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MARJONO AND D. K. THOMAS

Received 27 August, 2018; accepted 9 January, 2019; published 31 July, 2019.

MARJONO, DEPARTMENT OFMATHEMATICS, FACULTY OF MATHEMATICS AND NATURAL SCIENCES,
BRAWAJAYA UNIVERSITY, MALANG , JAWA TIMUR 65145, INDONESIA.

marjono@ub.ac.id

D. K. THOMAS, DEPARTMENT OFMATHEMATICS, SWANSEA UNIVERSITY, SINGLETON PARK , SWANSEA,
SA2 8PP, UNITED K INGDOM.

d.k.thomas@swansea.ac.uk

ABSTRACT. LetS denote the class of analytic and univalent functions inD := {z ∈ C : |z| <
1} of the formf(z) = z +

∑∞
n=2 anzn. Forα ≥ 0, the subclassB1(α) of S of Bazilevǐc func-

tions has been extensively studied. In this paper we determine various properties of a subclass
of B1(α), for α ≥ 0, which extends early results of a class of starlike functions studied by Ram
Singh.
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1. I NTRODUCTION AND DEFINITIONS

Denote byA, the set of functionsf , which are analytic in the unit diskD := {z ∈ C : |z| <
1}, and normalized so that

(1.1) f(z) = z +
∞∑

n=2

anz
n,

and byS, the subset ofA consisting of functionsf which are univalent inD.

In recent years, a great deal of attention (see e.g. [2], [4], [9], [10]), has been given to the set
B1(α) of Bazilevǐc functions inS, defined forα ≥ 0, as follows.

Definition 1.1. Let f ∈ A and be given by(1.1). Then forα ≥ 0, f ∈ B1(α) if, and only if,
for z ∈ D

(1.2) Re f ′(z)
(f(z)

z

)α−1

> 0.

ClearlyB1(0) consists of the well-known classS∗ of starlike functions, andB1(1) the class
R whose elements satisfyRe f ′(z) > 0, for z ∈ D.

Finding sharp bounds for|an| for all n ≥ 2 whenf ∈ B1(α) remains an open problem, with
best possible bounds only known when2 ≤ n ≤ 6, [3], [8], and even then, only partial answers
have been given whenn = 5 and6.

Whenα = −1 in (1.2), functions defined by the following are also members ofS, [5], and
provide an interesting subset ofS which is known as the classU(λ). The classU(λ) defined
below, has also been extensively studied in recent years (see e.g. [5], [6], and the references in
these papers).

Definition 1.2. Let f ∈ A and be given by(1.1). Thenf ∈ U(λ) if, and only if, forz ∈ D∣∣∣f ′(z)
( z

f(z)

)2

− 1
∣∣∣ < λ.

It is clear from the definition that sincef ′(z)/[z/f(z)]2 6= 0, functions inU(λ) are non-
vanishing inD\{0}, and locally univalent.

Finding sharp bounds for the coefficients of functions inU(λ) appears to be a difficult prob-
lem, with best possible bounds only known when2 ≤ n ≤ 4, [6]. On the other hand when
λ = 1, sharp bound have been found for alln ≥ 2 (see e.g. [6]).

In this paper we study a subset ofB1(α), whose definition mimics that ofU(λ) in the case
λ = 1, and show that it is possible to obtain sharp bounds for the first five coefficients off(z),
together with the first four coefficients of the inverse function. We also give other properties of
this subclass, which we define as follows.
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ON A SUBSET OFBAZILEVI Č FUNCTIONS 3

Definition 1.3. Let f ∈ A and be given by(1.1). Then forα ≥ 0, f ∈ B1(α, 1) if, and only if,
for z ∈ D,

(1.3)
∣∣∣f ′(z)

(f(z)

z

)α−1

− 1
∣∣∣ < 1.

We note that whenα = 0, (1.3) reduces to∣∣∣zf ′(z)

f(z)
− 1

∣∣∣ < 1,

considered in [8]. Since the analysis forα = 0 andα > 0 can differ, we will specify this when
appropriate.

