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2 M. K. AOUF

1. INTRODUCTION

Let Σp denote the class of meromorphic functions f(z) normalized by

(1.1) f(z) = z−p +
∞∑
k=p

akz
k (ak ≥ 0; p ∈ N = {1, 2, . . . }) ,

which are analytic and p-valent in the punctured disc U∗ = U∗(1), where

U∗(r) = {z : z ∈ C and 0 < |z| < r (0 < r ≤ 1)} = U(r)\{0} (U(1) ≡ U) .

A function f(z) ∈ Σp is said to be meromorphically p-valent starlike of order δ (0 ≤ δ < p)
in U(r) if

(1.2) Re

{
zf

′
(z)

f(z)

}
< −δ (z ∈ U(r); 0 < r ≤ 1; 0 ≤ δ < p) .

On the other hand, a function f(z) ∈ Σp is said to be meromorphically p-valent convex of order
δ (0 ≤ δ < p) in U(r) if

(1.3) Re

{
1 +

zf
′′
(z)

f ′(z)

}
< −δ (z ∈ U(r); 0 < r ≤ 1; 0 ≤ δ < p) .

The Hadamard product (or convolution) of the function f(z) defined by (1.1) with the func-
tions g(z) and h(z) given, respectively, by

(1.4) g(z) = z−p +
∞∑
k=1

bkz
k−p (bk ≥ 0; p ∈ N)

and

(1.5) h(z) = z−p +
∞∑
k=1

ckz
k−p (ck ≥ 0; p ∈ N)

can be expressed as follows:

(1.6) (f ∗ g)(z) = z−p +
∞∑
k=p

akbk+pz
k = (g ∗ f)(z)

and

(1.7) (f ∗ h)(z) = z−p +
∞∑
k=p

akck+pz
k = (h ∗ f)(z) ,

where we have assumed that

bj = cj = 0 (j = 1, 2, . . . , 2p− 1; p ∈ N) .

Let f(z) and g(z) be analytic in U . Then we say that the function g(z) is subordinate to the
function f(z) and we write g(z) ≺ f(z)(z ∈ U), if there exists a Schwarz function w(z) with
w(0) = 0 and |w(z)| < 1(z ∈ U) such that g(z) = f(w(z))(z ∈ U).

In recent years, various subclasses of the class Σp defined by using convolution were studied
by Raina and Srivastava [18] and Kumar et al. [10].

Making use the above subordination definition, we introduce here a new classCm(g, h;A,B, λ, γ)
of meromorphically multivalent functions, which is defined as follows.
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MULTIVALENT FUNCTIONS WITH APPLICATIONS 3

Definition 1.1. A function f(z) ∈ Σp is said to be in the class Cm(g, h;A,B, λ, γ) if it satisfies
the following subordination condition:

(1.8) γ
((f ∗ g)(z))(m)

((f ∗ h)(z))m
≺ γ − (A−B)(p− λ)z

1 +Bz
(z ∈ U∗)

(γ > 0; 0 ≤ B < A ≤ 1, 0 ≤ λ < p; bk ≥ ck ≥ 0(k ≥ p; p ∈ N); p ≥ m;

m ∈ N∗0 = {2j − 1 : j ∈ N} ∪ {0}) ,(1.9)

provided that ((f∗h)(z))(m) 6= 0 (z ∈ U∗). We note thatCm(g, h;A,B, 0, γ) = Cm(g, h;A,B, γ)
(Raina and Srivastava [18]).

Meromorphically multivalent functions have been extensively studied by (for example) Mo-
gra ([15] and [16]), Uralegaddi and Ganigi [22], Aouf ([1] and [2]), Aouf and Hossen [3], Chen
et al. [5], Srivastava et al. [20], Owa et al. [17], Joshi and Aouf [7], Joshi and Srivastava [8],
Aouf et al. [4], Raina and Srivastava [18], Kulkarni et al. [9], Liu [11], Liu and Srivastava ([12],
[13] and [14]), Uralegaddi and Somanatha [23] and Yang ([24] and [25]).

In this paper we obtain the coefficient estimates, distortion properties and the radii of starlike-
ness and convexity for functions in the class Cm(g, h;A,B, λ, γ). We also derive many interest-
ing results for the Hadamard products of functions belonging to the class Cm(g, h;A,B, λ, γ).
Several applications of the main results involving generalized hypergeometric functions are
considered. All the results are sharp.

2. PROPERTIES OF THE P-VALENTLY MEROMORPHIC FUNCTION CLASS
Cm(g, h;A,B, λ, γ)

We first determine a necessary and sufficient condition for a function f(z) ∈ Σp of the form
(1.1) to be in the class Cm(g, h;A,B, λ, γ) of meromorphically p-valent functions with positive
coefficients.

