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ABSTRACT. A number @' is between two numbersandy if and only if a is a convex combina-

tion of x andy, in other words, it is a "weighted mean" efandy. Geometric mean, arithmetic
mean are well known examples of these "means”. Of more recent vintage is the logarithmic
mean which has been considered in many articles in the literature. In this note, we first discuss
some of its properties. Then we shall introduce th&unction and explore the inverse of this
function and its connection with the Lambert's Omega function.
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2 MURALI RAO AND AGNISHDEY

1. INTRODUCTION

The logarithmic mean between two positive numberg is defined as :

L=y
(1) L(z,y) = ;
)= ogw) = log)
see ([1], 7], [9], [11]) etc. This is called a mean as it lies betweeandy. The following
integral representations appear in the literature:

1
1
L = ——dt
1

L(z.y)! = /Oo—dt,
S A P TOFE)

1
L(x,y) = / 2Pyt =ap,

0

see ([1], 6], I7], 19], [11]). In the next section we shall discuss some of the properties of
the logarithmic mean. Most of these properties are available in the literature. We shall prove
that logarithmic mean im-many arguments (see [11]) is concave. An extension of Holder’s
inequality using logarithmic mean will be presented. We are going to use Neuman’s integral
representation to obtain a recursion formula for the logarithmic mean and will show that our
formula agrees with the one obtained by Mustonen in [8], which involves computations using
series expansions.

In the last section, we shall introduce the functiofr) = L(x, 1) = fol 2%df. First, we shall
discuss various properties of this function. Then the inverse af fia@ction and its connection
with the Lambert Omega function will be discussed. Lambert’s Omega function, also called the
tree function, arises in the solution of the trinomial equatios ¢ + =™, first considered by
Lambert in1758 and later in1779, Euler transformed this into a symmetric form and it has
found many applications ever since, see [2].

2. PROPERTIES

Here we list some properties:
min(z,y) < L(z,y) < maz(z,y).

Y
2 L(ﬂf,y)—yﬂy,l)— L(~,1).
L(x,y):{o ifx(iry:(),

x ifx=uy.

L(z,y) increases in each variable separately.
L(z,y) is concave inz,y).
More generally fom positive numbers, ..., z,,, the logarithmic mead.(z1, ..., ,,) is defined
by

1
L(xl,...,xn):/ P8 2l (d6),
0

wherey,, is the "uniform probability” measure on the simplex,, = {(04,...,0,),0,1+...+60,, =
1}, seel[T].

Theorem 2.1. L(xy, ..., x,) iSs symmetricL(z1, ..., x,,) IS concave incy, ..., z,.
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Proof. Symmetry is trivial. Let us first prove concavity for two positive numberg: Let
x,y,a,b > 0. Here we need to show that

(tr + (1 —t)a) (ty + (1 — )b)* % > a0 + (1 — t)a®b* " for all t € (0,1).

We only need to prove this inequality whes- 1 3, @s mid-point concavity implies concavity for
a continuous function [due to Sierpinski]. Thus we need to establish the following:

b
(1+¢)(1 +d)1—9 >14+d7? c=—, d=
z’ y
Now, let f(c) = (14+¢)?(1+d)' % —1+?d'¢, thenf'(c) = O(1+ )9 H14d)' =0 — 010
Letc > d. Then,(14)~0 > (1jc)1 -0 |e(”d)1 > () ie(1+d)t 9(1+c)9 L >
A=1d'=, this implies that) (1 + ¢)?~1(1 + d)=% — 0/~ 1d* =0 > O, hencef’(c) > 0, i.e fis

increasing ifc > d. Whenc = d, f(d) = 0, hencef(c) > 0 for ¢ > d. Similarly, we observe
that if c < d, f'(c¢) < 0, i.e f is decreasing here anfld) = 0, hencef(c) > 0 for ¢ < d as
well. Thus we have (¢) > 0 for all ¢, completing the proof of our claim.
Now we use induction to prove the result fopositive numbers, ..., z,,. The caser = 2
has been done above.
Induction hypothesis: Let us assume that whea m we have :
[T+ =)y > e[t + (1 = t) [Tl
=1 =1 =1
Now letS,, = > ", 6; andn = m + 1. Then,
m+1

