


Paper's Title:
Iterative Approximation of Common Fixed Points of a Finite Family of Asymptotically Hemicontractive Type Mappings
Author(s):
JuiChi Huang
Center for General Education,
Northern Taiwan Institute of Science and Technology,
Peito, Taipei,
Taiwan, 11202, R.O.C.
juichi@ntist.edu.tw
Abstract:
In this paper, we prove that the sequence of
the modified IshikawaXu,
IshikawaLiu, MannXu and MannLiu iterative types of a finite family of
asymptotically hemicontractive type mappings converges strongly to a common
fixed point of the family in a real puniformly convex Banach space with
p>1. Our results improve and extend some recent results.
Paper's Title:
Composite VariationalLike Inequalities Given By Weakly Relaxed ζSemiPseudomonotone MultiValued Mapping
Author(s):
Syed Shakaib Irfan, Iqbal Ahmad, Zubair Khan and Preeti Shukla
College of Engineering, Qassim University
Buraidah, AlQassim,
Saudi Arabia.
Email: shakaib@qec.edu.sa
College of Engineering, Qassim University
Buraidah, AlQassim,
Saudi Arabia.
Email: iqbal@qec.edu.sa
Department of Mathematics,
Integral University Lucknow,
India.
Email: zkhan@iul.ac.in
Department of Mathematics,
Integral University Lucknow,
India.
Email: shuklapreeti1991@gmail.com
Abstract:
In this article, we introduce a composite variationallike inequalities with weakly relaxed ζpseudomonotone multivalued maping in reflexive Banach spaces. We obtain existence of solutions to the composite variationallike inequalities with weakly relaxed ζpseudomon otone multivalued maps in reflexive Banach spaces by using KKM theorem. We have also checked the solvability of the composite variationallike inequalities with weakly relaxed ζsemipseudomonotone multivalued maps in arbitrary Banach spaces using KakutaniFanGlicksberg fixed point theorem.
Paper's Title:
Results on Bounds of the Spectrum of Positive Definite Matrices by Projections
Author(s):
P. Singh, S. Singh, V. Singh
University of KwaZuluNatal,
Private Bag X54001,
Durban, 4001,
South Africa.
Email: singhp@ukzn.ac.za
University of South Africa, Department of
Decision Sciences,
PO Box 392, Pretoria, 0003,
South Africa.
Email: singhs2@unisa.ac.za
University of KwaZuluNatal,
Private Bag X54001,
Durban, 4001,
South Africa.
Email: singhv@ukzn.ac.za
Abstract:
In this paper, we develop further the theory of trace bounds and show that in some sense that the earlier bounds obtained by various authors on the spectrum of symmetric positive definite matrices are optimal. Our approach is by considering projection operators, from which several mathematical relationships may be derived. Also criteria for positive lower bounds are derived.
Paper's Title:
Asymptotic Distribution of Products of Weighted Sums of Dependent Random Variables
Author(s):
Y. Miao and J. F. Li
College
of Mathematics
and Information
Science,
Henan Normal
University
Henan,
China
yumiao728@yahoo.com.cn
College
of Mathematics
and Information
Science,
Henan Normal
University, 453007
Henan,
China.
junfen_li@yahoo.com.cn
Abstract:
In this paper we establish the asymptotic distribution of products of weighted sums of dependent positive random variable, which extends the results of Rempała and Wesołowski (2002).
Paper's Title:
Generalized Efficient Solutions to One Class of Vector Optimization Problems in Banach Space
Author(s):
Peter I. Kogut, Rosanna Manzo, and Igor V. Nechay
Department of Differential Equations,
Dnipropetrovsk National University,
Naukova str., 13,
49050 Dnipropetrovsk,
Ukraine
p.kogut@i.ua
Dipartimento di Ingegneria
Dell’informazione e Matematica Applicata,
Università di Salerno,
Via
Ponte
Don Melillo,
84084 Fisciano
(Sa),
Italy
manzo@diima.unisa.it
Department of Technical Cybernetics,
Dnipropetrovsk Technical University,
Acad. Lazarjan str., 2,
49010
Dnipropetrovsk,
Ukraine
i.nechay@i.ua
Abstract:
In this paper, we study vector optimization problems in Banach spaces for essentially nonlinear operator equations with additional control and state constraints. We assume that an objective mapping possesses a weakened property of lower semicontinuity and make no assumptions on the interior of the ordering cone. Using the penalization approach we derive both sufficient and necessary conditions for the existence of efficient solutions of the above problems. We also prove the existence of the socalled generalized efficient solutions via the scalarization of some penalized vector optimization problem.
