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ABSTRACT. In this present investigation, the authors obtain Fekete-Szegö inequality for a cer-

tain class of analytic functionsf(z) for which
(

zf ′(z)
f(z)

)α (
1 + zf ′′(z)

f ′(z)

)β

(α, β ≥ 0) lies in a

region starlike with respect to1 and symmetric with respect to the real axis. Also certain appli-

cation of our main result for a class of functions defined by Hadamard product (convolution) is

given. As a special case of our result we obtain Fekete-Szegö inequality for a class of functions

defined through fractional derivatives. Also we obtain Fekete-Szegö inequality for the inverse

functions.
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1. I NTRODUCTION

LetA denote the class of allanalyticfunctionsf(z) defined on

∆ = {z : z ∈ C and|z| < 1}

andA0 be the family of functionsf(z) ∈ A normalized by the conditionsf(0) = 0, f ′(0) = 1.

Such functionsf ∈ A0 have the Taylor series expansion given by

(1.1) f(z) = z +
∞∑

k=2

akz
k (z ∈ ∆).

Let S be the family of functionsf ∈ A0 which are univalent. Letφ(z) be an analytic function

with positive real part on∆ with φ(0) = 1, φ′(0) > 0 which maps the unit disk∆ onto a region

starlike with respect to1 which is symmetric with respect to the real axis. LetS∗(φ) be the class

of functions inf ∈ S for which

zf ′(z)

f(z)
≺ φ(z), z ∈ ∆

andC(φ) be the class of functions inf ∈ S for which

1 +
zf ′′(z)

f ′(z)
≺ φ(z), z ∈ ∆.

These classes were introduced and studied by Ma and Minda [5]. The familiar classS∗(α) of

starlike functionsof orderα and the classC(α) of convex functionsof orderα, 0 ≤ α < 1 are

the special case ofS∗(φ) andC(φ) respectively whenφ(z) = (1 + (1− 2α)z)/(1− z).

We now define a class of functions which unifies the classS∗(φ) andC(φ) in the following:

Definition 1.1. Let φ(z) be a univalent starlike function with respect to 1 which maps the unit

disk ∆ onto a region in the right half plane which is symmetric with respect to the real axis,

φ(0) = 1 andφ′(0) > 0. A functionf ∈ A is in the classMα,β(φ) if(
zf ′(z)

f(z)

)α(
1 +

zf ′′(z)

f ′(z)

)β

≺ φ(z) (0 ≤ α ≤ 1).

It follows that

M0,1(φ) ≡ C(φ) and M1,0(φ) ≡ S∗(φ).

Ma and Minda [5] obtained the Fekete-Szegö inequality for functions in the classC(φ) and in

view of the Alexander result between the classS∗(φ) andC(φ), the Fekete-Szegö inequality for

functions inS∗(φ). Similar problem for a class of Bazilevič functions was considered recently

by Ravichandranet al. [8].

In the present paper, we prove the Fekete-Szegö inequality in Theorem 2.1 for a more general

class of analytic functions which we have defined above in Definiton1.1. Also we give applica-

tions of our results to certain functions defined through Hadamard product and in particular we

consider a class defined by fractional derivatives. Also we discuss the Fekete-Szegö inequality

for the inverse functions.

To prove our main result, we need the following:

AJMAA, Vol. 1, No. 2, Art. 4, pp. 1-7, 2004 AJMAA

http://ajmaa.org


FEKETE-SZEGÖ INEQUALITY 3

Lemma 1.1. [5] If p1(z) = 1 + c1z + c2z
2 + · · · is a function with positive real part in∆, then

|c2 − vc2
1| ≤


−4v + 2 if v ≤ 0,

2 if 0 ≤ v ≤ 1,

4v − 2 if v ≥ 1.

Whenv < 0 or v > 1, the equality holds if and only ifp1(z) is (1 + z)/(1 − z) or one of its

rotations. If0 < v < 1, then equality holds if and only ifp1(z) is (1 + z2)/(1 − z2) or one of

its rotations. Ifv = 0, the equality holds if and only if

p1(z) =

(
1

2
+

1

2
λ

)
1 + z

1− z
+

(
1

2
− 1

2
λ

)
1− z

1 + z
(0 ≤ λ ≤ 1)

or one of its rotations. Ifv = 1, the equality holds if and only ifp1 is the reciprocal of one of

the functions such that the equality holds in the case ofv = 0.

Also the above upper bound is sharp, it can be improved as follows when0 < v < 1:

|c2 − vc2
1|+ v|c1|2 ≤ 2 (0 < v ≤ 1/2)

and

|c2 − vc2
1|+ (1− v)|c1|2 ≤ 2 (1/2 < v ≤ 1).