[Tt + (1 = t)as)”

=1

KL 0;
H tr; + (1= t)a;) " (w1 + (1 = )amer) '™
=1
m 0; m 0;
>t [a7 + Q=) ][ a1 (b + (1 = t)amsn)’
i=1 =1
m n 0

Hx mai o+ (L= (i) e,
hence the theorem is prove|i.
Extension of Holder’s Inequality

Theorem 2.2.Let f, g be two positive integrable functions. Théd.(f,g) < L([ f, | 9).

Proof. Let0 < 0 < 1. Letp = 4, ¢ = 15,
(g0 dz < (f H([ g)'Oda.

Let . be a probability measure qif), 1). Integrating the above inequality with respect to

1(df) we have:
/Olﬂ(de)/fegl_edx < /01(/ f)9(/g)1—9u(d9)_

Changing the order of integration on the left hand side of the above inequality we get:

[ua s [
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If 1« is uniform on(0, 1), then we obtain the desired inequality.

Theorem 2.3.Let X, Xs, ..., X,, be a supermartingale, theri, = L,(X3,..., X,,) is also a
supermartingale.

Proof.

E[Yn+1|Fn]
— / XU X E(X) 0 E,)dd, . db,
61+62+ +6n<1

< / X0 X0 (B(X g |Fy) 006, ...d6,,
91+ +97L<1

) 1-601—...—0,,_1
[t | 0,
0

< /Xleﬁ?...X;—el—---—enl = L,(X1,... X,),

< / X{r Xm0 0nnde, L db,
01+...4+60,<1

thus the theorem followss

Recursion Formula for Logarithmic Mean
Letzy, xs, ..., x,, ben positive numbers. We define,, (x4, ..., x,,) to be:

1 1-01—605—...— 0,1 n
Mn(acl,...,xn):n!/ x(fldQl.../ 2irdf,, Y 0; <1
0 0 i=1

We already know that the logarithmic meanqf ..., z,, is given by:

n

1 1-01—02—.. 0o
Lo(z1,...,my) = (n—l)!/ xfldel.../ xi" Sl Ttgy ZQi =1
0 0

=1
Proposition 2.4. Ly41(21, ..., Tnt1) = T Ma (52, 0, 222).

Proof.

Ln+1($1, ceey ZEn_H)

1 1-01—...—0, 1
—n!/ 291 do, .. / alngl "y,
0

1 1-01—...—0,_1 T
= n! On 7L f),,
’ ’ Ln, $61+ +0n
0 n+1

1-01—...—0n_1
:xnﬂn!/ (M) ap, / (= yn g,
0 0

Tp+1 Tn+1
X1 Tn
= $n+1Mn( )7
Tn+41 Tn41

hence the claim is estabishqd.
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That is forn many arguments we havé;,(xy, ..., x,) = ©, M, (%, ..., ==1). Now,

M, (xy, ..., z,)

e
1 1-01——0p1
0 On
:n!/ x11d91.../ x,rdl,
0 0

] 1 1-01—...—0p—2
— la:nn. / (ﬂ)eldél.../ (—xn_l )9"*1d9n_1
n(x,) Jo Tn 0 T

n! 1 1-01—...—0p_2 0
— / z1dh; ... / ",y
In(zn) Jo 0

ny I Tp—1 n
L VR e _ My 1 (21, s Zy).
In(x,) 1(xn Ty ) In(x,) (1, n-1)
Thus we have:
Lo(1s ooy n) = an M (22, . I;*I)
Tpo1 (n—1) T T2 (n—1) 1 T2
=, —Mn— g sery - T Mn— Ty
T [ T, l’l’L(zZ—;l) 2($n_1 xn—l) ln(;_;l) 2<xn T, )]
(n—1) T T2 (n—1) T Tp—2
= T Ta_iNdn— Mn— ALY - T ’rLMn— Ty
ln(—x;;l)x ! 2(xn_1 xn_l) ln(—;;l)x l n T )

n—1
- M[Ln—lcvla ...,l’n_l) - Ln_l('xl’ ...,l’n_z,vxn)]'

