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1. I NTRODUCTION , DEFINITIONS AND PRELIMINARIES

LetA(p, n) denote the class of functionsf normalized by

(1.1) f(z) = zp +
∞∑

k=p+n

akz
k (p, n ∈ N := {1, 2, 3, . . . }),

which are analytic in the open unit disk

U := {z : z ∈ C and|z| < 1}.
In particular, we set

A(p, 1) := Ap,A(1, 1) := A = A1 andA(1, n) := An.

A functionf ∈ A(p, n) is said to be in the classA(p, n;α) if it satisfies the following inequality:

(1.2) <
(

1 +
zf ′′(z)

f ′(z)

)
< α (z ∈ U;α > p).

We also denote byC(α) andS∗(α), respectively, the usual subclasses ofA consisting of func-
tions which areconvex of orderα in U andstarlike of orderα in U. Thus we have (see for
details, [3] and [12]),

(1.3) C(α) :=

{
f : f ∈ A and<

(
1 +

zf ′′(z)

f ′(z)

)
> α (z ∈ U; 0 ≤ α < 1)

}
and

(1.4) S∗(α) :=

{
f : f ∈ A and<

(
zf ′(z)

f(z)

)
> α (z ∈ U; 0 ≤ α < 1)}.

In particular, we write
C(0) =: C and S∗(0) =: S∗.

For the above defined classA(p, n;α) of p-valent functions, Owa et al. [6] proved the following
results.

Theorem 1.1. (Owa et al.[6, p.8, Theorem 1]) If

f(z) ∈ A(p, n;α) (p < α ≤ p+
1

2
n),

then

(1.5) <
(
f(z)

zf ′(z)

)
>

2p+ n

(2α+ n)p
(z ∈ U).

Theorem 1.2. (Owa et al.[6, p. 10, Theorem 2]) If

f(z) ∈ A(p, n;α) (p < α ≤ p+
1

2
n),

then

(1.6) 0 < <
(
zf ′(z)

f(z)

)
<

(2α+ n)p

2p+ n
(z ∈ U).

In fact, as already observed by Owa et al. [6, p. 10], various further special cases of (for
example) Theorem 1.2 whenp = n = 1 were considered earlier by Nunokawa [4], Saitoh et al.
[8], and Singh and Singh [10].

The main object of this paper is to present an extension of each of the inequalities (1.5) and
(1.6) asserted by Theorem 1.1 and Theorem 1.2, respectively, to hold true for a linear operator
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associated with a certain general classA(p, n; r, λ, α) of p-valent functions, which we introduce
here.

Analogous to the multiplier transformation onA, the operatorIp(r, λ), given onAp by

(1.7) Ip(r, λ)f(z) := zp +
∞∑

k=p+1

(
k + λ

p+ λ

)r

akz
k (λ ≥ 0; r ∈ Z; p ∈ N; f ∈ Ap),

was studied by Sivaprasad Kumar et al. [11].
The operatorIp(r, λ) is closely related to the S̆alăgean derivative operator [9]. The operator

Ir
λ := I1(r, λ) was studied by Cho and Srivastava [2] and Cho and Kim [1]. Moreover, the

operatorIr := I1(r, 1) was studied earlier by Uraleggadi and Somanatha [13].
Here, in our present investigation, we define the operatorIp(r, λ) onA(p, n) by

(1.8) Ip(r, λ)f(z) := zp +
∞∑

k=p+n

(
k + λ

p+ λ

)r

akz
k (λ ≥ 0; p ∈ N; r ∈ Z).

Making use of the linear operatorIp(r, λ) defined by (1.8), we say that a functionf(z) ∈
A(p, n) is in the aforementioned general classA(p, n; r, λ, α) if it satisfies the following in-
equality:

(1.9) <
(
Ip(r + 2, λ)f(z)

Ip(r + 1, λ)f(z)

)
< α (z ∈ U;α > 1; r ∈ Z, λ ≥ 0).

The S̆alăgean derivative operatorDµf(z), given onAn by

(1.10) Dµf(z) = D(Dµ−1f(z)) = z +
∞∑

k=n+1

(k)µakz
k (µ ∈ N ∪ {0}),

was studied by Orhan and Kamali [5].
Also, we could observe that the Sălăgean derivative operatorDµf(z), defined by (1.10) is a

particular case of the operatorIp(r, λ)f(z) defined by (1.8), whenp = 1, r = µ (µ ∈ N ∪ {0})
andλ = 0.

