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1. I NTRODUCTION

The logarithmic mean between two positive numbersx, y is defined as :

(1) L(x, y) =
x− y

log(x)− log(y)
,

see ([1], [7], [9], [11]) etc. This is called a mean as it lies betweenx andy. The following
integral representations appear in the literature:

L(x, y)−1 =

∫ 1

0

1

tx + (1− t)y
dt,

L(x, y)−1 =

∫ ∞

0

1

(x + t)(y + t)
dt,

L(x, y) =

∫ 1

0

xθy1−θdθ,

see ([1], [6], [7], [9], [11]). In the next section we shall discuss some of the properties of
the logarithmic mean. Most of these properties are available in the literature. We shall prove
that logarithmic mean inn-many arguments (see [11]) is concave. An extension of Holder’s
inequality using logarithmic mean will be presented. We are going to use Neuman’s integral
representation to obtain a recursion formula for the logarithmic mean and will show that our
formula agrees with the one obtained by Mustonen in [8], which involves computations using
series expansions.

In the last section, we shall introduce the functionL(x) = L(x, 1) =
∫ 1

0
xθdθ. First, we shall

discuss various properties of this function. Then the inverse of theL function and its connection
with the Lambert Omega function will be discussed. Lambert’s Omega function, also called the
tree function, arises in the solution of the trinomial equationx = q + xm, first considered by
Lambert in1758 and later in1779, Euler transformed this into a symmetric form and it has
found many applications ever since, see [2].

2. PROPERTIES

Here we list some properties:

min(x, y) ≤ L(x, y) ≤ max(x, y).

(2) L(x, y) = yL(
x

y
, 1) = xL(

y

x
, 1).

L(x, y) =

{
0 if x or y = 0,

x if x = y.

L(x, y) increases in each variable separately.
L(x, y) is concave in(x, y).

More generally forn positive numbersx1, ..., xn, the logarithmic meanL(x1, ..., xn) is defined
by

L(x1, ..., xn) =

∫ 1

0

xθ1
1 xθ2

2 ...xθn
n µn(dθ),

whereµn is the "uniform probability" measure on the simplex:∆n = {(θ1, ..., θn), θ1+...+θn =
1}, see [7].

Theorem 2.1.L(x1, ..., xn) is symmetric.L(x1, ..., xn) is concave inx1, ..., xn.
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SCOPE OF THELOGARITHMIC MEAN 3

Proof. Symmetry is trivial. Let us first prove concavity for two positive numbersx, y: Let
x, y, a, b > 0. Here we need to show that

(tx + (1− t)a)θ(ty + (1− t)b)1−θ ≥ txθy1−θ + (1− t)aθb1−θ for all t ∈ (0, 1).

We only need to prove this inequality whent = 1
2
, as mid-point concavity implies concavity for

a continuous function [due to Sierpinski]. Thus we need to establish the following:

(1 + c)θ(1 + d)1−θ ≥ 1 + cθd1−θ, c =
a

x
, d =

b

y
.

Now, letf(c) = (1+c)θ(1+d)1−θ−1+cθd1−θ, thenf ′(c) = θ(1+c)θ−1(1+d)1−θ−θcθ−1d1−θ.
Let c > d. Then,(1+d

d
)1−θ > (1+c

c
)1−θ, i.e (1+d

d
)1−θ > ( c

1+c
)θ−1, i.e (1 + d)1−θ(1 + c)θ−1 >

cθ−1d1−θ, this implies thatθ(1 + c)θ−1(1 + d)1−θ − θcθ−1d1−θ > 0, hencef ′(c) > 0 , i.e f is
increasing ifc > d. Whenc = d, f(d) = 0, hencef(c) ≥ 0 for c ≥ d. Similarly, we observe
that if c < d, f ′(c) < 0, i.e f is decreasing here andf(d) = 0, hencef(c) ≥ 0 for c < d as
well. Thus we havef(c) ≥ 0 for all c, completing the proof of our claim.

Now we use induction to prove the result forn positive numbersx1, ..., xn. The casen = 2
has been done above.

