


Paper's Title:
On a Criteria for Strong Starlikeness
Author(s):
V. Ravichandran, M. Darus, and N. Seenivasagan
School Of Mathematical Sciences,
Universiti Sains Malaysia,
11800 Usm Penang, Malaysia
vravi@cs.usm.my
URL: http://cs.usm.my/~vravi
School of Mathematical Sciences, Faculty of Sciences and Technology,
Ukm, Bangi 43600, Malaysia
maslina@pkrisc.cc.ukm.my
Sindhi College, 123, P. H. Road, Numbal,
Chennai 600 077 India
vasagan2000@yahoo.co.in
Abstract:
In this paper, we are concerned with finding sufficient condition for certain normalized analytic function f(z) defined on the open unit disk in the complex plane to be strongly starlike of order α. Also we have obtained similar results for certain functions defined by Ruscheweyh derivatives and Sălăgean derivatives. Further extension of these results are given for certain pvalent analytic functions defined through a linear operator.
Paper's Title:
FeketeSzegö Inequality for Certain Class of Analytic Functions
Author(s):
V. Ravichandran, Maslina Darus, M. Hussain Khan, and K. G. Subramanian
School of
Mathematical Sciences, Universiti Sains Malaysia,
11800 Usm, Penang, Malaysia
vravi@cs.usm.my
School of
Mathematical Sciences, Faculty of Sciences and Technology,
Ukm, Banki 43600, Malaysia
maslina@pkrisc.cc.ukm.my
Department of
Mathematics, Islamiah College,
Vaniambadi 635 751, India
Department of
Mathematics, Madras Christian College, Tambaram,
Chennai 600 059, India
kgsmani@vsnl.net
Abstract:
In this present investigation, the authors obtain FeketeSzegö inequality for a certain class of analytic functions f(z) for which lies in a region starlike with respect to 1 and symmetric with respect to the real axis. Also certain application of our main result for a class of functions defined by Hadamard product (convolution) is given. As a special case of our result we obtain FeketeSzegö inequality for a class of functions defined through fractional derivatives. Also we obtain FeketeSzegö inequality for the inverse functions.
Paper's Title:
A Coefficient Inequality For Certain Subclasses of Analytic Functions Related to Complex Order
Author(s):
B. Srutha Keerthi, B. Adolf Stephen and S. Sivasubramanian
Department Of Applied Mathematics, Sri Venkateswara College Of Engineering, Anna University,
Sriperumbudur, Chennai  602 105,
India.
laya@svce.ac.in
Department of Mathematics, Madras Christian College,
Chennai  600059,
India
adolfmcc2003@yahoo.co.in
Department of Mathematics, College of Engineering, Anna University,
Tamilnadu, Chennai  600 025,
India.
sivasaisastha@rediffmail.com
Abstract:
In this present investigation, the authors obtain coefficient inequality for certain normalized analytic functions of complex order f(z) defined on the open unit disk for which _{ } (_{ } and _{} be a complex number) lies in a region starlike with respect to 1 and is symmetric with respect to the real axis. Also certain applications of the main result for a class of functions of complex order defined by convolution are given. As a special case of this result, coefficient inequality for a class of functions defined through fractional derivatives is obtained. The motivation of this paper is to give a generalization of the coefficient inequalities of the subclasses of starlike and convex functions of complex order.
Paper's Title:
On Sandwich Theorems for Certain Subclass of Analytic Functions Involving DziokSrivastava Operator
Author(s):
T. N. Shanmugam, M. P. Jeyarama and A. Singaravelu
Department of Mathematics
College of Engineering, Anna University
Chennai  600 025,
India
drtns2001@yahoo.com
Department of Mathematics
Easwari Engineering College
Ramapuram, Chennai  600089
Tamilnadu, India
jeyaramanmp@yahoo.co.i
Department of Mathematics
Valliammai Engineering College
Chennai  603203
Tamilnadu, India.
asing59@yahoo.com
Abstract:
The purpose of this present paper is to derive some subordination and superordination results for certain normalized analytic functions in the open unit disk, acted upon by DziokSrivastava operator. Relevant connections of the results, which are presented in this paper, with various known results are also considered.
Paper's Title:
Coefficient Bounds for Sakaguchi Kind of Functions Associated with Sine Function
Author(s):
Serap Bulut, H. Priya and B. Srutha Keerth
Kocaeli University,
Faculty of Aviation and Space Sciences,
Arslanbey Campus, 41285 KartepeKocaeli,
Turkey.
