qdifference equations. The results are illustrated with numerous examples.
Paper's Title:
Ostrowski Type Inequalities for Lebesgue Integral: a Survey of Recent Results
Author(s):
Sever S. Dragomir^{1,2}
^{1}Mathematics, School of Engineering
& Science
Victoria University, PO Box 14428
Melbourne City, MC 8001,
Australia
Email: sever.dragomir@vu.edu.au
^{2}DSTNRF Centre of Excellence in the Mathematical and Statistical Sciences,
School of Computer Science & Applied Mathematics,
University of the Witwatersrand,
Private Bag 3, Johannesburg 2050,
South Africa
URL:
http://rgmia.org/dragomir
Abstract:
The main aim of this survey is to present recent results concerning Ostrowski type inequalities for the Lebesgue integral of various classes of complex and realvalued functions. The survey is intended for use by both researchers in various fields of Classical and Modern Analysis and Mathematical Inequalities and their Applications, domains which have grown exponentially in the last decade, as well as by postgraduate students and scientists applying inequalities in their specific areas.
Paper's Title:
Inequalities for Discrete FDivergence Measures: A Survey of Recent Results
Author(s):
Sever S. Dragomir^{1,2}
^{1}Mathematics, School of Engineering
& Science
Victoria University, PO Box 14428
Melbourne City, MC 8001,
Australia
Email: sever.dragomir@vu.edu.au
^{2}DSTNRF Centre of Excellence in the Mathematical and Statistical Sciences,
School of Computer Science & Applied Mathematics,
University of the Witwatersrand,
Private Bag 3, Johannesburg 2050,
South Africa
URL:
http://rgmia.org/dragomir
Abstract:
In this paper we survey some recent results obtained by the author in providing various bounds for the celebrated fdivergence measure for various classes of functions f. Several techniques including inequalities of Jensen and Slater types for convex functions are employed. Bounds in terms of KullbackLeibler Distance, Hellinger Discrimination and Varation distance are provided. Approximations of the fdivergence measure by the use of the celebrated Ostrowski and Trapezoid inequalities are obtained. More accurate approximation formulae that make use of Taylor's expansion with integral remainder are also surveyed. A comprehensive list of recent papers by several authors related this important concept in information theory is also included as an appendix to the main text.
Paper's Title:
The Conservativeness of Girsanov Transformed for Symmetric Jumpdiffusion Process
Author(s):
Mila Kurniawaty and Marjono
Department of Mathematics,
Universitas Brawijaya,
Malang,
Indonesia.
Email: mila_n12@ub.ac.id,
marjono@ub.ac.id
Abstract:
We study about the Girsanov transformed for symmetric Markov processes with jumps associated with regular Dirichlet form. We prove the conservativeness of it by dividing the regular Dirichlet form into the "small jump" part and the "big jump" part.
Paper's Title:
Two Geometric Constants Related to Isosceles Orthogonality on Banach Space
Author(s):
Huayou Xie, Qi Liu and Yongjin Li
Department of Mathematics,
Sun Yatsen University,
Guangzhou, 510275,
P. R. China.
Email: xiehy33@mail2.sysu.edu.cn
Department of Mathematics,
Sun Yatsen University,
Guangzhou, 510275,
P. R. China.
Email: liuq325@mail2.sysu.edu.cn
Department of Mathematics,
Sun Yatsen University,
Guangzhou, 510275,
P. R. China.
Email: stslyj@mail.sysu.edu.cn
Abstract:
In this paper, we introduce new geometric constant C(X,a_{i},b_{i},c_{i},2) to measure the difference between isosceles orthogonality and special Carlsson orthogonalities. At the same time, we also present the geometric constant C(X,a_{i},b_{i},c_{i}), which is a generalization of the rectangular constant proposed by Joly. According to the inequality on isosceles orthogonality, we give the boundary characterization of these geometric constants. Then the relationship between these geometric constants and uniformly nonsquare property can also be discussed. Furthermore, we show that there is a close relationship between these geometric constants and some important geometric constants.