We also need the following:

Lemma 1.2. (cf. [13]) If p1(z) = 1 + c1z + c2z
2 + · · · is a function with positive real part in

∆, then

|c2 − vc2
1| ≤ 2 max{1; |2v − 1|}.

The result is sharp for the functions

p(z) =
1 + z2

1− z2
, p(z) =

1 + z

1− z
.

2. FEKETE -SZEGÖ PROBLEM

By making use of the Lemma 1.1, we prove the following:

Theorem 2.1.Letφ(z) = 1 + B1z + B2z
2 + B3z

3 + · · · . Let

σ1 :=
2(α + 2β)2(B2 −B1)− [(α + 2β)2 − 3(α + 4β)B2

1

4(α + 3β)]B2
1

,

σ2 :=
2(α + 2β)2(B2 + B1)− [(α + 2β)2 − 3(α + 4β)B2

1

4(α + 3β)]B2
1

,

σ3 :=
2(α + 2β)2B2 − [(α + 2β)2 − 3(α + 4β)B2

1

4(α + 3β)]B2
1

,

γ := (α + 2β)2 − 3(α + 4β) + 4µ(α + 3β).

AJMAA, Vol. 1, No. 2, Art. 4, pp. 1-7, 2004 AJMAA

http://ajmaa.org


4 V. RAVICHANDRAN AND MASLINA DARUS AND M. HUSSAIN KHAN AND K. G. SUBRAMANIAN

If f(z) given by (1.1) belongs toMα,β(φ), then

|a3 − µa2
2| ≤



1

4(α + 3β)

[
2B2 −

B2
1

(α + 2β)2
γ

]
if µ ≤ σ1,

1

2(α + 3β)
B1 if σ1 ≤ µ ≤ σ2,

1

4(α + 3β)

[
−2B2 +

B2
1

(α + 2β)2
γ

]
if µ ≥ σ2.

Further, if σ1 ≤ µ ≤ σ3, then

|a3 − µa2
2|+

(α + 2β)2

2(α + 3β)B1

[
1− B2

B1

+
γB1

2(α + 2β)2

]
|a2|2 ≤

B1

2(α + 3β)
.

If σ3 ≤ µ ≤ σ2, then

|a3 − µa2
2|+

(α + 2β)2

2(α + 3β)B1

[
1 +

B2

B1

− γB1

2(α + 2β)2

]
|a2|2 ≤

B1

2(α + 3β)
.

These results are sharp.

Proof. If f(z) ∈ Mα,β(φ), then there is a Schwarz functionw(z), analytic in∆ with w(0) = 0

and|w(z)| < 1 in ∆ such that

(2.1)

(
zf ′(z)

f(z)

)α(
1 +

zf ′′(z)

f ′(z)

)β

= φ(w(z)).

Define the functionp1(z) by

(2.2) p1(z) :=
1 + w(z)

1− w(z)
= 1 + c1z + c2z

2 + · · · .

Sincew(z) is a Schwarz function, we see that<p1(z) > 0 andp1(0) = 1. Define the function

p(z) by

(2.3) p(z) :=

(
zf ′(z)

f(z)

)α(
1 +

zf ′′(z)

f ′(z)

)β

= 1 + b1z + b2z
2 + · · · .

In view of the equations (2.1), (2.2), (2.3), we have

(2.4) p(z) = φ

(
p1(z)− 1

p1(z) + 1

)
.

Since
p1(z)− 1

p1(z) + 1
=

1

2

[
c1z + (c2 −

c2
1

2
)z2 + (c3 +

c3
1

4
− c1c2)z

3 + · · ·
]

therefore

φ

(
p1(z)− 1

p1(z) + 1

)
= 1 +

1

2
B1c1z +

[
1

2
B1(c2 −

1

2
c2
1) +

1

4
B2c

2
1

]
z2 + · · · .

From (2.4), we obtain

b1 =
1

2
B1c1

and

b2 =
1

2
B1(c2 −

1

2
c2
1) +

1

4
B2c

2
1.
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A computation shows that

zf ′(z)

f(z)
= 1 + a2z + (2a3 − a2

2)z
2 + (3a4 + a3

2 − 3a3a2)z
3 + · · ·

and therefore we have(
zf ′(z)

f(z)

)α

= 1 + αa2z + (2αa3 +
α2 − 3α

2
a2

2)z
2 + · · · .

Similarly we have

1 +
zf ′′(z)

f ′(z)
= 1 + 2a2z + (6a3 − 4a2

2)z
2 + · · ·

and therefore(
1 +

zf ′′(z)

f ′(z)

)β

= 1 + 2βa2z +
(
6βa3 + 2(β2 − 3β)a2

2

)
z2 + · · · .