Induction hypothesis: Let us assume that whenn = m we have :
m∏

i=1

(txi + (1− t)ai)
θi ≥ t

m∏
i=1

xθi
i + (1− t)

m∏
i=1

aθi
i .

Now letSm =
∑m

i=1 θi andn = m + 1. Then,
m+1∏
i=1

(txi + (1− t)ai)
θi

= [
m∏

i=1

(txi + (1− t)ai)
θi

Sm ]Sm(txm+1 + (1− t)am+1)
θm+1

≥ [t
m∏

i=1

x
θi

Sm
i + (1− t)

m∏
i=1

a
θi

Sm
i ]Sm(txm+1 + (1− t)am+1)

θm+1

≥ t(
m∏

i=1

x
θi

Sm
i )Smx

θm+1

m+1 + (1− t)(
n∏

i=1

a
θi

Sm
i )Sma

θm+1

m+1 ,

hence the theorem is proved.

Extension of Holder’s Inequality

Theorem 2.2.Letf, g be two positive integrable functions. Then
∫

L(f, g) ≤ L(
∫

f,
∫

g).

Proof. Let 0 < θ < 1. Let p = 1
θ
, q = 1

1−θ
, then 1

p
+ 1

q
= 1. Holder’s inequality gives us:∫

(f θ)(g1−θ)dx ≤ (
∫

f)θ(
∫

g)1−θdx.
Let µ be a probability measure on(0, 1). Integrating the above inequality with respect to

µ(dθ) we have: ∫ 1

0

µ(dθ)

∫
f θg1−θdx ≤

∫ 1

0

(

∫
f)θ(

∫
g)1−θµ(dθ).

Changing the order of integration on the left hand side of the above inequality we get:∫
Lµ(f, g) ≤ Lµ(

∫
f,

∫
g).
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4 MURALI RAO AND AGNISH DEY

If µ is uniform on(0, 1), then we obtain the desired inequality.

Theorem 2.3. Let X1, X2, ..., Xn be a supermartingale, thenYn = Ln(X1, ..., Xn) is also a
supermartingale.

Proof.

E[Yn+1|Fn]

=

∫
θ1+θ2+...+θn≤1

Xθ1
1 ...Xθn

n E(X1−θ1−...−θn
n+1 |Fn)dθ1...dθn

≤
∫

θ1+...+θn≤1

Xθ1
1 ...Xθn

n (E(Xn+1|Fn)1−θ1−...θndθ1...dθn

≤
∫

θ1+...+θn≤1

Xθ1
1 ...X1−θ1−...−θn−1

n dθ1...dθn

=

∫
Xθ1

1 ...X1−θ1−...−θn−1
n

∫ 1−θ1−...−θn−1

0

dθn

≤
∫

Xθ1
1 Xθ2

2 ...X1−θ1−...−θn−1
n = Ln(X1, ..., Xn),

thus the theorem follows.

Recursion Formula for Logarithmic Mean

Let x1, x2, ..., xn ben positive numbers. We defineMn(x1, ..., xn) to be:

Mn(x1, ..., xn) = n!

∫ 1

0

xθ1
1 dθ1...

∫ 1−θ1−θ2−...−θn−1

0

xθn
n dθn,

n∑
i=1

θi ≤ 1.

We already know that the logarithmic mean ofx1, ..., xn is given by:

Ln(x1, ..., xn) = (n−1)!

∫ 1

0

xθ1
1 dθ1...

∫ 1−θ1−θ2−...−θn−2

0

x
θn−1

n−1 x1−θ1−...−θn−1
n dθn−1,

n∑
i=1

θi = 1.

Proposition 2.4. Ln+1(x1, ..., xn+1) = xn+1Mn( x1

xn+1
, ..., xn

xn+1
).

Proof.

Ln+1(x1, ..., xn+1)

= n!

∫ 1

0

xθ1
1 dθ1...

∫ 1−θ1−...−θn−1

0

xθn
n x1−θ1−...−θn

n+1 dθn

= n!

∫ 1

0

xθ1
1 ...