Paper's Title:
Normalized Truncated Levy models applied to the study of Financial Markets
Author(s):
M. C. Mariani, K. Martin, D. W. Dombrowski and D. Martinez
Department of Mathematical Sciences and Department of Finance,
New Mexico State University, P.O. Box 30001
Department 3MB Las Cruces, New Mexico 880038001
USA.
mmariani@nmsu.edu
kjmartin@nmsu.edu
Abstract:
This work is devoted to the study of the statistical properties of financial instruments from developed markets. We performed a new analysis of the behavior of companies corresponding to the DJIA index, and of the index itself, by using a normalized Truncated Levy walk model. We conclude that the Truncated Levy distribution describes perfectly the evolution of the companies and of the index near a crash.
Paper's Title:
Asymptotic Distribution of Products of Weighted Sums of Dependent Random Variables
Author(s):
Y. Miao and J. F. Li
College
of Mathematics
and Information
Science,
Henan Normal
University
Henan,
China
yumiao728@yahoo.com.cn
College
of Mathematics
and Information
Science,
Henan Normal
University, 453007
Henan,
China.
junfen_li@yahoo.com.cn
Abstract:
In this paper we establish the asymptotic distribution of products of weighted sums of dependent positive random variable, which extends the results of Rempała and Wesołowski (2002).
Paper's Title:
Examples of Fractals Satisfying the Quasihyperbolic Boundary Condition
Author(s):
Petteri Harjulehto and Riku Klén
Department of Mathematics and Statistics,
FI20014 University of Turku,
Finland
Email: petteri.harjulehto@utu.fi
Email: riku.klen@utu.fi
Abstract:
In this paper we give explicit examples of bounded domains that satisfy the quasihyperbolic boundary condition and calculate the values for the constants. These domains are also John domains and we calculate John constants as well. The authors do not know any other paper where exact values of parameters has been estimated.
Paper's Title:
Strong Convergence Theorem for a Common Fixed Point of an Infinite Family of Jnonexpansive Maps with Applications
Author(s):
Charlse Ejike Chidume, Otubo Emmanuel Ezzaka and Chinedu Godwin Ezea
African University of Science and
Technology,
Abuja,
Nigeria.
Email:
cchidume@aust.edu.ng
Ebonyi State University,
Abakaliki,
Nigeria.
Email: mrzzaka@yahoo.com
Nnamdi Azikiwe University,
Awka,
Nigeria.
Email: chinedu.ezea@gmail.com
Abstract:
Let E be a uniformly convex and uniformly smooth real Banach space with dual space E^{*}. Let {T_{i}}^{∞}_{i=1} be a family of Jnonexpansive maps, where, for each i,~T_{i} maps E to 2^{E*}. A new class of maps, Jnonexpansive maps from E to E^{*}, an analogue of nonexpansive self maps of E, is introduced. Assuming that the set of common Jfixed points of {T_{i}}^{∞}_{i=1} is nonempty, an iterative scheme is constructed and proved to converge strongly to a point x^{*} in ∩^{∞}_{n=1}F_{J}T_{i}. This result is then applied, in the case that E is a real Hilbert space to obtain a strong convergence theorem for approximation of a common fixed point for an infinite family of nonexpansive maps, assuming existences. The theorem obtained is compared with some important results in the literature. Finally, the technique of proof is also of independent interest.
Paper's Title:
A Multivalued Version of the RadonNikodym Theorem, via the Singlevalued Gould Integral
Author(s):
Domenico Candeloro^{1}, Anca Croitoru^{2}, Alina Gavriluţ^{2}, Anna Rita Sambucini^{1}
^{1}Dept. of Mathematics and Computer
Sciences,
University of Perugia,
1, Via Vanvitelli  06123, Perugia,
Italy.
Email: domenico.candeloro@unipg.it,
anna.sambucini@unipg.it
^{2}Faculty of Mathematics,
Al. I. Cuza University,
700506 Iaşi,
Romania.