Email: serap.bulut@kocaeli.edu.tr
Department of Mathematics,
School of Advanced Sciences,
VIT Chennai Campus, Chennai  600 048,
India.
Email: priyaharikrishnan18@gmail.com,
priya.h2020@vitstudent.ac.in
Department of Mathematics,
School of Advanced Sciences,
VIT Chennai Campus, Chennai  600 048,
India.
Email: keerthivitmaths@gmail.com,
sruthakeerthi.b@vit.ac.in
Abstract:
In this paper, we introduce a new general subclass of analytic functions with respect to symmetric points in the domain of sine function. We obtain sharp coefficient bounds and upper bounds for the FeketeSzegö functional. Also we get sharp bounds for the logarithmic coefficients of functions belonging to this new class.
Paper's Title:
Differential Sandwich Theorems for Some Subclasses of Analytic Functions
Author(s):
T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian
Department of Mathematics, College of Engineering,
Anna university, Chennai 600 025,
India
shan@annauniv.edu
URL: http://www.annauniv.edu/shan
School of Mathematical Sciences,
Universiti Sains Malaysia,
11800 USM Penang,
Malaysia
vravi@cs.usm.my
URL: http://cs.usm.my/~vravi
Department of Mathematics, Easwari Engineering college,
Ramapuram, Chennai 600 089,
India
sivasaisastha@rediffmail.com
Abstract:
Let _{} and _{} be univalent in _{} with _{} We give some applications of first order differential subordination and superordination to obtain sufficient conditions for normalized analytic function _{} with _{} to satisfy _{}
Paper's Title:
Certain Coefficient Estimates for Biunivalent Sakaguchi Type Functions
Author(s):
B. Srutha Keerthi, S. Chinthamani
Department of Applied Mathematics,
Sri Venkateswara College of Engineering,
Sriperumbudur, Chennai  602105,
India
Abstract:
Estimates on the initial coefficients are obtained for normalized analytic functions f in the open unit disk with f and its inverse g = f^{1} satisfying the conditions that zf'(z) / f(z) and zg'(z) / g(z) are both subordinate to a starlike univalent function whose range is symmetric with respect to the real axis. Several related classes of functions are also considered, and connections to earlier known results are made.
Paper's Title:
Hankel Functional Connected to Lemniscate of Bernoulli
Author(s):
K. Ramanuja Rao, Rajnesh Lal and Kaushal Singh
Fiji National University,
Department of Mathematics & Statistics,
P.O. Box 5529, Lautoka,
Fiji.
Email: ramanuja.kotti@fnu.ac.fj
rajnesh.lal@fnu.ac.fj
kaushal.singh@fnu.ac.fj
Abstract:
The aim of present paper is to derive a higher bound (HB) of 3^{rd} order Hankel determinant for a collection of holomorphic mappings connected with exactly to the right side of the lemniscate of Bernoulli, whose polar coordinates form is r^{2} = 2cos^{2}(2θ). The method carried in this paper is more refined than the method adopted by the authors (see [1]), who worked on this problem earlier.
Paper's Title:
Classes of Meromorphic pvalent Parabolic Starlike Functions with Positive Coefficients
Author(s):
S. Sivaprasad Kumar, V. Ravichandran, and G. Murugusundaramoorthy
Department of Applied Mathematics
Delhi College of Engineering,
Delhi 110042, India
sivpk71@yahoo.com
School of Mathematical Sciences
Universiti Sains Malaysia
11800 USM Penang
Malaysia
vravi@cs.usm.my
URL: http://cs.usm.my/~vravi
Department of Mathematics
Vellore Institute of Technology (Deemed University)
Vellore 632 014, India
gmsmoorthy@yahoo.com
Abstract:
In the present paper, we consider two general subclasses of meromorphic pvalent starlike functions with positive coefficients and obtain a necessary and sufficient condition for functions to be in these classes. Also we obtain certain other related results as a consequences of our main results.
Paper's Title:
Some Inequalities for a Certain Class of Multivalent Functions Using Multiplier Transformation
Author(s):
K. Suchithra, B. Adolf Stephen, A. Gangadharan and S. Sivasubramanian
Department Of Applied Mathematics
Sri Venkateswara College Of Engineering
Sriperumbudur, Chennai  602105,
India.
suchithravenkat@yahoo.co.in
Department Of Mathematics,
Madras Christian College
Chennai  600059,
India.
adolfmcc2003@yahoo.co.in
Department Of Applied Mathematics
Sri Venkateswara College Of Engineering
Sriperumbudur, Chennai  602105,
India.
ganga@svce.ac.in
Department Of Mathematics,
Easwari Engineering College
Ramapuram, Chennai  600089,
India.
ganga@svce.ac.in
Abstract:
The object of the present paper is to derive several inequalities associated with differential subordinations between analytic functions and a linear operator defined for a certain family of pvalent functions, which is introduced here by means of a family of extended multiplier transformations. Some special cases and consequences of the main results are also considered.
