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1. INTRODUCTION
Let A be the class of all analytic functions
(1.1) f(2) =24 apz® +azz® + - -
in the open unit disk A = {z € C;|z| < 1}. A function f € A is subordinate to an univalent
function g € A, written f(2) < g(2), if f(0) = ¢g(0) and f(A) C g(A). Let 2 be the family
of analytic functions w(z) in the unit disc A satisfying the conditions w(0) = 0, |w(z)| < 1 for
z € A. Note that f(z) < g(z) if there is a function w(z) € Q such that f(z) = g(w(z)). Let S

be the subclass of A consisting of univalent functions. The class S*(¢), introduced and studied
by Ma and Minda [7], consists of functions in f € S for which

2f'(z)
f(2)
Recently, Ravichandran et al. [10] defined classes related to the class of starlike functions of
complex order defined as

< ¢(z), (z€A).

Definition 1.1. Let b # 0 be a complex number. Let ¢(z) be an analytic function with positive
real part on A with ¢(0) = 1, ¢'(0) > 0 which maps the unit disk A onto a region starlike with
respect to 1 which is symmetric with respect to the real axis. Then the class S;(¢) consists of
all analytic functions f € A satisfying

(7)<

The class Cy(¢) consists of functions f € A satisfying

12f"(2)
1+ < ¢(2).
NIONN
Following the work of Ma and Minda [7], Shanmugam and Sivasubramanian [16] obtained
Fekete-Szego inequality for the more general class M, (¢), defined by

az’f"(z) + 2f'(2)
A=) f(z) +azf(z) ¢(2),

where ¢(z) satisfies the condition mentioned in Definition
Let g be a fixed function. For

o)

flz)=z+ Zanz”
n=2
and
g(z):z—i—anz” EA;
n=2

the Hadamard product(or convolution product) is given by
(f < g)(2) = 2+ anbu2"
n=2

For various choices of g(z) we get different operators and are listed below.

(1)n-1(2)n1, -, (Qg)n1
(ﬁl)nfl(ﬁz)nflv EEE) (ﬁs)nfl(l)nfl

z) introduced by Dziok and Srivastava [3].

(1) For g(z) = 2+

2", we get the Dziok—Srivastava

=1[]e

n=
operator H, ;(c)
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(2) For g(2) = ¢(a,c,2) = Z% '

introduced by Carlson-Shaffer [[1]].
(3) Forg(z) = ——

we get the Carlson-Shaffer operator L(a,c)f(z)

we get the Ruschweyh operator D* f(2) introduced by Ruschweyh[13].

(4) Forg(z) = z—l—Z n™ (' m > 0), we get the Saldgean operator D™ f(z) introduced
by Sédlagean [15] .
(5) For g(z) = z + Z (Tll i ;) 2" (A>0; keZ), we get the multiplier transfor-

mation [ (/\ k) 1ntroduced by Cho and Srivastava[3]].

A
(6) For g(z) = z + Z (n * ) 2" (A>0; k€ Z), the multiplier transformation

I(\ k) introduced | by Cho and Kim [2]

In this paper, we introduce a more general class of complex order Mg, b, o](¢) which we
define below.

Definition 1.2. Let b # 0 be a complex number. Let ¢(z) be an analytic function with positive
real part on A with ¢(0) = 1, ¢'(0) > 0 which maps the unit disk A onto a region starlike
with respect to 1 which is symmetric with respect to the real axis. Then the class Mg, b, a(¢)
consists of all analytic functions f € A satisfying

145 (Bg,0) = 1) <6(), (@ 20)

where,
L a2(frgl(e) A+ 9)(2)
Vo) = T e )@ T oz * ) (7))
Clearly,
M0l = s
o) = w0 0=

and M [ﬁ, b, 1](¢) consists of all analytic functions f € A satisfying

L2 2R
1+b(zﬁ@+f@>>*“’

Motivated essentially by the aforementioned works, we obtain certain necessary and sufficient

conditions for the unified class of functions Mg, b, &|(¢) which we have defined. The Motiva-
tion of this paper is to generalize the results obtained by Srivastava and Lashin [[17].

Our results includes several known results. To see this, let M [%, b, O} (A,B) = S*(A, B,b)
-z

and M [%, b, O} (A,B) = C(A, B,b) (b # 0, complex) denote the classes S; (¢) and Cy(¢)
—z

respectively when
1+ Az

1+ Bz

é(2) = (-1<B<A<1).
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The class S*(A, B, b) and therefore the class S;(¢) specialize to several well-known classes
of univalent functions for suitable choices of A, B and b. The class S*(A, B, 1) is denoted by
S*(A, B).

1 /
Some of these classes are listed below where S7T'(b) denotes 1 + 3 (Z;((j) — 1).
z

(1) S*(1,—1,1) is the class S* of starlike functions [6] 4, 9].

(2) S*(1,—1,b) is the class of starlike functions of complex order introduced by Wiatrowski
[18]. We denote this class by S;.