Theorem 2.1. Let f(z) ∈ Σp be given by (1.1). Then f(z) ∈ Cm(g, h;A,B, λ, γ) if and only if

∞∑
k=p

ak {γ(1 +B)bk+p + [(A−B)(p− λ)− γ(1 +B)]ck+p} (
k
m

)

≤ (A−B)(p− λ)(
p+m− 1

m
) (k ≥ p; p ∈ N) .(2.1)

Proof. Let f(z) ∈ Cm(g, h;A,B, λ, γ) be given by (1.1). Then, in view of (1.6) to (1.8), we
find for m ∈ N∗0 that

(2.2)

∣∣∣∣∣∣∣∣
γ
∞P

k=p
ak(bk+p−ck+p)(

k
m

)zk+p

(A−B)(p−λ)(
p+m− 1

m
)−

∞P
k=p

ak{γBbk+p+[(A−B)(p−λ)−γB]ck+p}( k
m

)zk+p

∣∣∣∣∣∣∣∣ < 1(z ∈ U) .

Putting z = r(0 ≤ r < 1), and noting the fact that the denominator in the inequality (2.2)
remains positive by virtue of the constraints stated in (1.9) for all r ∈ [0, 1), we easily arrive at
the desired inequality (2.1) by letting z → 1− in (2.2).
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4 M. K. AOUF

Conversely, we assume that (2.1) holds true. Then from (1.1) and (2.1), we get∣∣∣∣ γ[((f ∗ g)(z))(m) − ((f ∗ h)(z))(m)]

γB[((f ∗ g)(z))(m) − ((f ∗ h)(z))(m)] + (A−B)(p− λ)((f ∗ h)(z))m

∣∣∣∣
≤

γ

∞∑
k=p

ak(bk+p−ck+p)(
k
m

)

(A−B)(p−λ)(
p+m− 1

m
)−

∞P
k=p

ak{γBbk+p+[(A−B)(p−λ)−γB]ck+p}( k
m

)

< 1(z ∈ U) .(2.3)

Hence, by the maximum modulus theorem, we have f(z) ∈ Cm(g, h;A,B, λ, γ), we complete
the proof of Theorem 2.1.

Corollary 2.2. Let the function f(z) defined by (1.1) be in the class Cm(g, h;A,B, λ, γ). Then

(2.4) ak ≤
(A−B)(p− λ)(

p+m− 1
m

)

{γ(1 +B)bk+p + [(A−B)(p− λ)− γ(1 +B)]ck+p} (
k
m

)

(k ≥ p; p ∈ N) ,

where the equality holds true for the function f(z) given by

(2.5) f(z) = z−p +

(A−B)(p−λ)(
p+m− 1

m
)

{γ(1+B)bk+p+[(A−B)(p−λ)−γ(1+B)]ck+p}( k
m

)

zk (k ≥ p; p ∈ N) .

Next, we prove the following growth and distortion properties for the class Cm(g, h;A,B, λ, γ).

Theorem 2.3. Let a function f(z) ∈ Σp of the form (1.1) belong to the classCm(g, h;A,B, λ, γ).
If the sequence {ηk} is nondecreasing, then

r−p −
(A−B)(p−λ)(

p+m− 1
m

)

ηp
rp ≤ |f(z)| ≤ r−p +

(A−B)(p−λ)(
p+m− 1

m
)

ηp
rp

(0 < |z| = r < 1) ,(2.6)

where

ηk = ηk(p,A,B, λ, γ,m)

= {γ(1 +B)bk+p + [(A−B)(p− λ)− γ(1 +B)]ck+p}
(
k
m

)
(k ≥ p; p ∈ N).(2.7)

If the sequence
{ηk
k

}
is nondecreasing, then

−pr−p−1 −
p(A−B)(p− λ)(

p+m− 1
m

)

ηp
rp−1 ≤

∣∣∣f ′(z)
∣∣∣ ≤ −pr−p−1+

(2.8)
p(A−B)(p− λ)(

p+m− 1
m

)

ηp
rp−1 (0 < |z| = r < 1) .
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The results (2.6) and (2.8) are sharp with the extremal function f(z) given by

(2.9) f(z) = z−p +

(A−B)(p− λ)(
p+m− 1

m
)

ηp
zp (p ∈ N) .