Paper's Title:
Approximation of Common Fixed Points of a Finite Family of Asymptotically Demicontractive Mappings in Banach Spaces
Author(s):
Yuchao Tang,^{ }Yong Cai, Liqun Hu and Liwei Liu
Department of Mathematics, NanChang University,
Nanchang 330031, P.R. China
Department of Mathematics, Xi'an Jiaotong University,
Xi'an 710049, P.R.
China
Abstract:
By virtue of new analytic techniques, we analyze and
study
several strong convergence theorems for the approximation of
common fixed points of asymptotically demicontractive mappings
via the multistep iterative sequence with errors in Banach
spaces. Our results improve and extend the corresponding ones
announced by Osilike , Osilike and Aniagbosor, Igbokwe, Cho et
al., Moore and Nnoli, Hu and all the others.
Paper's Title:
A Geometric Generalization of BusemannPetty Problem
Author(s):
Liu Rong and Yuan Jun
Shanghai Zhangjiang Group Junior Middle School,
Huo Xiang Road, Shanghai, 201203,
China
Abstract:
The norm defined by Busemann's inequality establishes a class of star body  intersection body. This class of star body plays a key role in the solution of BusemannPetty problem. In 2003, Giannapoulos [1] defined a norm for a new class of halfsection. Based on this norm, we give a geometric generalization of BusemannPetty problem, and get its answer as a result
Paper's Title:
Iterative Algorithm for Split Generalized Mixed Equilibrium Problem Involving Relaxed Monotone Mappings in Real Hilbert Spaces
Author(s):
^{1}U.A. Osisiogu, F.L. Adum, and ^{2}C. Izuchukwu
^{1}Department of Mathematics and
Computer Science,
Ebonyi State University, Abakaliki,
Nigeria.
Email: uosisiogu@gmail.com,
adumson2@yahoo.com
^{2}School of Mathematics,
Statistics and Computer Science,
University of KwaZuluNatal, Durban,
South Africa.
Email: izuchukwuc@ukzn.ac.za,
izuchukwu_c@yahoo.com
Abstract:
The main purpose of this paper is to introduce a certain class of split generalized mixed equilibrium problem involving relaxed monotone mappings. To solve our proposed problem, we introduce an iterative algorithm and obtain its strong convergence to a solution of the split generalized mixed equilibrium problems in Hilbert spaces. As special cases of the proposed problem, we studied the proximal split feasibility problem and variational inclusion problem.
Paper's Title:
Some Inequalities of the HermiteHadamard Type for kFractional Conformable Integrals
Author(s):
C.J. Huang, G. Rahman, K. S. Nisar, A. Ghaffar and F. Qi
Department of Mathematics, Ganzhou Teachers College,
Ganzhou 341000, Jiangxi,
China.
Email:
hcj73jx@126.com ,
huangcj1973@qq.com
Department of Mathematics, Shaheed Benazir
Bhutto University,
Sheringal, Upper Dir, Khyber Pakhtoonkhwa,
Pakistan.
Email: gauhar55uom@gmail.com
Department of Mathematics, College of Arts
and Science at Wadi Aldawaser, 11991,
Prince Sattam Bin Abdulaziz University, Riyadh Region,
Kingdom of Saudi Arabia.
Email: n.sooppy@psau.edu.sa,
ksnisar1@gmail.com
Department of Mathematical Science,
Balochistan University of Information Technology,
Engineering and Management Sciences, Quetta,
Pakistan.
Email: abdulghaffar.jaffar@gmail.com
School of Mathematical Sciences, Tianjin
Polytechnic University,
Tianjin 300387,
China; Institute of Mathematics,
Henan Polytechnic University, Jiaozuo 454010, Henan,
China.
Email: qifeng618@gmail.com,
qifeng618@qq.com
Abstract:
In the paper, the authors deal with generalized kfractional conformable integrals, establish some inequalities of the HermiteHadamard type for generalized kfractional conformable integrals for convex functions, and generalize known inequalities of the HermiteHadamard type for conformable fractional integrals.
Paper's Title:
Bounds for the Extremal Eigenvalues of Positive Definite Matrices
Author(s):
Shivani Singh and Pravin Singh
Unisa, Department of Decision Sciences,
PO Box 392,
Pretoria,
0003,
South Africa.