∫ 1−θ1−...−θn−1

0

xθn
n

xn+1

xθ1+...+θn
n+1

dθn

= xn+1n!

∫ 1

0

(
x1

xn+1

)θ1dθ1...

∫ 1−θ1−...−θn−1

0

(
xn

xn+1

)θndθn

= xn+1Mn(
x1

xn+1

, ...,
xn

xn+1

),

hence the claim is estabished.
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That is forn many arguments we have:Ln(x1, ..., xn) = xnMn−1(
x1

xn
, ..., xn−1

xn
). Now,

Mn(x1, ..., xn)

= n!

∫ 1

0

xθ1
1 dθ1...

∫ 1−θ1−...−θn−1

0

xθn
n dθn

=
xnn!

ln(xn)

∫ 1

0

(
x1

xn

)θ1dθ1...

∫ 1−θ1−...−θn−2

0

(
xn−1

xn

)θn−1dθn−1

− n!

ln(xn)

∫ 1

0

xθ1
1 dθ1...

∫ 1−θ1−...−θn−2

0

x
θn−1

n−1 dθn−1

=
nxn

ln(xn)
Mn−1(

x1

xn

, ...,
xn−1

xn

)− n

ln(xn)
Mn−1(x1, ..., xn−1).

Thus we have:

Ln(x1, ..., xn) = xnMn−1(
x1

xn

, ...,
xn−1

xn

)

= xn[
xn−1

xn

(n− 1)

ln(xn−1

xn
)
Mn−2(

x1

xn−1

, ...,
xn−2

xn−1

)− (n− 1)

ln(xn−1

xn
)
Mn−2(

x1

xn

, ...,
xn−2

xn

)]

=
(n− 1)

ln(xn−1

xn
)
xn−1Mn−2(

x1

xn−1

, ...,
xn−2

xn−1

)− (n− 1)

ln(xn−1

xn
)
xnMn−2(

x1

xn

, ...,
xn−2

xn

)

=
(n− 1)

ln(xn−1

xn
)
[Ln−1(x1, ..., xn−1)− Ln−1(x1, ..., xn−2, xn)].

Now we prove that our formula agrees with [8].
SinceLn(x1, ..., xn) is symmetric, we have :
Ln(x1, ..., xn) = (n − 1)!

∫ 1

0
xθ1

2 dθ1...
∫ 1−θ1−...−θn−2

0
xθn−1

n x
1−θ1−...−θn−1

1 dθn−1 and we write

Mn(x2, ..., xn, x1) = n!
∫ 1

0
xθ1

2 dθ1...
∫ 1−θ1−...−θn−1

0
xθn

1 dθn. Then the above proposition takes
the form

Ln(x1, ..., xn) = x1Mn−1(
x2

x1

, ...,
xn

x1

).

By proceeding in similar manner we obtain:

Mn(x2, ..., xn, x1) = n!

∫ 1

0

xθ1
2 dθ1...

∫ 1−θ1−...−θn−2

0

xθn−1
n dθn−1

x
1−θ1−...−θn−1

1 − 1

ln(x1)

=
x1n!

ln(x1)

∫ 1

0

(
x2

x1

)θ1dθ1...

∫ 1−θ1−...−θn−2

0

(
xn

x1

)θn−1dθn−1

− n!

ln(x1)

∫ 1

0

xθ1
2 dθ1...

∫ 1−θ1−...−θn−2

0

xθn−1
n dθn−1

=
x1n

ln(x1)
Mn−1(

x2

x1

, ...,
xn

x1

)− n

ln(x1)
Mn−1(x2, ..., xn).