Now we prove that our formula agrees with [8].
SinceL,(x1,...,x,) IS symmetric, we have :

1 1=01—..—0r, S — - :
Ln(21, ..y zy) = (n—1)! [ z5dh; ... 0 2 gfn-rgl= 7" and we write

n

M, (z2, ..., xn, x1) = n! fol :cgld@l... 01_91_'“_9“‘1 2%"df,. Then the above proposition takes
the form

Y Tn
Ln(l’l, 7[En) = ZL‘an_l(—2, —)

)

T I ’
By proceeding in similar manner we obtain:

1 16016y it
0 O 1 -
M, (22, ..., Tp, x1) :n!/ x21d6’1.../ ot dl,
0 0

In(xy)
| 1 1-01—...—0,,_2
— /(ﬁ)"ldel.../ (Z2y0n1de,
In(xy) Jo o1 0 1

TL' 1 o 1-601—...—0,,—2 )
— i 1do, ... =146,
mm)/o‘”? ! / n !

rin i) Tn n
S L VY R DL L VS PN
In(xq) 1($1 r1" In(x) (2, )
Hence we have:
{5 Iy
Lo(y, tty) = 2 M, (2250
(21, .n) = 1 1(931 x1)
Ty (n—1) To Tp_1 (n—1) To Tn_1
:‘rl[_—xn n—2(_7-'-7 )— T n_Q(—,...7 ]
z1 In($2) Tn Tn In(%) T T

x1
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(n—1) To Tp1 T Tp1

= — nMnf Ty eeey - Mnf IR
ln(i—’;) @ Q(xn T )= 2<x1 1
(n—1)

-which is exactly the formula obtained in/[8]]

3. THE L FUNCTION

In this note, we write

1
3 L(z) = L(z,1) = / 2%dh.
0
Properties:e L is continuous, strictly increasing and maps1] onto [0, 1] and (1, co) onto
(1, 00).
For0<z<1,0<z<L(z) <1.
Forl <z <o0,1<L(z) <z < 0.

L(z) increasing and concave ¢ co).
[ ]

Indeed,
[ ]

2 — | < |z —yl’ foro <6 < 1.

L(z +y) < L(z) + L(y) as( (z+y)’ <2’ +4% for0 <0< 1),
(AN L(z) < L(Az) < (AV1)L(x) for A > 0.

Let L(™ denote the:-th iterate ofL: L+ (z) = L[L™(z)]. Then

1
1—LW@)y < —0<a<1

(:L‘)_an x )
L(")(x)§1+2£n1<x<oo

Indeed,L(x) > \/z, and by using induction we gét™ (z) > 2> ", s0l— L™ (z) < 1—22" <
s finfact, 1 —af =0 [y ldy < ¢ [1dy < 2].If 2 > 1, we useL(x) < 42 <1+ £ and
induction to sed.(™ (z) < 1+ £, so thatL™(z) — 1 < £ forz > 1.

Relationship between(z, y) andL(x), L(y)
We observe the following:

whenz < 1, 2% decreases, when> 1, y'~Y decreases

0 1-0

whenz > 1, z” increases, whep < 1, y " increases

1-0

when bothz, y < 1, 2’ decreasesy'~? increases

when bothz, y > 1, 2% increasesy' ™ decreases
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1 1 1
Thus, z,y < 1 implies / 2%yt dh < (/ xadﬁ)(/ y'=%dp), i.e L(x,y) < L(x)L(y).
0 0 0

Similarly z,y > 1 implies L(z,y) < L(z)L(y).
When one of them is less tharand the other one is bigger than

/1 2%y =0dh > (/1 mng)(/l y'=%dp), i.e L(x,y) > L(x)L(y).