Email: singhs2@unisa.ac.za
University of KwaZuluNatal,
School of Mathematics Statistics and Computer Sciences
Private Bag X54001,
Durban,
4000,
South Africa.
Email: singhprook@gmail.com
Abstract:
We use a projection to achieve bounds for a vector function of the eigenvalues of a positive definite matrix. For various choices of the monotonic function we are able to obtain bounds for the extremal eigenvalues in terms of the traces of the matrix and its powers. These bounds are relatively simple to compute.
Paper's Title:
On Pseudo Almost Periodic Solutions to Some Neutral FunctionalDifferential Equations
Author(s):
Toka Diagana and Eduardo Hernández
Department of Mathematics, Howard University
2441 6th Street NW,
Washington DC 20059,
USA.
tdiagana@howard.edu
Departamento de Matemática, I.C.M.C. Universidade de São Paulo,
Caixa Postal
668, 13560970, São Carlos SP,
Brazil.
lalohm@icmc.sc.usp.br
Abstract:
This paper discusses the existence and uniqueness of pseudo almost periodic solutions to a class of partial neutral functionaldifferential equations. Under some suitable assumptions, existence and uniqueness results are obtained. An example is given to illustrate abstract results.
Paper's Title:
Isoperimetric Inequalities for Dual Harmonic Quermassintegrals
Author(s):
Yuan Jun, Zao Lingzhi and Duan Xibo
School of Mathematics and Computer Science,
Nanjing Normal University, Nanjing, 210097,
China.
yuanjun_math@126.com
Department of Mathematics, Nanjing Xiaozhuang University,
Nanjing, 211171,
China.
lzhzhao@163.com
Department of Mathematics, Shandong Water Polytechnic,
Shandong, 276826,
China
dxb1111@sohu.com
Abstract:
In this paper, some isoperimetric inequalities for the dual harmonic quermassintegrals are established.
Paper's Title:
Topological Aspects of Scalarization in Vector Optimization Problems.
Author(s):
Peter I. Kogut, Rosanna Manzo and Igor V. Nechay
Department of Differential Equations,
Dnipropetrovsk National University, Naukova
STR.,
13,
49010 Dnipropetrovsk,
Ukraine
p.kogut@i.ua
Università di Salerno,
Dipartimento di Ingegneria dell'Informazione e Matematica Applicata,
Via Ponte don Melillo, 84084 Fisciano (SA),
Italy
manzo@diima.unisa.it
Department of Technical Cybernetics,
Dnipropetrovsk Technical University,
Acad. Lazarjan
STR., 2,
49010 Dnipropetrovsk,
Ukraine
i.nechay@i.ua
Abstract:
In this paper, we study vector optimization problems in partially ordered Banach spaces. We suppose that the objective mapping possesses a weakened property of lower semicontinuity and make no assumptions on the interior of the ordering cone. We derive sufficient conditions for existence of efficient solutions of the above problems and discuss the role of topological properties of the objective space. We discuss the scalarization of vector optimization problems when the objective functions are vectorvalued mappings with a weakened property of lower semicontinuity. We also prove the existence of the socalled generalized efficient solutions via the scalarization process. All principal notions and assertions are illustrated by numerous examples.
Paper's Title:
A New Property of General Means of Order p with an Application to the Theory of Economic Growth
Author(s):
Olivier de La Grandville
Department of Management Science and Engineering,
Huang Engineering Center, Stanford University,
475 Via Ortega, Stanford, California 94305
U.S.A.
Abstract:
The purpose of this note is to demonstrate a new property of the general mean of order p of m ordered positive numbers . If p < 0 and if , the elasticity of with respect to x_{m}, defined by , tends towards zero, and therefore . This property is then applied to optimal growth theory.
Paper's Title:
Ostrowski Type Inequalities for Lebesgue Integral: a Survey of Recent Results
Author(s):
Sever S. Dragomir^{1,2}
^{1}Mathematics, School of Engineering
& Science
Victoria University, PO Box 14428
Melbourne City, MC 8001,
Australia
Email: sever.dragomir@vu.edu.au
^{2}DSTNRF Centre of Excellence in the Mathematical and Statistical Sciences,
School of Computer Science & Applied Mathematics,
University of the Witwatersrand,
Private Bag 3, Johannesburg 2050,
South Africa
URL:
http://rgmia.org/dragomir
Abstract:
The main aim of this survey is to present recent results concerning Ostrowski type inequalities for the Lebesgue integral of various classes of complex and realvalued functions. The survey is intended for use by both researchers in various fields of Classical and Modern Analysis and Mathematical Inequalities and their Applications, domains which have grown exponentially in the last decade, as well as by postgraduate students and scientists applying inequalities in their specific areas.