Hence we have:

Ln(x1, ...xn) = x1Mn−1(
x2

x1

, ...,
xn

x1

)

= x1[
xn

x1

(n− 1)

ln(xn

x1
)

Mn−2(
x2

xn

, ...,
xn−1

xn

)− (n− 1)

ln(xn

x1
)

Mn−2(
x2

x1

, ...,
xn−1

x1

)]
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6 MURALI RAO AND AGNISH DEY

=
(n− 1)

ln(xn

x1
)

[xnMn−2(
x2

xn

, ...,
xn−1

xn

)− x1Mn−2(
x2

x1

, ...,
xn−1

x1

)]

=
(n− 1)

ln(xn

x1
)

[Ln−1(x2, ..., xn)− Ln−1(x1, ..., xn−1)] for n = 2, 3, ...;

-which is exactly the formula obtained in [8].�

3. THE L FUNCTION

In this note, we write

(3) L(x) = L(x, 1) =

∫ 1

0

xθdθ.

Properties:• L is continuous, strictly increasing and maps[0, 1] onto [0, 1] and (1,∞) onto
(1,∞).

For0 ≤ x ≤ 1, 0 ≤ x ≤ L(x) ≤ 1.

For1 ≤ x ≤ ∞, 1 ≤ L(x) < x < ∞.

L(x) increasing and concave on[0,∞).
•

(L(x))p ≤ L(xp) (Holder),p ≥ 1,

(L(x))p ≥ L(xp) 0 < p ≤ 1,

|L(x)− L(y)| ≤ L(|x− y|).

Indeed,|xθ − yθ| ≤ |x− y|θ, for 0 ≤ θ ≤ 1.
•

L(x + y) ≤ L(x) + L(y) as( (x + y)θ ≤ xθ + yθ, for 0 < θ < 1),

(λ ∧ 1)L(x) ≤ L(λx) ≤ (λ ∨ 1)L(x) for λ > 0.

Let L(n) denote then-th iterate ofL: L(n+1)(x) = L[L(n)(x)]. Then

1− L(n)(x) ≤ 1

2nx
0 < x < 1,

L(n)(x) ≤ 1 +
x

2n
1 ≤ x < ∞.

Indeed,L(x) ≥
√

x, and by using induction we getL(n)(x) ≥ x2−n
, so1−L(n)(x) ≤ 1−x2−n ≤

1
2nx

[in fact, 1− xθ = θ
∫ 1

x
yθ−1dy ≤ θ

x

∫ 1

x
dy ≤ θ

x
]. If x > 1, we useL(x) ≤ 1+x

2
≤ 1 + x

2
and

induction to seeL(n)(x) ≤ 1 + x
2n , so thatL(n)(x)− 1 ≤ x

2n for x > 1.

Relationship betweenL(x, y) andL(x), L(y)

We observe the following:

whenx < 1, xθ decreases, wheny > 1, y1−θ decreases.

whenx > 1, xθ increases, wheny < 1, y1−θ increases.

when bothx, y < 1, xθ decreases,y1−θ increases.

when bothx, y > 1, xθ increases,y1−θ decreases.
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Thus, x, y < 1 implies
∫ 1

0

xθy1−θdθ ≤ (

∫ 1

0

xθdθ)(

∫ 1

0

y1−θdθ), i.e L(x, y) ≤ L(x)L(y).

Similarly x, y > 1 implies L(x, y) ≤ L(x)L(y).

When one of them is less than1 and the other one is bigger than1∫ 1

0

xθy1−θdθ ≥ (

∫ 1

0

xθdθ)(

∫ 1

0

y1−θdθ), i.e L(x, y) ≥ L(x)L(y).

Lambert’s Omega Function

In 1758, Lambert solved the trinomial equationx = q + xm by developing a series forx in
powers ofq, see [5]. In [3], Euler transformed Lambert’s equation into the more symmetric
form

(4) xα − xβ = (α− β)vxα+β

by replacingx−β for x and settingm = α
β

andq = (α− β)v. In [2], Corless argues that this led
Euler to the following:

(5) xn = 1 + nv +
1

2
n(n + α + β)v2 +

1

6
n(n + α + 2β)(n + 2α + β)v3 + etc.

After deriving this series, Euler observed the special cases, starting withα = β. To see its
implication in the original trinomial equation, Corless suggests us to divide (4) by(α− β) and
then asβ → α we get

(6) log(x) = vxα.

