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ABSTRACT. In this paper, it is proved that
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for all natural numbersn, and all realr < 0.
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1. I NTRODUCTION

The inequality to which the title refers is
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for all natural numbersn, and all realr > 0. For convenience, we call it Martins’ inequality
(see [4]).

We prove that Martins’ inequality is reversed forr < 0.

Theorem. For all natural numbersn, and all realr < 0, then
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2. L EMMAS

Lemma 1 (König’s inequality [2, p. 149] and [3, p. 24]). Let{ai}n
i=1 and{bi}n

i=1 be decreasing
nonnegativen-tuples such that
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then, forr > 0,
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The sign of equality in(2.2)holds if and only ifai = bi for all 1 ≤ i ≤ n.

Lemma 2 ([5]). For all natural numbern, then
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3. PROOF OF THEOREM

Proof. Let r = −s, s > 0, then (1.2) is equivalent to
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for p = 0, 1, 2, . . . , n, and

bq(n+1)+1 = bq(n+1)+2 = · · · = bq(n+1)+(n+1) =
1

(q + 1) n+1
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for q = 0, 1, 2, . . . , n− 1.
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Easy calculation reveals that
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Then, (3.1) is equivalent to
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It is easy to see that both the sequences{ai}n(n+1)
i=1 and{bi}n(n+1)

i=1 are decreasing, andan(n+1) =
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= bn(n+1). Therefore, by Lemma 1, to prove (3.2) it is sufficient to

show that
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for pn + 1 ≤ k ≤ (p + 1)n, p = 0, 1, 2, . . . , n, and
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for q(n + 1) + 1 ≤ k ≤ (q + 1)(n + 1), q = 0, 1, 2, . . . , n− 1.
Letk ∈ {1, 2, . . . , n(n+1)}, then there exists a uniquely determined numberi ∈ {0, 1, 2, . . . , n}

such thatin + 1 ≤ k ≤ (i + 1)n. We consider three cases to show (3.3).
Case 1.i = 0. Then we have1 ≤ k ≤ n which leads to
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Because ofn
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Case 2.i = n. Then we haven2 + 1 ≤ k ≤ n(n + 1) which leads to
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InequalityBk ≤ Ak is equivalent to

(3.4)

(
n + 1

n

n
√

n!
n+1
√

(n + 1)!

)k

≤ n!

nn

(
n + 1

n

)n2

.

AJMAA, Vol. 2, No. 1, Art. 2, pp. 1-5, 2005 AJMAA

http://ajmaa.org


4 CHAO-PING CHEN AND FENG QI AND SEVER S. DRAGOMIR

Beause of
n + 1
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> 1, we have to show that (3.4) holds fork = n(n + 1). Easy

computation shows that the sign of equality in (3.4) holds fork = n(n + 1).
Case 3.1 ≤ i ≤ n− 1. Then we havein+1 ≤ k ≤ i(n+1) or i(n+1)+1 ≤ k ≤ (i+1)n.

If in + 1 ≤ k ≤ i(n + 1), then
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For i = 1, thenk = n + 1, Bk ≤ Ak is equivalent to
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(3.5)

It is easy to see from (2.3) that
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Because of (3.6), it suffices to prove that (3.5) is valid fork = i(n + 1). This means we have to
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such thatBk ≤ Ak is equivalent to
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From Lemma 2 we conclude that
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which implies (3.8) with strictly inequality. This finishes the proof of (3.3), and thus of the
theorem.

The proof of Theorem has motivated by an article of Alzer [1].
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