Paper's Title:
Inequalities for Discrete FDivergence Measures: A Survey of Recent Results
Author(s):
Sever S. Dragomir^{1,2}
^{1}Mathematics, School of Engineering
& Science
Victoria University, PO Box 14428
Melbourne City, MC 8001,
Australia
Email: sever.dragomir@vu.edu.au
^{2}DSTNRF Centre of Excellence in the Mathematical and Statistical Sciences,
School of Computer Science & Applied Mathematics,
University of the Witwatersrand,
Private Bag 3, Johannesburg 2050,
South Africa
URL:
http://rgmia.org/dragomir
Abstract:
In this paper we survey some recent results obtained by the author in providing various bounds for the celebrated fdivergence measure for various classes of functions f. Several techniques including inequalities of Jensen and Slater types for convex functions are employed. Bounds in terms of KullbackLeibler Distance, Hellinger Discrimination and Varation distance are provided. Approximations of the fdivergence measure by the use of the celebrated Ostrowski and Trapezoid inequalities are obtained. More accurate approximation formulae that make use of Taylor's expansion with integral remainder are also surveyed. A comprehensive list of recent papers by several authors related this important concept in information theory is also included as an appendix to the main text.
Paper's Title:
The Conservativeness of Girsanov Transformed for Symmetric Jumpdiffusion Process
Author(s):
Mila Kurniawaty and Marjono
Department of Mathematics,
Universitas Brawijaya,
Malang,
Indonesia.
Email: mila_n12@ub.ac.id,
marjono@ub.ac.id
Abstract:
We study about the Girsanov transformed for symmetric Markov processes with jumps associated with regular Dirichlet form. We prove the conservativeness of it by dividing the regular Dirichlet form into the "small jump" part and the "big jump" part.
Paper's Title:
Numerical Approximation by the Method of Lines with Finitevolume Approach of a Solute Transport Equation in Periodic Heterogeneous Porous Medium
Author(s):
D. J. Bambi Pemba and B. Ondami
Université Marien Ngouabi,
Factuté des Sciences et Techniques,
BP 69, Brazzaville,
Congo.
Email: bondami@gmail.com
Abstract:
In this paper we are interested in the numerical approximation of a twodimensional solute transport equation in heterogeneous porous media having periodic structures. It is a class of problems which has been the subject of various works in the literature, where different methods are proposed for the determination of the socalled homogenized problem. We are interested in this paper, in the direct resolution of the problem, and we use the method of lines with a finite volume approach to discretize this equation. This discretization leads to an ordinary differential equation (ODE) that we discretize by the Euler implicit scheme. Numerical experiments comparing the obtained solution and the homogenized problem solution are presented. They show that the precision and robustness of this method depend on the ratio between, the mesh size and the parameter involved in the periodic homogenization.
Paper's Title:
Reduced Generalized Combination Synchronization Between Two nDimensional IntegerOrder Hyperchaotic Systems and One mDimensional FractionalOrder Chaotic System
Author(s):
Smail Kaouache, Mohammed Salah Abdelouahab and Rabah Bououden
Laboratory of Mathematics and their
interactions,
Abdelhafid Boussouf University Center, Mila.
Algeria
Email: smailkaouache@gmail.com,
medsalah3@yahoo.fr,
rabouden@yahoo.fr
Abstract:
This paper is devoted to investigate the problem of reduced generalized combination synchronization (RGCS) between two ndimensional integerorder hyperchaotic drive systems and one mdimensional fractionalorder chaotic response system. According to the stability theorem of fractionalorder linear system, an active mode controller is proposed to accomplish this end. Moreover, the proposed synchronization scheme is applied to synchronize three different chaotic systems, which are the Danca hyperchaotic system, the modified hyperchaotic Rossler system, and the fractionalorder RabinovichFabrikant chaotic system. Finally, numerical results are presented to fit our theoretical analysis.