Email: croitoru@uaic.ro,
gavrilut@uaic.ro
Abstract:
In this paper we consider a Gould type integral of real functions with respect to a compact and convex valued not necessarily additive measure. In particular we will introduce the concept of integrable multimeasure and, thanks to this notion, we will establish an exact RadonNikodym theorem relative to a fuzzy multisubmeasure which is new also in the finite dimensional case. Some results concerning the Gould integral are also obtained.
Paper's Title:
ψ(m,q)Isometric Mappings on Metric Spaces
Author(s):
Sid Ahmed Ould Beinane, Sidi Hamidou Jah and Sid Ahmed Ould Ahmed Mahmoud
Mathematical Analysis and Applications,
Mathematics Department, College of Science,
Jouf University,
Sakaka P.O.Box 2014,
Saudi Arabia.
Email: beinane06@gmail.com
Department of Mathematics, College of
Science Qassim University,
P.O. Box 6640, Buraydah 51452,
Saudi Arabia.
Email: jahsiidi@yahoo.fr
Mathematical Analysis and Applications,
Mathematics Department, College of Science, Jouf University,
Sakaka P.O.Box 2014,
Saudi Arabia.
Email: sidahmed@ju.edu.sa,
sidahmed.sidha@gmail.com
Abstract:
The concept of (m,p)isometric operators on Banach space was extended to
(m,q)isometric mappings on general metric spaces in [6].
This paper is devoted to define the concept of
ψ(m, q)isometric, which is the
extension of A(m, p)isometric operators on Banach spaces introduced in [10].
Let T,ψ: (E,d) > (E, d) be two mappings.
For some positive integer m and q ∈ (0,∞).
T is said to be an ψ(m,q)isometry,
if for all y,z ∈ E,
Paper's Title:
Conservativeness Criteria of Girsanov Transformation for NonSymmetric Jumpdiffusion
Author(s):
Mila Kurniawaty
DDepartment of Mathematics,
Universitas Brawijaya, Malang,
Indonesia.
Email: mila_n12@ub.ac.id
Abstract:
We develop the condition in our previous paper [The Conservativeness of Girsanov transformed for symmetric jumpdiffusion process (2018)] in the framework of nonsymmetric Markov process with jumps associated with regular Dirichlet form. We prove the conservativeness of it by relation in duality of Girsanov transformed process and recurrent criteria of Dirichlet form.
Paper's Title:
Some Moduli and Inequalities Related to Birkhoff Orthogonality in Banach Spaces
Author(s):
Dandan Du and Yongjin Li
Department of Mathematics,
Sun Yatsen University,
Guangzhou, 510275,
P.R. China.
Email: dudd5@mail2.sysu.edu.cn
Department of Mathematics,
Sun Yatsen University,
Guangzhou, 510275,
P.R. China.
Email: stslyj@mail.sysu.edu.cn
Abstract:
In this paper, we shall consider two new constants δ_{B}(X) and ρ_{B}(X), which are the modulus of convexity and the modulus of smoothness related to Birkhoff orthogonality, respectively. The connections between these two constants and other wellknown constants are established by some equalities and inequalities. Meanwhile, we obtain two characterizations of Hilbert spaces in terms of these two constants, study the relationships between the constants δ_{B}(X), ρ_{B}(X) and the fixed point property for nonexpansive mappings. Furthermore, we also give a characterization of the Radon plane with affine regular hexagonal unit sphere.
Paper's Title:
On Positive Entire Solutions of Second Order Quasilinear Elliptic Equations
Author(s):
Zuodong Yang and Honghui Yin
Institute of Mathematics, School of Mathematics and Computer Science,
Nanjing Normal University, Jiangsu Nanjing 210097,
China;
zdyang_jin@263.net
Department of Mathematics, Huaiyin Teachers College,
Jiangsu Huaian 223001,
China;
School of Mathematics and Computer Sciences,
Nanjing Normal University, Jiangsu Nanjing 210097,
China.
yin_hh@sina.com
Abstract:
In this paper, our main purpose is to establish the existence theorem of positive entire solutions of second order quasilinear elliptic equations under new conditions. The main results of the present paper are new and extend the previously known results.