Thus, with this convention, a functionf(z) ∈ An is in the classA(1, n;µ, α) if it satisfies
the following inequality:

(1.11) <
(
Dµ+2f(z)

Dµ+1f(z)

)
< α, (z ∈ U;α > 1;µ ∈ N ∪ {0}, f ∈ An).

Finally, for two functionsf andg analytic inU, we say that the functionf(z) is subordinate to
g(z) in U, and write

f ≺ g or f(z) ≺ g(z) (z ∈ U),

if there exsits a Schwarz functionw(z), analytic inU with

w(0) = 0 and |w(z)| < 1 (z ∈ U),

such that

(1.12) f(z) = g(w(z)) (z ∈ U).

In particular, if the functiong is univalent inU, the above subordination is equivalent to

f(0) = g(0) and f(U) ⊂ g(U).

In our present investigation of the above defined general classA(p, n; r, λ, α), we shall require
the following lemmas.
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Lemma 1.3. (cf. Miller and Mocanu[3, p. 35, Theorem 2.3i(i)]) LetΩ be a set in the complex
planeC and suppose thatΦ(u, v; z) is a complex-valued mapping:

Φ : C2 × U → C,

where

u = u1 + iu2 and v = v1 + iv2.

Also, letΦ(iu2, v1; z) 6∈ Ω for all z ∈ U and for all realu2 andv1 such that

(1.13) v1 ≤ −1

2
n(1 + u2

2).

If

q(z) = 1 + cnz
n + cn+1z

n+1 + · · ·
is analytic inU and

Φ(q(z), zq′(z); z) ∈ Ω (z ∈ U),

then

<{q(z)} > 0 (z ∈ U).

Lemma 1.4. (cf. Miller and Mocanu[3, p. 132, Theorem 3.4h]) Letψ(z) be univalent inU and
suppose that the functionsϑ andϕ are analytic in a domainD ⊃ ψ(U) with ϕ(ζ) 6= 0 when
ζ ∈ ψ(U). Define the functionsQ(z) andh(z) by

(1.14) Q(z) := zψ′(z)ϕ(ψ(z)) and h(z) := ϑ(ψ(z)) +Q(z),

and assume that (i)Q(z) is starlike univalent inU and (ii)<
(

zh′(z)
Q(z)

)
> 0 (z ∈ U). If

(1.15) ϑ(q(z)) + zq′(z)ϕ(q(z)) ≺ h(z) (z ∈ U),

then

q(z) ≺ ψ(z) (z ∈ U)

andψ(z) is the best dominant.

Lemma 1.5. (Ravichandran et al.[7, pp. 8, Lemma 3]) Let the functionsq(z) andψ(z) be
analytic inU and suppose that

ψ(z) 6= 0 (z ∈ U)

is also univalent inU and thatzψ′(z)/ψ(z) is starlike univalent inU. If

(1.16) <
(
α

β

1

ψ(z)
+

[
1 +

zψ′′(z)

ψ′(z)
− zψ′(z)

ψ(z)

])
> 0 (z ∈ U;α, β ∈ C; β 6= 0)

and

(1.17)
α

q(z)
− β

zq′(z)

q(z)
≺ α

ψ(z)
− β

zψ′(z)

ψ(z)
(z ∈ U;α, β ∈ C; β 6= 0),

then

q(z) ≺ ψ(z) (z ∈ U)

andq(z) is the best dominant.
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2. I NEQUALITIES ASSOCIATED WITH THE L INEAR OPERATOR Ip(r, λ)

In view of Lemma 1.3 of the preceeding section, we first prove Theorem 2.1 below.

Theorem 2.1.Let the parameterα satisfy the following inequality:

(2.1) 1 < α ≤ 1 +
n

2(p+ λ)
, where p+ λ > 0.

If f(z) ∈ A(p, n; r, λ, α), then

(2.2) <
(

Ip(r, λ)f(z)

Ip(r + 1, λ)f(z)

)
>

2(p+ λ) + n

n+ 2α(p+ λ)
(z ∈ U)

and

(2.3) <
(
Ip(r + 1, λ)f(z)

Ip(r, λ)f(z)

)
<
n+ 2α(p+ λ)

2(p+ λ) + n
(z ∈ U).

Proof. Define the functionq(z) by

(2.4) (1− β)q(z) + β =
Ip(r, λ)f(z)

Ip(r + 1, λ)f(z)
(z ∈ U),

where

(2.5) β :=
2(p+ λ) + n

n+ 2α(p+ λ)
.