Paper's Title:
FeketeSzegö Problem for Univalent Functions with Respect to kSymmetric Points
Author(s):
K. AlShaqsi and M. Darus
School of Mathematical Sciences, Faculty of Science and Technology,
University Kebangsaan Malaysia,
Bangi 43600 Selangor D. Ehsan,
Malaysia
ommath@hotmail.com
maslina@ukm.my
Abstract:
In the present investigation, sharp upper bounds of a_{3} μa_{2}^{2} for functions f(z) = z + a_{2}z^{2} + a_{2}z^{3} + ... belonging to certain subclasses of starlike and convex functions with respect to ksymmetric points are obtained. Also certain applications of the main results for subclasses of functions defined by convolution with a normalized analytic function are given. In particular, Fekete Szegö inequalities for certain classes of functions defined through fractional derivatives are obtained.
Paper's Title:
On Sufficient Conditions for Strong Starlikeness
Author(s):
V. Ravichandran, M. H. Khan, M. Darus, And K. G. Subramanian
School of Mathematical Sciences, Universiti Sains Malaysia,
11800 Usm Penang, Malaysia
vravi@cs.usm.my
Url: http://cs.usm.my/~vravi/index.html
Department of Mathematics, Islamiah College, Vaniambadi 635 751, India
khanhussaff@yahoo.co.in
School of Mathematical Sciences, Faculty of Science and Technology, UKM, Bangi
43600,
Malaysia
maslina@pkrisc.cc.ukm.my
Url:
http://www.webspawner.com/users/maslinadarus
Department of Mathematics, Madras Christian College, Tambaram, Chennai 600 059,
India
kgsmani@vsnl.net
Abstract:
In the present investigation, we obtain some sufficient conditions for a normalized analytic function f(z) defined on the unit disk to satisfy the condition
Paper's Title:
On the FeketeSzegő Inequality for Some Subclasses of Analytic Functions
Author(s):
T.N. Shanmugam and A. Singaravelu
Department of Mathematics,
College of Engineering,
Anna University, Chennai600 025,
Tamilnadu, India
shan@annauniv.edu
Department of Mathematics,
Valliammai Engineering College,
Chennai603 203,
Tamilnadu, India
sivasaisastha@rediffmail.com
Abstract:
In this present investigation, the authors obtainFeketeSzegő's inequality for certain normalized analytic functions _{} defined on the open unit disk for which _{} lie in a region starlike with respect to 1 and symmetric with respect to the real axis. Also certain applications of the main result for a class of functions defined by convolution are given. As a special case of this result, FeketeSzegő's inequality for a class of functions defined through fractional derivatives is also obtained.
Paper's Title:
Generalized Hypergeometric Functions Defined on the Class of Univalent Functions
Author(s):
N. Marikkannan, A. Gangadharan and C. Ganesamoorthy
Department of Applied Mathematics,
Sri Venkateswara College of Engineering,
Sriperumbudur 602105,
India.
mari@svce.ac.in
Department of Applied mathematics,
Sri Venkateswara College of Engineering,
Sriperumbudur 602105,
India.
ganga@svce.ac.in
Department of Mathematics,
Alagappa university,
Karaikudi,
India.
ganesamoorthyc@yahoo.com
Abstract:
Let A denotes the class of all analytic functions f(z), normalized by the condition f'(0)1=f(0)=0 defined on the open unit disk Δ and S be the subclass of A containing univalent functions of A. In this paper, we find the sufficient conditions for hypergeometric functions defined on S to be in certain subclasses of A, like kUCV, kST
Paper's Title:
Subordination Results Associated with Hadamard Product
Author(s):
S. Sivasubramanian, C. Ramachandran and B. A. Frasin
Department of Mathematics,
University College of Engineering,
Anna University,
Saram604 307,
India
Department of Mathematics,
University College of Engineering,
Anna University,
Villupuram,
India
Department of Mathematics,
Al alBayt University,
P.O. Box: 130095 Mafraq,
Jordan
Abstract:
In the present investigation, we consider an unified class of functions of complex order using Hadamard's convolution. We obtain a necessary and sufficient condition for functions to be in these classes.