2. REPRESENTATION EXPRESSION AND DISTORTION THEOREMS

We begin by giving a representation formula forf ∈ B1(α, 1) whenα > 0, analogous to that
given in [8] in the caseα = 0.

Theorem 2.1.For α > 0, f ∈ B1(α, 1) if, and only if,

(2.1) f(z) =
(
α

∫ z

0

tα−1(1 + ω(t))dt
)1/α

,

whereω is analytic inD satisfying|ω(z)| ≤ 1, andω(0) = 0.

Proof. From(1.3), we can write

(2.2) f ′(z)
(f(z)

z

)α−1

= 1 + ω(z).

Let φ(z) =
(f(z)

z

)α

. Then differentiation gives

φ′(z) +
α

z
φ(z) =

α

z
(1 + ω(z)).

Multiplying by zα and integrating gives(2.1).

Theorem 2.2.For α > 0, let f ∈ B1(α, 1), z = reiθ ∈ D, and

β1(α, r) =
(1 + α + αr

1 + α

)
, β2(α, r) =

(1 + α− αr

1 + α

)
.

Then

rβ2(α, r)1/α ≤ |f(z)| ≤ rβ1(α, r)1/α(2.3)

(1− r)β2(α, r)(1−α)/α ≤ |f ′(z)| ≤ (1 + r)β1(α, r)(1−α)/α(2.4)

1− r

β1(α, r)
≤

∣∣∣zf ′(z)

f(z)

∣∣∣ ≤ (1 + r)

β2(α, r)
.(2.5)
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4 MARJONO AND D. K. THOMAS

Equality holds in all cases whenf(z) = z
(1 + α + αz

1 + α

)1/α

for θ = 0, or π/2.

Proof. It follows from the Schwarz Lemma that|ω(z)| ≤ |z|. Using this in(2.1) and integrating
easy establishes the right-hand inequality in(2.3). The left-hand inequality follows from the
minimum principle for harmonic functions. Differentiating(2.1) and using(2.2) gives(2.4),
from which(2.5) follows on noting that|1 + ω(z)| ≥ 1− |ω(z)| ≥ 1− |z|.

From(2.3), we at once deduce the following.

Corollary 2.1. Let f ∈ B1(α, 1) for α > 0. Thenf(D) contains the disk{w : |w| < 1/(1 +
α)1/α}.

We note that lettingα → 0 in the results of Theorem2.2 and Corollary2.1, gives those
obtained in [9].

We will use the following lemmas, the first two and the fourth of which can be found in [1],
and the third in [7].

3. L EMMAS

Denote byP, the class of functionsp of positive real part, i.e., functions satisfyingRe p(z) >
0 for z ∈ D, with Taylor expansion

(3.1) p(z) = 1 +
∞∑

n=1

pnz
n.

Lemma 3.1. If p ∈ P, then∣∣∣p2 −
µ

2
p2

1

∣∣∣ ≤ max{2, 2|µ− 1|} =

{
2, 0 ≤ µ ≤ 2,
2|µ− 1|, elsewhere.

Lemma 3.2. Letp ∈ P. If 0 ≤ B ≤ 1 andB(2B − 1) ≤ D ≤ B, then∣∣p3 − 2Bp1p2 + Dp3
1

∣∣ ≤ 2.

Lemma 3.3. If p ∈ P, andα1, α2, β andγ satisfy0 < α1 < 1, 0 < α2 < 1, and

8α1(1− α1)((α2β − 2γ)2 + (α2(α1 + α2)− β)2) + α2(1− α2)(β − 2α1α2)
2

≤ 4α2
2(1− α2)

2α1(1− α1),

then

|γp4
1 + α1p

2
2 + 2α2p1p3 − (3/2)βp2

1p2 − p4| ≤ 2.