Thus we have(
zf ′(z)

f(z)

)α(
1 +

zf ′′(z)

f ′(z)

)β

= 1 + (α + 2β)a2z +

[
2(α + 3β)a3 +

(α + 2β)2 − 3(α + 4β)

2
a2

2

]
z2 + . . .

and in view of the equation (2.3), we see that

b1 = (α + 2β)a2(2.5)

b2 = 2(α + 3β)a3 +
(α + 2β)2 − 3(α + 4β)

2
a2

2(2.6)

or, equivalently, we have

a2 =
B1c1

2(α + 2β)
,

a3 =
1

2(α + 3β)

{
B1c2

2
− 1

4

[
B1 −B2 +

[(α + 2β)2 − 3(α + 4β)]

2(α + 2β)2
B2

1

]
c2
1

}
.

Therefore we have

(2.7) a3 − µa2
2 =

B1

4(α + 3β)

{
c2 − vc2

1

}
where

v :=
1

2

[
1− B2

B1

+
[(α + 2β)2 + 4µ(α + 3β)− 3(α + 4β)]

2(α + 2β)2
B1

]
.

Our result now follows by an application of Lemma 1.1.

To show that the bounds are sharp, we define the functionsKφn (n = 2, 3, . . .) by(
zK ′

φn(z)

Kφn(z)

)α
(

1 +
zK ′′

φn(z)

K ′
φn(z)

)β

= φ(zn−1), Kφn(0) = 0 = [Kφn]′(0)− 1

and the functionFλ andGλ (0 ≤ λ ≤ 1) by(
zF ′

λ(z)

Fλ(z)

)α(
1 +

zF ′′
λ (z)

F ′
λ(z)

)β

= φ

(
z(z + λ)

1 + λz

)
, Fλ(0) = 0 = F ′

λ(0)− 1
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and (
zG′

λ(z)

Gλ(z)

)α(
1 +

zG′′
λ(z)

G′
λ(z)

)β

= φ

(
−z(z + λ)

1 + λz

)
, Gλ(0) = 0 = G′

λ(0)− 1.

Clearly the functionsKφn, Fλ, Gλ ∈ Mα,β(φ). Also we writeKφ := Kφ2.

If µ < σ1 or µ > σ2, then the equality holds if and only iff is Kφ or one of its rotations.

Whenσ1 < µ < σ2, then the equality holds if and only iff is Kφ3 or one of its rotations. If

µ = σ1 then the equality holds if and only iff is Fλ or one of its rotations. Ifµ = σ2 then the

equality holds if and only iff is Gλ or one of its rotations.

By making use of Lemma 1.2, we immediately obtain the following:

Theorem 2.2.Letf(z), φ(z) be as in Theorem 2.1. For complexµ, we have

|a3 − µa2
2| =

B1

α + 3β
max

{
1,

∣∣∣∣−B2

B1

+
[(α + 2β)2 + 4µ(α + 3β)− 3(α + 4β)]

2(α + 2β)2
B1

∣∣∣∣} .

The result is sharp.

Remark 2.1. The coefficient bounds for|a2| and|a3| are special cases of our Theorem 2.1.

3. APPLICATION TO FUNCTIONS DEFINED BY CONVOLUTION AND TO THE I NVERSE

FUNCTIONS

Let g(z) = z +
∑∞

n=2 gnz
n (gn > 0). DefineM g

α,β(φ) to be the class of all functionsf(z)

such that(f ∗ g)(z) ∈ Mα,β(φ). Sincef(z) = z +
∑∞

n=2 anz
n ∈ M g

α,β(φ) if and only if

(f ∗ g) = z +
∑∞

n=2 gnanz
n ∈ Mα,β(φ), we obtain the coefficient estimate for functions in the

classM g
α,β(φ) from the corresponding estimate for functions in the classMα,β(φ). See [8] for

more details.

Define the inverse functionf−1 by

f−1(f(z)) = z = f(f−1(z)).

Then

(3.1) f−1(w) = w +
∞∑

n=2

dnw
n (|w| < r0),

wherer0 is greater than the radius of the Koebe domain for the classMα,β(φ).

Sincef−1(f(z)) = z, we have

a2 + d2 = 0

a3 + 2a2d2 + d3 = 0

and therefore we have

d2 = −a2

d3 = −a3 + 2a2
2.
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A computation now shows that

|d3 − µd2
2| = |a3 − (2− µ)a2

2|

and hence the Fekete-Szegö inequality for the inverse function follows from that of the function

f(z) . We omit the details.
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