Proof. Let a function f(z) of the form (1.1) belong to the class Cm(g, h;A,B, λ, γ). If the
sequence {ηk} is nondecreasing and positive, by Theorem 2.1, we have

(2.10)
∞∑
k=p

ak ≤
(A−B)(p− λ)(

p+m− 1
m

)

ηp

and if the sequence
{ηk
k

}
is nondecreasing and positive, by Theorem 2.1, we have

(2.11)
∞∑
k=p

kak ≤
p(A−B)(p− λ)(

p+m− 1
m

)

ηp
.

Making use of the conditions (2.10) and (2.11), in conjunction with the definition (1.1), we
readily obtain the assertions (2.6) and (2.8) of Theorem 2.3.

Remark 2.1. Putting λ = 0 in Theorem 2.3, we obtain the correct result for the classCm(g, h;A,B, γ)
obtained by Raina and Srivastava [[18], Theorem 2].

We next determine the radii of meromorphically p-valent starlikeness of order δ(0 ≤ δ < p)
and meromorphically p-valent convexity of order δ(0 ≤ δ < p) for functions in the class
Cm(g, h;A,B, λ, γ), which are given by Theorem 2.4 below.

Theorem 2.4. Let the function f(z) defined by (1.1) be in the class Cm(g, h;A,B, λ, γ). Then
(i) f(z) is meromorphically p-valent starlike of order δ (0 ≤ δ < p) in the disc |z| < r1, that

is,

(2.12) Re

{
−zf

′
(z)

f(z)

}
> δ (|z| < r1; 0 ≤ δ < p; p ∈ N) ,

where

(2.13) r1 = inf
k≥p


(p− δ)ηk

(k + δ)(A−B)(p− λ)(
p+m− 1

m
)


1

k + p

.

(ii) f(z) is meromorphically p-valent convex of order δ (0 ≤ δ < p) in the disc |z| < r2, that is,

(2.14) Re

{
−(1 +

zf
′′
(z)

f ′(z)
)

}
> δ (|z| < r2; 0 ≤ δ < p; p ∈ N) ,

where

(2.15) r2 = inf
k≥p


p(p− δ)ηk

k(k + δ)(A−B)(p− λ)(
p+m− 1

m
)


1

k + p

.
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The sequence {ηk} occurring in (2.13) and (2.15) is given by (2.7). Each of these results is
sharp for the function f(z) given by (2.5).

Proof. (i) From the definition (1.1), we easily get

(2.16)

∣∣∣∣∣∣
zf
′
(z)

f(z)
+ p

zf ′ (z)
f(z)
− p+ 2δ

∣∣∣∣∣∣ ≤
∞∑
k=p

(k + p)ak|z|k+p

2(p− δ)−
∞∑
k=p

(k − p+ 2δ)ak|z|k+p
.

Thus we have the desired inequality :

(2.17)

∣∣∣∣∣∣
zf
′
(z)

f(z)
+ p

zf ′ (z)
f(z)
− p+ 2δ

∣∣∣∣∣∣ ≤ 1 (0 ≤ δ < p; p ∈ N)

if

(2.18)
∞∑
k=p

(
k + δ

p− δ
)ak|z|k+p ≤ 1 .

Hence, by Theorem 2.1, (2.18) will be true if

(2.19) (
k + δ

p− δ
)|z|k+p ≤


ηk

(A−B)(p− λ)(
p+m− 1

m
)

 (k ≥ p; p ∈ N) .

The last inequality (2.19) leads us immediately to the disc |z| < r1, where r1 is given by (2.13).
(ii) In order to prove the second assertion of Theorem 2.4, we find from the definition (1.1)

that

(2.20)

∣∣∣∣∣∣
1 + zf

′′
(z)

f ′ (z)
− p

1 + zf ′′ (z)

f ′ (z)
− p+ 2δ

∣∣∣∣∣∣ ≤
∞∑
k=p

k(k + p)ak|z|k+p

2p(p− δ)−
∞∑
k=p

k(k − p+ 2δ)ak|z|k+p
.

Thus we have the desired inequality:

(2.21)

∣∣∣∣∣∣
1 + zf

′′
(z)

f ′ (z)
+ p

1 + zf
′′

(z)

f ′ (z)
− p+ 2δ

∣∣∣∣∣∣ ≤ 1 (0 ≤ δ < p; p ∈ N) ,

if

(2.22)
∞∑
k=p

k(k + δ)

p(p− δ)
ak|z|k+p ≤ 1 .

Hence, by Theorem 2.1, (2.22) will be true if

(2.23)
k(k + δ)

p(p− δ)
|z|k+p ≤


ηk

(A−B)(p− λ)(
p+m− 1

m
)

 (k ≥ p; p ∈ N) .