Lambert’'s Omega Function
In 1758, Lambert solved the trinomial equation= ¢ + =™ by developing a series far in
powers ofq, see([5]. In[[3], Euler transformed Lambert’s equation into the more symmetric
form

4) 2% — 2’ = (a = Bvz™™?

by replacingz—° for 2 and settingn = 2 andq = (a— B)v. In [2], Corless argues that this led
Euler to the following:

1 1
(5) 2" =1+nv+ 5n(n +a+ B + 6n(n + a+28)(n + 20+ B0 + ete.

After deriving this series, Euler observed the special cases, startingwithi. To see its
implication in the original trinomial equation, Corless suggests us to divide (4} by ) and
then as? — a we get

(6) log(x) = vx®.
If we can solve equation (6) far = 1, then we can solve it for any # 0. To see this, multiply
equation (6) by, simplify alog(z) to logz®, putz = z® andu = av. Thus we end up getting
log(z) = uz, which is just equation (6) withh = 1. To solve this equation using (5), Euler put
a = =1and had a serie€§" . Next setting: = 0 he obtainedog(z) on the left hand side
and a series on the right hand side:

21 2 43

log(x )—v—irgv +3 +4 Yl

This series, which converges far| < 1, defines a functiof(v) called the tree function.
It equals—Q(—v), whereQ(z) is defined to be the function satisfyifgz)e®*) = 2. This
function has many applications - in the enumeration of trees, in the calculation of water wave
heights, in general relativity and quantum mechanics etc. Now here we would like to relate this
very important function to ouf. function:

We start withZ(z,y) = A iff L(5, %) = 1. And L(z, y) = 1iff ze™ =ye ¥ (lLeyL(], 1) =
1).

AT A

Inverse ofL and Lambert Omega function

Let L(z) = y. Then,; > (1 =y iff == 1 = log(x) iff ie_% = %e_i iff p(%) = p(i), wherep
is defined a$>( ) = 0e~ =1, We observe that maps[0, co) onto|0, 1}, p is strictly increasing
on [0, 1] and strictly decreasing dn, co) andp(0) = 0, p(1) = 1, p(c0) = 0.

Now let us considef2 defined on0, 1] by Q(z) = >°7° ":Jl L .n seel[12]. It can be shown
that : 2 is one to one, onto oft), 1], 2(0) = 0, (1) =1, Q(p («9)) =40, p(2(0)) =46,i.eQand
p are inverses ofv, 1].

p(x) = 6 has two roots as we have observed before and the unique r@tlinis given by
(). The solution of the equation(x) = 6 for x € (1, c0) is quite hard to get and we cannot

AJMAA Vol. 11, No. 1, Art. 15, pp. 1-10, 2014 AJMAA


http://ajmaa.org

8 MURALI RAO AND AGNISHDEY

find in the literature any approach to find this root. Here we show that the inversdelps
solve this problem.

Let us again assumk(x) = y. This is equivalent t(%e_% =
thatz < y iff y < 1 andx > y if y(and hence x> 1. Thus,

Lz)=y, x<1

o) =p()= e
1

el = Q- G
Y Y
1 _ 1
iex=0-e ] =Q(p(-
5 = el
Thus, on(0, 1], the inverse of. is Q(p(1)) = Y7 —y)m
p(a) = p(b) iff ae=® = be b iff L(a,b) = 1iff bL(
$<1),5=0(p(3))-
Recall thatl.(z) = y iff $e” v = s€ viiep(?) = p(;). As observed before, givehe [0, 1]
has exactly two rootsp(zl) = p(z2) = 6, one in|0, 1], and the other one ifi, c0). We know
21 A\ z9 = Q(6), i.e the smaller root i§)(F).