If we can solve equation (6) forα = 1, then we can solve it for anyα 6= 0. To see this, multiply
equation (6) byα, simplify αlog(x) to logxα, putz = xα andu = αv. Thus we end up getting
log(z) = uz, which is just equation (6) withα = 1. To solve this equation using (5), Euler put
α = β = 1 and had a series(x

n−1)
n

. Next settingn = 0 he obtainedlog(x) on the left hand side
and a series on the right hand side:

log(x) = v +
21

2!
v2 +

32

3!
v3 +

43

4!
v4 + ...

This series, which converges for|v| < 1
e
, defines a functionT (v) called the tree function.

It equals−Ω(−v), whereΩ(z) is defined to be the function satisfyingΩ(z)eΩ(z) = z. This
function has many applications - in the enumeration of trees, in the calculation of water wave
heights, in general relativity and quantum mechanics etc. Now here we would like to relate this
very important function to ourL function:

We start withL(x, y) = λ iff L(x
λ
, y

λ
) = 1. And L(x, y) = 1 iff xe−x = ye−y (i.e yL(x

y
, 1) =

1).

Inverse ofL and Lambert Omega function

Let L(x) = y. Then, x−1
log(x)

= y iff x−1
y

= log(x) iff x
y
e−

x
y = 1

y
e−

1
y iff ρ(x

y
) = ρ( 1

y
), whereρ

is defined asρ(θ) = θe−(θ−1). We observe thatρ maps[0,∞) onto[0, 1], ρ is strictly increasing
on [0, 1] and strictly decreasing on[1,∞) andρ(0) = 0, ρ(1) = 1, ρ(∞) = 0.

Now let us considerΩ defined on[0, 1] by Ω(z) =
∑∞

1
nn−1

n!
1
en zn, see [12]. It can be shown

that :Ω is one to one, onto on[0, 1], Ω(0) = 0, Ω(1) = 1, Ω(ρ(θ)) = θ, ρ(Ω(θ)) = θ, i.eΩ and
ρ are inverses on[0, 1].

ρ(x) = θ has two roots as we have observed before and the unique root in(0, 1) is given by
Ω(θ). The solution of the equationρ(x) = θ for x ∈ (1,∞) is quite hard to get and we cannot
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8 MURALI RAO AND AGNISH DEY

find in the literature any approach to find this root. Here we show that the inverse ofL helps
solve this problem.

Let us again assumeL(x) = y. This is equivalent tox
y
e−

x
y = 1

y
e−

1
y , i.e ρ(x

y
) = ρ( 1

y
). Recall

thatx < y iff y < 1 andx > y if y(and hence x) > 1. Thus,

L(x) = y, x < 1

iff ρ(
x

y
) = ρ(

1

y
) =

1

y
e−( 1

y
−1)

i.e
x

y
= Ω[

1

y
e−( 1

y
−1)]

i.e x = Ω[
1

y
e−( 1

y
−1)] = Ω(ρ(

1

y
)).

Thus, on[0, 1], the inverse ofL is Ω(ρ( 1
y
)) =

∑∞
1

nn−1

n!
( 1

y
e−

1
y )n. Thus we have proved that

ρ(a) = ρ(b) iff ae−a = be−b iff L(a, b) = 1 iff bL(a
b
, 1) = 1 iff L(a

b
) = 1

b
. And if b < 1 (or

a
b

< 1), a
b

= Ω(ρ(1
b
)).

Recall thatL(x) = y iff x
y
e−

x
y = 1

y
e−

1
y , i.eρ(x

y
) = ρ( 1

y
). As observed before, givenθ ∈ [0, 1]

has exactly two roots:ρ(z1) = ρ(z2) = θ, one in[0, 1], and the other one in[1,∞). We know
z1 ∧ z2 = Ω(θ), i.e the smaller root isΩ(θ).

Theorem 3.1. Let θ ∈ [0, 1]. ThenΩ(θ) ∈ [0, 1]. Letx be such thatL(x) = 1
Ω(θ)

. ThenxΩ(θ)

is the larger root.