Lemma 3.4. If p ∈ P, then∣∣p3 − (µ + 1)p1p2 + µp3
1

∣∣ ≤ max{2, 2|2µ− 1|} =

{
2, 0 ≤ µ ≤ 1,
2|2µ− 1|, elsewhere.
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4. COEFFICIENT I NEQUALITIES

Theorem 4.1.Letf ∈ B1(α, 1) for α ≥ 0, and be given by(1.1). Then for2 ≤ n ≤ 5,

|an| ≤
1

α + n− 1
.

The inequalities are sharp.

Proof. Recall from(1.3), that we can write

(4.1) f ′(z)
(f(z)

z

)α−1

= 1 + ω(z),

whereω(z) is analytic inD, |ω(z)| ≤ 1, andω(0) = 0.

Sincep ∈ P, we can therefore write

(4.2) p(z) =
1 + ω(z)

1− ω(z)
, or ω(z) =

p(z)− 1

p(z) + 1
.

From(2.2), (3.1), (4.1) and(4.2), equating coefficients we obtain

a2 =
p1

2(1 + α)

a3 =
1

2(2 + α)

(
p2 −

a(5 + 3α)

4(1 + α)2(2 + α)
p2

1

)
a4 =

1

2(3 + α)

(
p3 −

1 + 8α + 3α2)

2(1 + α)(2 + α)
p1p2 +

α(5 + 64α + 61α2 + 14α3)

24(1 + α)3)(2 + α)
p3

1

a5 =
1

2(4 + α)

(α(8 + 544α + 3557α2 + 5389α3 + 3329α4 + 907α5 + 90α6)

192(1 + α)4(2 + α)2(3 + α)
p4

1

+
4 + 11α + 3α2

4(2 + α)2
p2

2 +
2 + 11α + 3α2

2(1 + α)(3 + α)
p1p3

− 8 + 76α + 325α2 + 324α3 + 117α4 + 14α5

8(1 + α)2(2 + α)2(3 + α)
p2

1p2 − p4

)
.

(4.3)

From(4.3) the inequality fora2 is obvious.

For a3 we apply Lemma3.1 with µ =
α(5 + 3α)

2(1 + α)2
, which gives the inequality for|a3|, since

0 ≤ µ ≤ 2 in this case.

Fora4 we use Lemma 3.2 with

B =
1 + 8α + 3α2

4(1 + α)(2 + α)
,

and
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D =
α(5 + 64α + 61α2 + 14α3)

24(1 + α)3(2 + α)
.

It is easily verified that both0 ≤ B ≤ 1, andB(2B − 1) ≤ D ≤ B, whenα ≥ 0, and so
applying Lemma 3.2 gives the required inequality for|a4|.

For a5, we apply Lemma 3.3 withα1, α2, β andγ the respective coefficients ofa5 in (4.3),
so that we need to show that

(1− α)2(4 + a)2(12544 + 427648α + 5441392α2 + 33366608α3 + 117462812α4

+ 260385736α5 + 382475767α6 + 388520160α7 + 282592930α8 + 150937228α9

+ 60100454α10 + 17921756α11 + 3972584α12 + 639452α13 + 71147α14 + 4932α15

+ 162α16)

≤ 288(12 + 5α + α2)(2 + 11α + 3α2)2(4 + 11α + 3α2)(1 + α)6(2 + α)4(3 + α)2.

(4.4)

To see that this inequality is true, write the left-hand side of the above inequality as(1 −
α)2(4 + α)2φ1(α), and the right-hand side asφ2(α). Then clearly(1 − α)2(4 + α)2φ1(α) ≤
(4 + α)2φ1(α).

Thus it enough to show that(4 + α)2φ1(α) ≤ φ2(α) whenα ≥ 0, which is easy to verify by
expanding both sides and subtracting.

We note next that using Lemma 3.1, it is a simple exercise to establish the following Fekete-
Szeg̋o theorem for functions inB1(α, 1). We omit the proof.