Paper's Title:
Approximation of Derivatives in a Singularly Perturbed Second Order Ordinary Differential Equation with Discontinuous Terms Arising in Chemical Reactor Theory
Author(s):
R. Mythili Priyadharshini and N. Ramanujam
Department of Mathematics, Bharathidasan University,
Tiruchirappalli  620 024, Tamilnadu, India.
matram2k3@yahoo.com
URL:
http://www.bdu.ac.in/depa/science/ramanujam.htm
Abstract:
In this paper, a singularly perturbed second order ordinary differential equation with a discontinuous convection coefficient arising in chemical reactor theory is considered. A robustlayerresolving numerical method is suggested. An εuniform global error estimate for the numerical solution and also to the numerical derivative are established. Numerical results are provided to illustrate the theoretical results.
Paper's Title:
Solving Fractional Transport Equation via Walsh Function
Author(s):
A. Kadem
L. M. F. N., Mathematics Department,
University of Setif,
Algeria
abdelouahak@yahoo.fr
Abstract:
In this paper we give a complete proof of A method for the solution of fractional transport equation in threedimensional case by using Walsh function is presented. The main characteristic of this technique is that it reduces these problems to those of solving a system of algebraic equations, thus greatly simplifying the problem.
Paper's Title:
On the Boundedness of Hardy's Averaging Operators
Author(s):
DahChin Luor
Department of Applied Mathematics,
IShou University, Dashu District,
Kaohsiung City 84001,
Taiwan, R.O.C.
dclour@isu.edu.tw
Abstract:
In this paper we establish scales of sufficient conditions for the boundedness of Hardy's averaging operators on weighted Lebesgue spaces. The estimations of the operator norms are also obtained. Included in particular are the ErdélyiKober operators.
Paper's Title:
A Dynamic Contact Problem for an Electro Viscoelastic Body
Author(s):
Denche M. and Ait Kaki L.
Laboratoire Equations Differentielles,
Departement de Mathematiques,
Universite Constantine 1,
Algeria.
Ecole Normale Superieure,
Departement des Sciences Exactes et Informatique,
Plateau Mansourah, Constantine.
Algeria.
Email:
m.denche@umc.edu.dz
leilaitkaki@yahoo.fr
Abstract:
We consider a dynamic problem which describes a contact between a piezoelectric body and a conductive foundation. The frictionless contact is modelled with the normal compliance, the electric conditions are supposed almost perfect. We prove the existence of a unique weak solution for almost perfect electric contact.
Paper's Title:
Scope of the Logarithmic Mean
Author(s):
Murali Rao and Agnish Dey
Department of Mathematics,
University of Florida,
1400 Stadium Road, Gainesville,
Florida 32611,
U. S. A.
Email: mrao@ufl.edu
URL: http://people.clas.ufl.edu/mrao
Email: agnish@ufl.edu
URL: http://people.clas.ufl.edu/agnish
Abstract:
A number a is between two numbers x and y if and only if a is a convex combination of x and y, in other words, it is a "weighted mean" of x and y. Geometric mean, arithmetic mean are well known examples of these "means". Of more recent vintage is the logarithmic mean which has been considered in many articles in the literature. In this note, we first discuss some of its properties. Then we shall introduce the L function and explore the inverse of this function and its connection with the Lambert's Omega function.
Paper's Title:
MSplit Equality for Monotone Inclusion Problem and Fixed Point Problem in Real Banach Spaces
Author(s):
^{1,2}Christian Chibueze Okeke, ^{3}Abdumalik Usman Bello, ^{1}Chinedu Izuchukwu, and ^{1}Oluwatosin Temitope Mewomo
^{1}School
of Mathematics,
Statistics and Computer Science,
University of KwaZuluNatal, Durban,
South Africa.
Email: okekec@ukzn.ac.za
Email: izuchukwuc@ukzn.ac.za
Email: mewomoo@ukzn.ac.za
^{2}DSTNRF
Center of Excellence in Mathematical and Statistical Sciences (CoEMass)
Johannesburg,
South Africa.
^{3}Federal
University,
DutsinMa, Katsina State,
Nigeria.