Paper's Title:
Coexisting Attractors and Bubbling Route to Chaos in Modified Coupled Duffing Oscillators
Author(s):
B. Deruni^{1}, A. S. Hacinliyan^{1,2}, E. Kandiran^{3}, A. C. Keles^{2}, S. Kaouache^{4}, M.S. Abdelouahab^{4}, N.E. Hamri^{4}
^{1}Department
of Physics,
University of Yeditepe,
Turkey.
^{2}Department
of Information Systems and Technologies,
University of Yeditepe,
Turkey
^{3}Department
of Software Development,
University of Yeditepe,
Turkey.
^{4}Laboratory
of Mathematics and their interactions,
University Center of Abdelhafid Boussouf,
Mila 43000,
Algeria.
Email:
berc890@gmail.com
ahacinliyan@yeditepe.edu.tr
engin.kandiran@yeditepe.edu.tr
cihan.keles@yeditepe.edu.tr
s.kaouache@centrunivmila.dz
medsalah3@yahoo.fr
n.hamri@centreunivmila.dz
Abstract:
In this article dynamical behavior of coupled Duffing oscillators is analyzed under a small modification. The oscillators have cubic damping instead of linear one. Although single duffing oscillator has complex dynamics, coupled duffing systems possess a much more complex structure. The dynamical behavior of the system is investigated both numerically and analytically. Numerical results indicate that the system has double scroll attractor with suitable parameter values. On the other hand, bifurcation diagrams illustrate rich behavior of the system, and it is seen that, system enters into chaos with different routes. Beside classical bifurcations, bubbling route to chaos is observed for suitable parameter settings. On the other hand, Multistability of the system is indicated with the coexisting attractors, such that under same parameter setting the system shows different periodic and chaotic attractors. Moreover, chaotic synchronization of coupled oscillators is illustrated in final section.
Paper's Title:
Generalized Von NeumannJordan Constant for Morrey Spaces and Small Morrey Spaces
Author(s):
H. Rahman and H. Gunawan
Department of Mathematics,
Islamic State University Maulana Malik Ibrahim Malang,
Jalan Gajayana No.50,
Indonesia.
Email: hairur@mat.uinmalang.ac.id
Analysis and Geometry Group,
Faculty of Mathematics and Natural Sciences,
Bandung Institute of Technology, Bandung 40132,
Indonesia.
Email: hgunawan@math.itb.ac.id
URL:
http://personal.fmipa.itb.ac.id/hgunawan/
Abstract:
In this paper we calculate some geometric constants for Morrey spaces and small Morrey spaces, namely generalized Von NeumannJordan constant, modified Von NeumannJordan constants, and Zbaganu constant. All these constants measure the uniformly nonsquareness of the spaces. We obtain that their values are the same as the value of Von NeumannJordan constant for Morrey spaces and small Morrey spaces.
Paper's Title:
Conservativeness Criteria of Girsanov Transformation for NonSymmetric Jumpdiffusion
Author(s):
Mila Kurniawaty
DDepartment of Mathematics,
Universitas Brawijaya, Malang,
Indonesia.
Email: mila_n12@ub.ac.id
Abstract:
We develop the condition in our previous paper [The Conservativeness of Girsanov transformed for symmetric jumpdiffusion process (2018)] in the framework of nonsymmetric Markov process with jumps associated with regular Dirichlet form. We prove the conservativeness of it by relation in duality of Girsanov transformed process and recurrent criteria of Dirichlet form.
Paper's Title:
Estimation for Bounded Solutions of Some Nonlinear Integral Inequalities with Delay in Several Variables
Author(s):
Smakdji Mohamed Elhadi, Denche Mouhamed and Khellaf Hassane
Department of Mathematics
University of Frères Mentouri
PO Box 25000, Ain Elbay,
Constantine,
Algeria.
Email: khellafhassane@umc.edu.dz
Abstract:
In this paper, some new nonlinear retarded integral inequalities of GronwallBellman type for functions of two and nindependents variables are investigated. The derived results can be applied in the study of differentialintegral equations with time delay. An example is given to illustrate the application of our results.
Paper's Title:
SQIRV Model for Omicron Variant with Time Delay
Author(s):
S. Dickson, S. Padmasekaran, G. E. Chatzarakis and S. L. Panetsos
Mathematics, Periyar University, Periyar
Palkalai Nagar, Salem,
636011, Tamilnadu,
India.
Email:
dickson@periyaruniversity.ac.in,
padmasekarans@periyaruniversity.ac.in
Electrical and Electronic Engineering
Educators, School of
Pedagogical and Technological Education (ASPETE),
Marousi 15122, Athens,
Greece.