Theorem 4.2.Letf ∈ B1(α, 1) for α ≥ 0. Then

|a3 − µa2
2| ≤


1

2 + α
, −α(5 + 3α)

2(2 + α)
≤ µ ≤ 4 + α(3 + α)

2(2 + α)
,

α− 1 + 2µ

2(1 + α)2
, otherwise.

The inequalities are sharp.

5. I NVERSE COEFFICIENTS

We now consider the initial coefficients of the inverse functionf−1.

For any univalent functionf , there exists an inverse functionf−1 defined on some disc|ω| <
r0(f), with Taylor expansion

f−1(ω) = ω + A2ω
2 + A3ω

3 + A4ω
4 + ...(5.1)

Sincef (f−1(ω)) = ω, comparing coefficients from(1.1) and(5.1) gives
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A2 =− a2

A3 =− 2a2
2 + a3

A4 =− 5a2
3 + 5a2a3 − a4,

which, on substituting from(4.3), gives

A2 =− p1

1 + α

A3 =− 1

2(2 + α)

(
p2 −

8 + 9α + 3α2

4(1 + α)2
p2

1

)
A4 =− 1

2(3 + α)

(
p3 −

16 + 13α + 3α2

2(1 + α)(2 + α)
p1p2 +

90 + 190α + 152α2 + 53α3 + 7α4

12(1 + α)3(2 + α)
p3

1

)
.

(5.2)

We are now able to find sharp estimates for the above coefficients.

Theorem 5.1.Letf ∈ B1(α, 1) for α ≥ 0, with inverse coefficients given by(5.2). Then

|A2| ≤
1

1 + α
, |A3| ≤


1

2 + α
, α ≥ 1

2
(1 +

√
17),

3 + α

2(1 + α)2
, 0 ≤ α ≤ 1

2
(1 +

√
17),

|A4| ≤


1

3 + α
, α ≥ α0,

(2 + α)(4 + α)

3(1 + α)3
, α≤ α0,

whereα0 is the positive root of the equation21 + 17α− 2α3 = 0.

All the inequalities are sharp.

Proof. The inequality for|A2| is obvious, and sharp whenp1 = 2.

For A3 we apply Lemma 3.1 withµ =
8 + 9α + 3α2

2(1 + α)2
, so that0 ≤ µ ≤ 2 when α ≥

1

2
(1+

√
17). This gives the first inequality for|A3|. The second inequality follows from Lemma

3.1 on noting that ifµ is outside the interval [0,2], then0 ≤ α ≤ 1

2
(1 +

√
17).

The first inequality for|A3| is sharp on choosingp1 = 0 andp2 = 2. The second inequality
is sharp whenp1 = p2 = 2.
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ForA4, we first use Lemma 3.4 withµ =
(3 + α)(4 + α)

2(1 + α)(2 + α)
, so that

A4 = − 1

2(3 + α)

(
p3 − (µ + 1)p1p2 + µp3

1 +
(18 + 4α− 10α2 − α3 + α4)

12(1 + α)3(2 + α)
p3

1

)
.

Noting thatµ > 1, when0 ≤ α <
1

2
(1 +

√
33), we use the inequality|p1| ≤ 2, and apply

Lemma 3.4 to obtain the bound for|A4| on the interval0 ≤ α <
1

2
(1 +

√
33).

We now use Lemma 3.2.

From(4.2) let

B =
16 + 13α + 3α2

4(1 + α)(2 + α),
and D =

90 + 190α + 152α2 + 53α3 + 7α4

12(1 + α)3(2 + α)
.

Then0 ≤ B ≤ 1 whenα ≥ 1

2
(1 +

√
33), andB(2B − 1) ≤ D ≤ B whenα ≥ α0, where

α0 is the unique real root of the equation21 + 17α + 2α3 = 0. Since both these inequalities are
satisfied whenα ≥ α0, the first inequality for|A4| follows on this interval by applying Lemma
3.2.

Thus we are left with the interval
1

2
(1 +

√
33) ≤ α ≤ α0.