This last inequality (2.23) readily yields the disc |z| < r2, with r2 is defined by (2.15), and
the proof of Theorem 2.4 is completed by merely verifying that each assertion is sharp for the
function f(z) given by (2.5).
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3. CONVOLUTION PROPERTIES FOR THE P-VALENTLY MEROMORPHIC FUNCTION
CLASS Cm(g, h;A,B, λ, γ)

For the functions

(3.1) fj(z) = z−p +
∞∑
k=p

ak,jz
k (ak,j ≥ 0; j = 1, 2; p ∈ N),

we denote by (f1 ⊗ f2)(z) the Hadamard product (or convolution) of the functions f1(z) and
f2(z), that is,

(3.2) (f1 ⊗ f2)(z) = z−p +
∞∑
k=p

ak,1ak,2z
k .

Throughout this section, we assume that the sequence {ηk} is nondecreasing, where ηk is
given by (2.7).

Theorem 3.1. Let the functions fj(z)(j = 1, 2) defined by (3.1) be in the classCm(g, h;A,B, λ, γ).
Then (f1 ⊗ f2)(z) ∈ Cm(g, h;A,B, ζ, γ), where

ζ = p− (
p+m− 1

m

)(
p
m

)
γ(1 +B)(b2p − c2p)(A−B)(p− λ)2

[ηp(p,A,B, λ, γ,m)]2 −
(
p+m− 1

m

)(
p
m

)
c2p(A−B)2(p− λ)2

,(3.3)

where ηk(p,A,B, λ, γ,m) is defined by (2.7). The result is sharp for the functions fj(z)(j =
1, 2) given by

(3.4) fj(z) = z−p +

(A−B)(p− λ)

(
p+m− 1

m

)
ηp(p,A,B, λ, γ,m)

zp (j = 1, 2; p ∈ N) .

Proof. Employing the technique used earlier by Schild and Silverman [19], we need to find the
largest ζ such that

(3.5)
∞∑
k=p

ηk(p,A,B, ζ, γ,m)

(A−B)(p− ζ)

(
p+m− 1

m

)ak,1ak,2 ≤ 1

for fj(z) ∈ Cm(g, h;A,B, ζ, γ)(j = 1, 2). Since fj(z) ∈ Cm(g, h;A,B, λ, γ)(j = 1, 2), we
readily see that

(3.6)
∞∑
k=p

ηk(p,A,B, λ, γ,m)

(A−B)(p− λ)

(
p+m− 1

m

)ak,j ≤ 1 (j = 1, 2) .

Therefore, by the Cauchy-Schwarz inequality, we obtain

(3.7)
∞∑
k=p

ηk(p,A,B, λ, γ,m)

(A−B)(p− λ)

(
p+m− 1

m

)√ak,1ak,2 ≤ 1 .

This implies that we only need to show that

(3.8)
ηk(p,A,B, ζ, γ,m)

(p− ζ)
ak,1ak,2 ≤

ηk(p,A,B, λ, γ,m)

(p− λ)

√
ak,1ak,2 (k ≥ p; p ∈ N) .
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or, equivalently, that

(3.9)
√
ak,1ak,2 ≤

(p− ζ)ηk(p,A,B, λ, γ,m)

(p− λ)ηk(p,A,B, ζ, γ,m)
(k ≥ p; p ∈ N) .

Hence, by the inequality (3.7), it is sufficient to prove that

(3.10)
(A−B)(p− λ)

(
p+m− 1

m

)
ηk(p,A,B, λ, γ,m)

≤ (p− ζ)ηk(p,A,B, λ, γ,m)

(p− λ)ηk(p,A,B, ζ, γ,m)
(k ≥ p; p ∈ N) .

It follows from (3.10) that

ζ ≤ p−(
p+m− 1

m

)(
k
m

)
γ(1 +B)(bk+p − ck+p)(A−B)(p− λ)2

[ηk(p,A,B, λ, γ,m)]2 −
(
p+m− 1

m

)(
k
m

)
ck+p(A−B)2(p− λ)2

(k ≥ p; p ∈ N).(3.11)

Now, defining the function ϕ(k) by

ϕ(k) = p−(
p+m− 1

m

)(
k
m

)
γ(1 +B)(bk+p − ck+p)(A−B)(p− λ)2

[ηk(p,A,B, λ, γ,m)]2 −
(
p+m− 1

m

)(
k
m

)
ck+p(A−B)2(p− λ)2

(k ≥ p; p ∈ N) ,(3.12)

we see that ϕ(k) is an increasing function of k. Therefore, we conclude that

ζ ≤ ϕ(p) = p− (
p+m− 1

m

)(
p
m

)
γ(1 +B)(b2p − c2p)(A−B)(p− λ)2

[ηp(p,A,B, λ, γ,m)]2 −
(
p+m− 1

m

)(
p
m

)
c2p(A−B)2(p− λ)2

,(3.13)

which evidently completes the proof of Theorem 3.1.
Using arguments similar to those in the proof of Theorem 3.1, we obtain the following re-

sult.