Theorem 3.1.Let# € [0,1]. ThenQ2(#) € [0,1]. Letx be such that.(z) = ﬁ ThenzQ)(6)
is the larger root.

] =1 ey _ 1
se viiep(]) = p(;). Recall

)™. Thus we have proved that

e
a 1) = 1iff L(4) = L. Andifb < 1 (or

o

<

Proof. We writey = 555 Then sincel(z) =y, p(%) = p(;;) = p((9)) = 0. Sincey > 1,
x> 1,andL(z) = y impliesz > y, sog > 1 and hence;— is the largest root, concluding the
proof of the theoremg

The above theorem shows that finding the inversé @ [1, co) finds the larger root of
p(z) = 0. Of-course)(0) is the smaller root. Thus the inverselofs of interest.

Theorem 3.2.1f L(z) = y andy < 1, thenz = y)(¢) wheref) = p(1) = 1e~( 7,

Proof. L(z) = y iff 267" = 17670 = 9. sayg € [0,1). If y < 1, thenz < y, s0
L e [0,1]. ThusQ(f) = £, sincep(%) = #, and: < 1. Hence,xz = y§2(¢) and the theorem
Yy Yy Yy Yy

follows.

We do not know a formula fof.7!(x) if z > 1. Now, we give an iterative procedure for
obtainingL .

Letz > 1: L(z) =y meanslog( =y ore—1= ylog(x). We writez — 1 = 2 to get
z =ylog(1+ z), z > 0. That isz is a fixed point of the functiorf(z) = ylog(1 + z), z > 0.

Claim 1. f(z) is strictly increasing in0, oo) and maps the intervdl — 1, y?] into itself.

Proof. (1) f(z) is strictly increasing is clear.

(2 f(y—1) =ylog(y) >y — 1 is seen by differentiation.

(3) It is seen by differentiation thays — log(1 + £) is increasing if0, co). It follows that
log(1+ &) < VE, hencef(z) < y?if 2 < y2 Thus,f mapsly — 1,4?] into itself.

Sincef is increasing ang mapsfy — 1, ¢?] into itself, the iterates,, = ™ (y — 1) increases
to a fixed point (withzy =y — 1).

Claim 2. f has a unique fixed point iy — 1, oo].
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Proof. Let p(z) = z — f(z). If p(z) has two zeros,, z; € [y — 1,00), with z; < 29, then by
Rolle’s Theoreny'(z) = 0 for somez € (21, 22). Butp/(z) =0ifandonlyifz =y — 1. 1

Convergence Rate: We saw above that the itergie®nverges to a fixed point. We have:
Tpt+1 — T = ylog(l + xn) - ylog(l + xnfl)

Ty — Ty
= ylog[1 + Tanl]
< y?;—ﬁ (becauséog (1 + z) < z)
< yx”l;—i”l‘l (asz, is increasing
= #@g(y)@n — Zn_1) (asz1 = ylog(1 + z¢) = ylog(1 +y — 1) = ylogy)
= a(x, —x,_1) (Wherea = #Og(y) <lify>1).

Thus, the convergence rate is exponential.

We can also use the fixed point method to find the inversg of (0,1). Let us consider
y € [0,1]. We want to findz such thatL(z) = y. Let f(z) = 54, 0 <z < y. If 2 < 1,
L(z) > x,s0f(z) < y. Thusf maps continuoushi, y| into itself. So it has a fixed point. We
know it is unique ad. is strictly increasing.

fisincreasing.f'(z) = ylz — L' (2)] = F5lL(@) — 2L (2)].

Claim: L(z) — «L'(x) > 0in (0,1).

In fact, L'(z) = [, 02°~'d6, soxL/(z) = [, 02°d8 < [} 2%d9 = L(x). Hence,f" (x)
converges to the fixed point for afy< = < y.
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