Then, clearly,q(z) is analytic inU and

q(z) = 1 + cnz
n + cn+1z

n+1 + . . . (z ∈ U).

By means of a simple computation, we observe from (2.4) that

(2.6)
(1− β)zq′(z)

(1− β)q(z) + β
=
z[Ip(r, λ)f(z)]′

Ip(r, λ)f(z)
− z[Ip(r + 1, λ)f(z)]′

Ip(r + 1, λ)f(z)
.

Making use of the familiar identity:

(2.7) (p+ λ)Ip(r + 1, λ)f(z) = z[Ip(r, λ)f(z)]′ + λIp(r, λ)f(z),

we find from (2.6) that

(1− β)zq′(z)

(1− β)q(z) + β
= (p+ λ)

Ip(r + 1, λ)f(z)

Ip(r, λ)f(z)
− (p+ λ)

Ip(r + 2, λ)f(z)

Ip(r + 1, λ)f(z)
,

which, in view of (2.4), yields

(2.8)
Ip(r + 2, λ)f(z)

Ip(r + 1, λ)f(z)
=

1

(1− β)q(z) + β
−

(
1

p+ λ

) [
(1− β)zq′(z)

(1− β)q(z) + β

]
.

If we defineΦ(u, v; z) by

(2.9) Φ(u, v; z) :=
1

(1− β)u+ β
−

(
1

p+ λ

) [
(1− β)v

(1− β)u+ β

]
,

then, by the hypothesis of Theorem 2.1 thatf ∈ A(p, n; r, λ, α), we have

<{Φ(q(z), zq′(z); z)} = <
(
Ip(r + 2, λ)f(z)

Ip(r + 1, λ)f(z)

)
< α (z ∈ U;α > 1).

We will now show that
<{Φ(iu2, v1; z)} ≥ α
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for all z ∈ U and for all realu2 andv1 constrained by the inequality (1.13). Indeed we find from
(2.9) that

<{Φ(iu2, v1; z)} = <
{

1

(1− β)iu2 + β
−

(
1

p+ λ

)
(1− β)v1

(1− β)iu2 + β

}
= <

{
β − (1− β)iu2

(1− β)2u2
2 + β2 −

(
1

p+ λ

)
(β − (1− β)iu2)(1− β)v1

(1− β)u2
2 + β2

}
=

β

(1− β)2u2
2 + β2 −

(
1

p+ λ

)
β(1− β)v1

(1− β)2u2
2 + β2 ,

so that by using (1.13), we have

<{Φ(iu2, v1; z)} ≥
β

(1− β)2u2
2 + β2 +

1

p+ λ

(
β(1− β)n

2
(1 + u2

2)

(1− β)2u2
2 + β2

)
or equivalently,

(2.10) <{Φ(iu2, v1; z)} ≥
β

p+ λ

[
(p+ λ) + n

2
(1− β)(1 + u2

2)

(1− β)2u2
2 + β2

]
(z ∈ U).

From the inequalities in (2.1), we get
n

2
β2 ≥

(
(p+ λ) +

n

2
(1− β)

)
(1− β),

and hence the function
(p+ λ) + 1

2
n(1− β)(1 + x2)

(1− β)2x2 + β2

is an increasing function forx ≥ 0. Thus we find from (2.10) that

<{Φ(iu2, v1; z)} ≥
1

p+ λ

(
(p+ λ) + n

2
(1− β)

β

)
= α (z ∈ U).

The first assertion (2.2) of Theorem 2.1 follows by applying Lemma 1.3.
Next, we define the functionψ(z) by

ψ(z) :=
Ip(r, λ)f(z)

Ip(r + 1, λ)f(z)
(z ∈ U),

whereβ is given by (2.5). Then, in view of the already proven assertion (2.2) of Theorem 2.1,
we have

(2.11) <{ψ(z)} > β > 0 (z ∈ U)

so that,

(2.12) <
(

1

ψ(z)

)
> 0 (z ∈ U).

Since (2.12) holds true, we have

<{ψ(z)}<
(

1

ψ(z)

)
≤ |ψ(z)|. 1

|ψ(z)|
= 1,

or

<
(

1

ψ(z)

)
≤ 1

<{ψ(z)}
(z ∈ U),

which, in view of (2.11), yields

0 < <
(

1

ψ(z)

)
<

1

β
(z ∈ U)
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which is the second assertion (2.3) of Theorem 2.1.
The following result is a special case of Theorem 2.1 obtained by takingf(z) ∈ A(1, n) with

p = 1, r = µ(µ ∈ N ∪ {0}) andλ = 0.