Email: geaxatz@otenet.gr,
spanetsos@aspete.gr
Abstract:
In order to examine the dynamics of the Omicron variant, this paper uses mathematical modelling and analysis of a SQIRV model, taking into account the delay in the conversion of susceptible individuals into infected individuals and infected individuals into recovered individuals. The pandemic was eventually controlled as a result of the massive delays. To assure the safety of the host population, this concept incorporates quarantine and the COVID19 vaccine. Both local and global stability of the model are examined. It is found that the fundamental reproduction number affects both local and global stability conditions. Our findings show that asymptomatic cases caused by an affected population play an important role in increasing Omicron infection in the general population. The most recent data on the pandemic Omicron variant from Tamil Nadu, India, is verified.
Paper's Title:
Topological Aspects of Discrete Switch Dynamical Systems
Author(s):
Faiz Imam and Sharan Gopal
Department of Mathematics,
BITS  Pilani, Hyderabad Campus,
India.
Email: mefaizy@gmail.com
Department of Mathematics,
BITS  Pilani, Hyderabad Campus,
India.
Email: sharanraghu@gmail.com
ABSTRACT NOT FOUND. WEBSITE ERROR
Abstract:
Paper's Title:
Numerical Study of a Mathematical Model of a FreeSurface Potential Flow
Author(s):
H. Serguine, F. Guechi and A. Gasmi
Department Of Mathematics, Faculty of Science,
Ferhat Abbas Universty,
19000, Setif,
Algeria.
Email: houria.serguine@univmsila.dz
Department Of Mathematics, Faculty of Science,
Ferhat Abbas Universty,
19000, Setif,
Algeria.
Email: fairouz.chegaar@univsetif.dz
Laboratory of Pure and Applied Mathematics, Faculty of Mathematics and
Computer Science,
Mohamed Boudiaf Universty,
28000, M'sila,
Algeria.
Email: abdelkader.gasmi@univmsila.dz
Abstract:
In this work, the problem of a potential and twodimensional flow with a free surface of an incompressible, irrotational and inviscid fluid of a jet in front an inclined wall is considered, where γ is the inclination angle with the horizontal. The shape of the free surface is presented by curves which are found numerically by the series truncation method. This technique is based on the conformal transformations, resulting with the surface tension effect T with the boundary conditions on the free surfaces given by Bernoulli's equation. The found results are dependant on parameters which are: the Weber's number α and the angle γ. For each Weber's number value, only one solution is specified and some shapes of free surfaces of the jet are illustrated.
Paper's Title:
A General Fractional Control Scheme for Compound Combination Synchronization Between Different FractionalOrder Identical Chaotic Systems
Author(s):
Soumia Bensimessaoud and Smail Kaouache
Laboratory of Mathematics and their interactions, Abdelhafid Boussouf University Center, Mila, Algeria.
Email:
soumiabensimessaoud@gmail.com,
smailkaouache@gmail.com
Abstract:
In this paper, we aim to investigate the problem of compound combination synchronization (CCS) between four different fractionalorder identical chaotic systems. Based on Laplace transformation and stability theory of linear dynamical systems, a new control law is proposed to assure the achievement of this kind of synchronization. Secondly, this control scheme is applied to realised CCS between four identical unified chaotic systems. Recall, that the proposed control scheme can be applied to wide classes of chaotic and hyperchaotic systems. Numerical simulations are given to show the effectiveness of the proposed method.
Paper's Title:
Eigenvalue Bounds based on Projections
Author(s):
Pravin Singh, Shivani Singh, Virath Singh
University of KwaZuluNatal,
Private Bag X54001,
Durban, 4001,
South Africa.
University of South Africa,
Department of Decision Sciences, PO Box 392,
Pretoria,0003,
South Africa.
University of KwaZuluNatal,
Private Bag X54001,
Durban, 4001,
South Africa.
Email:
singhp@ukzn.ac.za,
singhs2@unisa.ac.za,
singhv@ukzn.ac.za
Abstract:
In this paper, we derive expressions for the bounds of the extremal eigenvalues of positive definite matrices. Our approach is to use a symmetric projection operator onto an n2 dimensional subspace of the real space of n tuples. These bounds are based on traces of the matrix and its powers. They are relatively easy and inexpensive to compute.
Search and serve lasted 0 second(s).