Paper's Title:
Sufficient Conditions for Certain Types of Functions to be Parabolic Starlike
Author(s):
A. Gangadharan and S. Chinthamani
Department of Mathematics,
Easwari Engineering College,
Ramapuram, Chennai  89,
India.
Research Scholar,
Anna University,
Chennai
Email: ganga.megalai@gmail.com
Email: chinvicky@rediffmail.com
Abstract:
In this paper sufficient conditions are determined for functions of the form and certain other types of functions to be parabolic starlike.
Paper's Title:
FeketeSzegö Inequality for Sakaguchi Type of functions in Petal Shaped Domain
Author(s):
E. K. Nithiyanandham and B. Srutha Keerthi
Division of Mathematics, School of
Advanced Sciences,
Vellore Institute of Technology Chennai Campus,
Chennai  600 048,
India.
Email: nithiyankrish@gmail.com
Division of Mathematics, School of
Advanced Sciences,
Vellore Institute of Technology Chennai Campus,
Chennai  600 048,
India.
Email: keerthivitmaths@gmail.com
Abstract:
In this paper, we estimate coefficient bounds,a_2,a_3 and a_4, FeketeSzegö inequality and Toeplitz determinant T_{2}(2) and T_{3}(1) for functions belonging to the following class
the function being holomorphic, we expand using Taylor series and obtain several corollaries and consequences for the main result.
Paper's Title:
Toeplitz Determinant for Sakaguchi Type Functions Under Petal Shaped Domain
Author(s):
B. Nandhini and B. Srutha Keerthi
Division of Mathematics, School of
Advanced Sciences,
Vellore Institute of Technology Chennai Campus,
Chennai  600 048,
India.
Email:
nandhinibaskar1996@gmail.com
Division of Mathematics, School of
Advanced Sciences,
Vellore Institute of Technology Chennai Campus,
Chennai  600 048,
India.
Email: keerthivitmaths@gmail.com
Abstract:
We introduce a new general subclass GP^{t,ρ} of Sakaguchi kind function on a Petal shaped domain. We obtain coefficients bounds and upper bounds for the FeketeSzegö functional over the class. From these functions we obtain the bounds of first four coefficients, and then we have derived the Toeplitz determinant T_{2}(2) and T_{3}(1) whose diagonal entries are the coefficients of functions.
Paper's Title:
A Subclass of Meromorphically Multivalent Functions with Applications to Generalized Hypergeometric Functions
Author(s):
M. K. Aouf
Mathematics Department,
Faculty of Science,
Mansoura University 35516,
Egypt
mkaouf127@yahoo.com
Abstract:
In this paper a new subclass of meromorphically multivalent functions, which is defined by means of a Hadamard product (or convolution) involving some suitably normalized meromorphically pvalent functions. The main object of the present paper is to investigate the various important properties and characteristics of this subclass of meromorphically multivalent functions. We also derive many interesting results for the Hadamard products of functions belonging to this subclass. Also we consider several applications of our main results to generalized hypergeomtric functions.
Paper's Title:
On a subset of Bazilevic functions
Author(s):
Marjono and D. K. Thomas
Department of Mathematics,
Faculty of Mathematics and Natural Sciences,
Brawajaya University,
Malang, Jawa Timur 65145,
Indonesia.
Email: marjono@ub.ac.id
Department of Mathematics,
Swansea University, Singleton Park,
Swansea, SA2 8PP,
United Kingdom.
Email: d.k.thomas@swansea.ac.uk
Abstract:
Let S denote the class of analytic and univalent functions in of the form For α≥0, the subclass B_{1}α of S of Bazilevic functions has been extensively studied. In this paper we determine various properties of a subclass of B_{1}α, for α≥0 which extends early results of a class of starlike functions studied by Ram Singh.
Paper's Title:
Geometrical Properties of Subclass of Analytic Function with Odd Degree
Author(s):
K. Sivagami Sundari and B. Srutha Keerthi
Divison of Mathematics, School of
Advanced Sciences,
Vellore Institute of Technology, Chennai Campus, Chennai  600 127,
India.
Email: sivagamisundari.2298@gmail.com
Divison of Mathematics, School of
Advanced Sciences,
Vellore Institute of Technology, Chennai Campus, Chennai  600 127,
India.
Email: keerthivitmaths@gmail.com
Abstract:
The objective of the paper is to study the geometrical properties of the class B(λ, t). For which we have proved that the radius is optimal ,(i.e) the number cannot be replaced by a larger one. Additionally, the graphs for various values of t and λ are compared in order to study the sharpness of the coefficient bounds.
Search and serve lasted 0 second(s).