Corollary 2.2. If f(z) ∈ A(1, n;µ, α) (1 < α ≤ 1 + n
2
), then

<
(

Dµf(z)

Dµ+1f(z)

)
>

2 + n

n+ 2α
(z ∈ U),

and

<
(
Dµ+1f(z)

Dµf(z)

)
<
n+ 2α

2 + n
(z ∈ U).

3. FURTHER RESULTS I NVOLVING DIFFERENTIAL SUBORDINATION BETWEEN

ANALYTIC FUNCTIONS

In this section, we prove the following result involving differential subordination between
analytic functions.

Theorem 3.1. Let the functionψ(z) 6= 0 (z ∈ U) be analytic and univalent inU and suppose
that zψ′(z)/ψ(z) is starlike univalent inU and

(3.1) <
(
p+ λ

ψ(z)
+

[
1 +

zψ′′(z)

ψ′(z)
− zψ′(z)

ψ(z)

])
> 0 (z ∈ U; (p+ λ) ∈ C\{0}).

If f ∈ Ap satisfies the following subordination:

(3.2)
Ip(r + 2, λ)f(z)

Ip(r + 1, λ)f(z)
≺ p+ λ

ψ(z)
− zψ′(z)

ψ(z)
(z ∈ U),

then

(3.3)
Ip(r, λ)f(z)

Ip(r + 1, λ)f(z)
≺ ψ(z) (z ∈ U)

andψ(z) is the best dominant.

Proof. Let the functionq(z) be defined by

q(z) :=
Ip(r, λ)f(z)

Ip(r + 1, λ)f(z)
(z ∈ U; f ∈ Ap),

so that, by a simple computation, we have

(3.4)
zq′(z)

q(z)
=
z[Ip(r, λ)f(z)]′

Ip(r, λ)f(z)
− z[Ip(r + 1, λ)f(z)]′

Ip(r + 1, λ)f(z)
,

which follows also from (2.6) in the special case whenβ = 0.
Making use of the familiar identity (2.7) once again, we find that

Ip(r + 2, λ)f(z)

Ip(r + 1, λ)f(z)
=

Ip(r + 1, λ)f(z)

Ip(r, λ)f(z)
−

(
1

p+ λ

) [
z[Ip(r, λ)f(z)]′

Ip(r, λ)f(z)
− z[Ip(r + 1, λ)f(z)]′

Ip(r + 1, λ)f(z)

]
=

1

q(z)
−

(
1

p+ λ

)
zq′(z)

q(z)

=
1

p+ λ

[
p+ λ

q(z)
− zq′(z)

q(z)

]
,

AJMAA, Vol. 5, No. 1, Art. 14, pp. 1-9, 2006 AJMAA

http://ajmaa.org


8 K. SUCHITHRA AND B. ADOLF STEPHEN AND A. GANGADHARAN AND S. SIVASUBRAMANIAN

which, in light of the hypothesis (3.2) of Theorem 2, yields the following subordination:

p+ λ

q(z)
− zq′(z)

q(z)
≺ p+ λ

ψ(z)
− zψ′(z)

ψ(z)
(z ∈ U).

The assertion (3.3) of Theorem 3.1 now follows from Lemma 1.5.

Remark 3.1. If the functionψ(z) is such that

<{ψ(z)} > 0 (z ∈ U)

and if zψ′(z)/ψ(z) is starlike inU, then the condition (3.1) is satisfied forp+ λ > 0.

As a special case, whenp = 1, r = µ (µ ∈ N ∪ {0}) andλ = 0, Theorem 3.1 yields the
following result.

Corollary 3.2. Let the functionψ(z) 6= 0 (z ∈ U) be analytic and univalent inU and suppose
that zψ′(z)/ψ(z) is starlike univalent inU and

<
(

1

ψ(z)
+

[
1 +

zψ′′(z)

ψ′(z)
− zψ′(z)

ψ(z)

])
> 0 (z ∈ U).

If f(z) ∈ A(1, 1;µ, α) satisfies the following subordination:

Dµ+2f(z)

Dµ+1f(z)
≺ 1

ψ(z)
− zψ′(z)

ψ(z)
(z ∈ U),

then
Dµf(z)

Dµ+1f(z)
≺ ψ(z) (z ∈ U).
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