Email:
uabdulmalik@fudutsinma.edu.ng
Abstract:
In this paper a new iterative algorithm for approximating a common solution of split equality monotone inclusion problem and split equality fixed point problem is introduced. Using our algorithm, we state and prove a strong convergence theorem for approximating an element in the intersection of the set of solutions of a split equality monotone inclusion problem and the set of solutions of a split equality fixed point problem for right Bregman strongly nonexpansive mappings in the setting of puniformly convex Banach spaces which are also uniformly smooth. We also give some applications.
Paper's Title:
Bounds on the Jensen Gap, and Implications for MeanConcentrated Distributions
Author(s):
Xiang Gao, Meera Sitharam, Adrian E. Roitberg
Department of Chemistry, and Department
of Computer & Information Science & Engineering,
University of Florida,
Gainesville, FL 32611,
USA.
Email: qasdfgtyuiop@gmail.com
URL:
https://scholar.google.com/citations?user=t2nOdxQAAAAJ
Abstract:
This paper gives upper and lower bounds on the gap in Jensen's inequality, i.e., the difference between the expected value of a function of a random variable and the value of the function at the expected value of the random variable. The bounds depend only on growth properties of the function and specific moments of the random variable. The bounds are particularly useful for distributions that are concentrated around the mean, a commonly occurring scenario such as the average of i.i.d. samples and in statistical mechanics.
Paper's Title:
The Jacobson Density Theorem for NonCommutative Ordered Banach Algebras
Author(s):
Kelvin Muzundu
University of Zambia,
Deparment of Mathematics and Statistics,
P.O. Box 32379, Lusaka,
Zambia.
Email: kmzundu@gmail.com
Abstract:
The Jacobson density theorem for general noncommutative Banach algebras states as follows: Let π be a continuous, irreducible representation of a noncommutative Banach algebra A on a Banach space X. If x_{1},x_{2},...,x_{n} are linearly independent in X and if y_{1},y_{2},...,y_{n} are in X, then there exists an a∈ A such that π(a)x_{i}=y_{i} for i=1,2,...,n. By considering ordered Banach algebras A and ordered Banach spaces X, we shall establish an ordertheoretic version of the Jacobson density theorem.
Paper's Title:
A New Relaxed bmetric Type and Fixed Point Results
Author(s):
P. Singh, V. Singh and Thokozani Cyprian Martin Jele
Department of Mathematics,
University of KwaZuluNatal,
Private Bag X54001, Durban,
South Africa.
Email: singhp@ukzn.ac.za,
singhv@ukzn.ac.za,
thokozani.jele@nwu.ac.za
Abstract:
The purpose of this paper is to introduce a new relaxed α, β bmetric type by relaxing the triangle inequality. We investigate the effect that this generalization has on fixed point theorems.
Paper's Title:
Generalized Von NeumannJordan Constant for Morrey Spaces and Small Morrey Spaces
Author(s):
H. Rahman and H. Gunawan
Department of Mathematics,
Islamic State University Maulana Malik Ibrahim Malang,
Jalan Gajayana No.50,
Indonesia.
Email: hairur@mat.uinmalang.ac.id
Analysis and Geometry Group,
Faculty of Mathematics and Natural Sciences,
Bandung Institute of Technology, Bandung 40132,
Indonesia.
Email: hgunawan@math.itb.ac.id
URL:
http://personal.fmipa.itb.ac.id/hgunawan/
Abstract:
In this paper we calculate some geometric constants for Morrey spaces and small Morrey spaces, namely generalized Von NeumannJordan constant, modified Von NeumannJordan constants, and Zbaganu constant. All these constants measure the uniformly nonsquareness of the spaces. We obtain that their values are the same as the value of Von NeumannJordan constant for Morrey spaces and small Morrey spaces.
Paper's Title:
Lie Group Theoretic Approach of OneDimensional BlackScholes Equation
Author(s):
P. L. Zondi and M. B. Matadi
Department of Mathematical sciences,
Faculty of Sciences & Agriculture, University of Zululand,
P Bag X1001, KwaDlangezwa 3886,
South Africa.