3) S*(1,-1,1 =), 0 < B < 1, is the class S*(3) of starlike functions of order /3. This
class was introduced by Robertson [11].

(4) S*(1,0,b) is the set defined by |ST'(b) — 1] < 1.

(5) S*(B,0,b) is the set defined by |ST'(b) — 1| < 5,0 < 5 < 1.

(6) S*(53,—P3,b) is the set defined by |%‘ <B,0<pB<1.

To prove our main result, we need the following results.
The following result follows from a result of Ruscheweyh [13] for functions in the class
S*(¢) (see Ruscheweyh [[14, Theorem 2.37, pages 86—88]).

Lemma 1.1. [10] Let ¢ be a convex function defined on A, ¢(0) = 1. Define F'(z) by

(1.2) F(z) = zexp (/Z Mdaz) :
0 x
Let q(z) =1+ c1z + - - - be analytic in A. Then
¢ (%)
(1.3) 1+ e < #(2)

if and only if for all |s| < 1 and |t| < 1, we have

q(tz) - sF(tz)

q(sz) tF(sz)

Lemma 1.2. [8| Corollary 3.4h.1, p.135] Let q(z) be univalent in A and let p(z) be analytic in

2q'(2)

v(q(2))
2p'(2)p(p(2)) < 24 (2)¢(a(2)),
then p(z) < q(z) and q(z) is the best dominant.

(1.4)

a domain containing q(A). If is starlike, and

2. MAIN RESULTS
By making use of Lemma(I.T] we have the following:

Theorem 2.1. Let ¢(z) and F(z) be as in Lemma(l.1} The function f € Mg, b, a|(¢) if and
only iffor all |s| < 1and |t| < 1, we have
@.1) ( (1= a) (f x9)(t2) + az(f * 9)'(t2) ) )

' t(1 =) (f x g)(s2) + az(f * g)' (s2)] '
Proof. Define the function p(z) by

(o) (20 oxt *g>'<z>>”b_

z

A

(2.2) p(z) =
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By taking logarithmic derivative of p(z) given by (2.2}, we get

W) [ a(fre)(5)+2(f+g)(z)
e pu>‘b{u—wu*m@wHWU*mw> *‘

The result now follows from Lemmal[l.1] §

and « = 0 in Theorem[2.1| we obtain

z
Letti =
eting g(z) =
Corollary 2.2. Let ¢(z) and F(z) be as in Lemma The function f € S;(¢) if and only if
forall |s| < 1and|t| <1, we have

sf(tz) ’ sF(tz)
(2.4) (tf(sz)) = tF(sz)

and a = 11in Theorem we obtain

Letting g(z) = . il

Corollary 2.3. Let ¢(z) and F(z) be as in Lemma The function f € Cy(¢) if and only if
forall |s| < 1and|t| <1, we have

f'(tz) ; . sF(tz)
f'(s2) tF(sz)
As an immediate consequence of the above Corollary 2.3 we have

Corollary 2.4. Let ¢(z) and F(z) be as in Lemma If f € S;(¢), then we have

b
2.5) e (F(Z)) .
2 2
Letting g(z) = ﬁ and o = 1 in Theorem 2.1} we have
Corollary 2.5. Let ¢(z) and F(z) be as in Lemma Then
1 Z2fl/l<z)+zzf//(z)>
(2.6) 1+ 2 ( )+ (%) < ¢(2).

if and only if for all |s| < 1 and |t| < 1, we have

(1)) ¥ _ sF(t2)
(2f")'(s2) tF(sz)
Theorem 2.6. Let ¢ starlike with respect to 1 and F(z) is given by be starlike. If [ €
M|g, b, (@), then we have

(1) (f*g)(z) + az(f*9)'(2) (F<Z))b'

z z

2.7)

Proof. Define the functions p(z) and ¢(z) by

-« % g)(2) + az(f*qg)(2)\ "
p(Z)::<(1 ) (f xg)(2) + az(f g)()) )

I
VR
o |2

N
~_

Then a computation yields
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where
o) — a?(fx9)"(2) +2(f*x9)(2)
Y00 = | T e s s
and
2q(z) _ (2F) O\
o= Cr 1) =e0 1
Since f € M|g,b, (o), we have
PE) _ L e o 1) <o) 1 2L

The result now follows by an application of Lemma|[l.2] g

Letting g(z) = ﬁ and a = 1in Theorem we have

Corollary 2.7. Let ¢ starlike with respect to 1 and F(z) is given by be starlike. If

L2 42
29 () <

then we have
b

2.9) 2f(2) + f1(2) < (@) .

1
By taking ¢(z) = . i_ z, g(z) = N - . and @ = 0 in Theorem we get the following

result of Srivastava and Lashin [17]: -

Corollary 2.8. If f € S}, then

1
1@ |
z (1—2)%
. 142 z )
By taking ¢(z) = . ,g(z) = . and o = 1 in Theorem _ we get another result of
—z —z
Srivastava and Lashin [[17]:
Corollary 2.9. If f € (), then
1
!/
f (Z) = (1 . Z)Qb'
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