Write

A4 = − 1

2(3 + a)

(
p3 − 2Bp1p2 + Bp3

1 + (D −B)p3
1

)
,

and note thatD − B =
(21 + 17α− 2α3)

12(1 + α)3
≥ 0 when0 ≤ α ≤ α0. Noting that we still require

thatα ≥ 1

2
(1 +

√
33) (since0 ≤ B ≤ 1), we now apply Lemma 3.2 in the caseD = B, to

obtain the second inequality for|A4| on the interval
1

2
(1 +

√
33) ≤ α ≤ α0.

The first inequality for|A4| is sharp on choosingp1 = 0, andp3 = 2. The second inequality
is sharp whenp1 = p2 = p3 = 2.

6. THE FIFTH I NVERSE COEFFICIENT

We have seen in Theorem 4.1 that it is possible to find complete and sharp bounds of the
fifth coefficient off(z). Finding sharp bounds for the fifth inverse coefficientA5 seems more
difficult.

It is easy to see thatA5 = 14a4
2 − 21a2

2a3 + 3a2
3 + 6a2a4 − a5, and then expressingA5 in

terms of the coefficientsp1, p2, p3 andp4, obtain an expression similar to that found fora5 in
(4.3). Applying Lemma 3.3 to the resulting expression gives the sharp bound|A5| ≤ 1/(4+α),
providedα > 6.029 . . . . This leaves open the problem of finding sharp bounds for|A5| on the
interval0 ≤ α ≤ 6.029 . . . .
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We next give a subordination property for functions inB1(α, 1) for α ≥ 0, similar to that
proved by Marjono [3], noting that the result is valid for all functions inA.

7. SUBORDINATION

Theorem 7.1.Letf ∈ B1(α, 1) for α ≥ 0, andγ > 0. Then

f ′(z)
(f(z)

z

)α−1

≺ (1 + z)β(γ)

implies (f(z)

z

)α

≺ (1 + z)γ,

where

β(γ) = γ +
4

π
arctan

( γ

γ + 2α

)
.

Proof. Write

P (z) =
(f(z)

z

)α

,

so thatP is analytic inD, P (0) = 1 and

P (z) +
zP ′(z)

α
=

(f(z)

z

)α−1

f ′(z).

We therefore need to show that

P (z) +
zP ′(z)

α
≺ (1 + z)β(γ)

implies

P (z) ≺ (1 + z)γ.

For z ∈ D, let h(z) = (1 + z)β(γ) andq(z) = (1 + z)γ, so that| arg h(z)| <
πβ(γ)

4
and

| arg q(z)| < πγ

4
.

Suppose thatp(z) ⊀ q(z). Then from the Clunie-Jack Lemma, there exitsz0 ∈ D and
ζ0 ∈ ∂D, such thatP (z0) = q(ζ0), (p(|z| < |z0|) ⊂ q(D) andz0p

′(z0) = kζ0q
′(ζ0) for k ≥ 1.

Thus we can write

P (z0) +
z0P

′(z0)

α
= q(ζ0) +

ζ0q
′(ζ0)

α

= (1 + ζ0)
γ
[
1 +

kγζ0

α(1 + ζ0)

]
.

(7.1)

Now write ζ0 = eiθ, so that(7.1) becomes

P (z0) +
z0P

′(z0)

α
= (1 + eiθ)γ

[1

2
+ i

kγ

2α

sin θ

1 + cos θ

]
.
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Writing sin θ = t, and taking arguments, we obtain

arg
(
P (z0) +

z0P
′(z0)

α

)
= γ arctan

[ t

1 +
√

1− t2

]
+ arctan

[ kγt

(2α + kγ)
√

1− t2

]
.

Noting that the above expression is minimum whent = −1, taking the modulus and using
the fact thatk ≥ 1, we deduce that∣∣∣ arg

(
P (z0) +

z0P
′(z0)

α

)∣∣∣ ≥ γπ

4
+ arctan

[ γ

2α + γ

]
=

β(γ)π

4
,

which is a contradiction.
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