Email: matadim@unizulu.ac.za
zondip@unizulu.ac.za
Abstract:
This study discusses the Lie Symmetry Analysis of BlackScholes equation via a modified local oneparameter transformations. It can be argued that the transformation of the BlackScholes equation is firstly obtained by means of riskless rate. Thereafter, the corresponding determining equations to the reduced equation are found. Furthermore, new symmetries of the BlackScholes equation are constructed and lead to invariant solutions.
Paper's Title:
A New Relaxed Complexvalued bmetric Type and Fixed Point Results
Author(s):
P. Singh, V. Singh and T. C. M. Jele
Department of Mathematics, University of
KwaZuluNatal,
Private Bag X54001, Durban,
South Africa.
Email: singhp@ukzn.ac.za
singhv@ukzn.ac.za
thokozani.jele@nwu.ac.za
Abstract:
In this paper, we study the existence and uniqueness of fixed point in complex valued bmetric spaces and introduce a new relaxed α, β Complexvalued bmetric type by relaxing the triangle inequality and determine whether the fixed point theorems are applicable in these spaces.
Paper's Title:
Multistage Analytical Approximate Solution of QuasiLinear Differential Algebraic System of Index Two
Author(s):
Ibrahim M. Albak, F. A. Abdullah^{*} and Zarita Zainuddin
School of Mathematical Sciences,
Universiti Sains Malaysia,
11800 USM, Penang,
Malaysia.
Email: ibra13975@gmail.com,
farahaini@usm.my,
zarita@usm.my
Abstract:
In this paper, a new Multistage Transform Method (MSDTM) has been proposed by utilizing a wellknown transformation technique, the Differential Transform Method (DTM), to solve Differential Algebraic Equations (DAEs) with index 2. The advantage of the proposed scheme is that it does not require an index reduction and extends the convergence domain of the solution. Some examples for various types of problems are carried out to show the ability of MSDTM in solving DAEs. The results obtained are in good agreement with the existing literature which demonstrates the effectiveness and efficiency of the proposed method.
Paper's Title:
Corrigendum for Multistage Analytical Approximate Solution of QuasiLinear Differential Algebraic System of Index Two
Author(s):
Ibrahim M. Albak, F. A. Abdullah^{*} and Zarita Zainuddin
School of Mathematical Sciences,
Universiti Sains Malaysia,
11800 USM, Penang,
Malaysia.
Email: ibra13975@gmail.com,
farahaini@usm.my,
zarita@usm.my
Abstract:
This article is a corrigendum to AJMAA Volume 18, Issue 2, Article 13, {PDF Link}.
Paper's Title:
LiYorke and Expansivity for Composition Operators on Lorentz Space
Author(s):
Rajat Singh and Romesh Kumar
Department of Mathematics,
University of Jammu,
Jammu 180006,
INDIA.
Email: rajat.singh.rs634@gmail.com
Department of Mathematics,
University of Jammu,
Jammu 180006,
INDIA.
Email: romeshmath@gmail.com
Abstract:
In this paper, we investigate LiYorke composition operators and some of its variations on Lorentz spaces. Further, we also study expansive composition operators on these spaces. The work of the paper is essentially based on the work in [3], [6], [8] and [15].
Paper's Title:
On Automorphisms and Biderivations of Semiprime Rings
Author(s):
Abu Zaid Ansari, Faiza Shujat, Ahlam Fallatah
Department of Mathematics,
Faculty of Science,
Islamic University of Madinah, Madinah
K.S.A.
Email: ansari.abuzaid@gmail.com,
ansari.abuzaid@iu.edu.sa
Department of Mathematics
Faculty of Science
Taibah University, Madinah,
K.S.A.
Email: faiza.shujat@gmail.com,
fullahkhan@taibahu.edu.sa
Department of Mathematics
Faculty of Science
Taibah University, Madinah,
K.S.A.
Email: Afallatah@taibahu.edu.sa
Abstract:
In this article, our goal is to figure out a functional equation involving automorphisms and biderivations on certain semiprime ring. Also, we characterize the structure of automorphism, in case of prime rings.
Search and serve lasted 1 second(s).