Proof. We writey = 1
Ω(θ)

. Then sinceL(x) = y, ρ(x
y
) = ρ( 1

y
) = ρ(Ω(θ)) = θ. Since,y > 1,

x > 1, andL(x) = y impliesx > y, so x
y

> 1 and hencex
y

is the largest root, concluding the
proof of the theorem.

The above theorem shows that finding the inverse ofL on [1,∞) finds the larger root of
ρ(z) = θ. Of-courseΩ(θ) is the smaller root. Thus the inverse ofL is of interest.

Theorem 3.2. If L(x) = y andy < 1, thenx = yΩ(θ) whereθ = ρ( 1
y
) = 1

y
e−( 1

y
−1).

Proof. L(x) = y iff x
y
e−(x

y
−1) = 1

y
e−( 1

y
−1) = θ. Sayθ ∈ [0, 1]. If y < 1, thenx < y, so

x
y
∈ [0, 1]. ThusΩ(θ) = x

y
, sinceρ(x

y
) = θ, and x

y
< 1. Hence,x = yΩ(θ) and the theorem

follows.

We do not know a formula forL−1(x) if x > 1. Now, we give an iterative procedure for
obtainingL−1.

Let x > 1: L(x) = y means x−1
log(x)

= y, or x − 1 = ylog(x). We writex − 1 = z to get
z = ylog(1 + z), z ≥ 0. That isz is a fixed point of the functionf(z) = ylog(1 + z), z ≥ 0.

Claim 1. f(z) is strictly increasing in[0,∞) and maps the interval[y − 1, y2] into itself.

Proof. (1) f(z) is strictly increasing is clear.
(2) f(y − 1) = ylog(y) > y − 1 is seen by differentiation.
(3) It is seen by differentiation that

√
ξ − log(1 + ξ) is increasing in[0,∞). It follows that

log(1 + ξ) ≤
√

ξ, hencef(z) ≤ y2 if z ≤ y2. Thus,f maps[y − 1, y2] into itself.

Sincef is increasing andf maps[y−1, y2] into itself, the iteratesxn = f (n)(y−1) increases
to a fixed point (withx0 = y − 1).

Claim 2. f has a unique fixed point in[y − 1,∞].
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Proof. Let ρ(z) = z − f(z). If ρ(z) has two zerosz1, z2 ∈ [y − 1,∞), with z1 < z2, then by
Rolle’s Theoremρ′(z) = 0 for somez ∈ (z1, z2). But ρ′(z) = 0 if and only if z = y − 1.

Convergence Rate: We saw above that the iteratesxn converges to a fixed point. We have:

xn+1 − xn = ylog(1 + xn)− ylog(1 + xn−1)

= ylog[1 +
xn − xn−1

1 + xn−1

]

≤ y
xn − xn−1

1 + xn−1

(becauselog(1 + z) ≤ z)

≤ y
xn − xn−1

1 + x1

(asxn is increasing)

=
y

1 + ylog(y)
(xn − xn−1) (asx1 = ylog(1 + x0) = ylog(1 + y − 1) = ylogy)

= α(xn − xn−1) (whereα =
y

1 + ylog(y)
< 1 if y > 1).

Thus, the convergence rate is exponential.
We can also use the fixed point method to find the inverse ofL in (0, 1). Let us consider

y ∈ [0, 1]. We want to findx such thatL(x) = y. Let f(x) = x
L(x)

y, 0 ≤ x ≤ y. If x < 1,
L(x) > x, sof(x) < y. Thusf maps continuously[0, y] into itself. So it has a fixed point. We
know it is unique asL is strictly increasing.

f is increasing.f ′(x) = y[ 1
L(x)

− x
L2(x)

L′(x)] = y
L2(x)

[L(x)− xL′(x)].
Claim: L(x)− xL′(x) > 0 in (0, 1).
In fact, L′(x) =

∫ 1

0
θxθ−1dθ, soxL′(x) =

∫ 1

0
θxθdθ <

∫ 1

0
xθdθ = L(x). Hence,f (n)(x)

converges to the fixed point for any0 < x < y.
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