Theorem 3.2. Let the function f1(z) defined by (3.1) be in the class Cm(g, h;A,B, λ1, γ).
Suppose also that the function f2(z) defined by (3.1) be in the class Cm(g, h;A,B, λ2, γ). Then
(f1 ⊗ f2)(z) ∈ Cm(g, h;A,B, ξ, γ), where

ξ = p−(
p+m− 1

m

)(
p
m

)
γ(1 +B)(b2p − c2p)(A−B)(p− λ1)(p− λ2)

[ηp(p,A,B, λ1, γ,m)][ηp(p,A,B, λ2, γ,m)]− Λ
,(3.14)

(Λ =

(
p+m− 1

m

)(
p
m

)
c2p(A−B)2(p− λ1)(p− λ2)) .

AJMAA, Vol. 5, No. 2, Art. 14, pp. 1-15, 2009 AJMAA

http://ajmaa.org


MULTIVALENT FUNCTIONS WITH APPLICATIONS 9

The result is sharp for the functions fj(z)(j = 1, 2) given by

(3.15) f1(z) = z−p +

(A−B)(p− λ1)

(
p+m− 1

m

)
ηp(p,A,B, λ1, γ,m)

zp (p ∈ N) ,

and

(3.16) f2(z) = z−p +

(A−B)(p− λ2)

(
p+m− 1

m

)
ηp(p,A,B, λ2, γ,m)

zp (p ∈ N) .

Theorem 3.3. Let the functions fj(z)(j = 1, 2) defined by (3.1) be in the classCm(g, h;A,B, λ, γ).
Then the function h(z) defined by

(3.17) h(z) = z−p +
∞∑
k=p

(a2
k,1 + a2

k,2)z
k

belongs to the class Cm(g, h;A,B,=, γ), where

= = p−

2(
p+m− 1

m
)(

p
m

)γ(1 +B)(b2p − c2p)(A−B)(p− λ)2

[ηp(p,A,B, λ, γ,m)]2 − 2(
p+m− 1

m
)(

p
m

)c2p(A−B)2(p− λ)2

.(3.18)

The result is sharp for the functions fj(z)(j = 1, 2) given already by (3.4).

Proof. Noting that
∞∑
k=p

[ηk(p,A,B, λ, γ,m)]2

[(A−B)(p− λ)(
p+m− 1

m
)]2
a2
k,j ≤

(3.19)


∞∑
k=p

ηk(p,A,B, λ, γ,m)

(A−B)(p− λ)(
p+m− 1

m
)

ak,j


2

≤ 1 (j = 1, 2),

for fj(z) ∈ Cm(g, h;A,B, λ, γ)(j = 1, 2), we have

(3.20)
∞∑
k=p

1

2

[ηk(p,A,B, λ, γ,m)]2

[(A−B)(p− λ)(
p+m− 1

m
)]2

(a2
k,1 + a2

k,2) ≤ 1 .

Therefore, we have to find the largest = such that

(3.21)
ηk(p,A,B,=, γ,m)

(p−=)
≤ [ηk(p,A,B, λ, γ,m)]2

2(A−B)(p− λ)2(
p+m− 1

m
)

(k ≥ p; p ∈ N)
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that is, that

= ≤ p−

2(
p+m− 1

m
)(

k
m

)γ(1 +B)(bk+p − ck+p)(A−B)(p− λ)2

[ηk(p,A,B, λ, γ,m)]2 − 2(
p+m− 1

m
)(

k
m

)ck+p(A−B)2(p− λ)2

(k ≥ p; p ∈ N) .(3.22)

Now, defining a function Ψ(k) by

Ψ(k) = p−

2(
p+m− 1

m
)(
k
m

)γ(1 +B)(bk+p − ck+p)(A−B)(p− λ)2

[ηk(p,A,B, λ, γ,m)]2 − 2(
p+m− 1

m
)(

k
m

)ck+p(A−B)2(p− λ)2

(k ≥ p; p ∈ N) ,(3.23)

we observe that Ψ(k) is an increasing function of k. We thus conclude that

= ≤ Ψ(p) = p−

2(
p+m− 1

m
)(
p
m

)γ(1 +B)(b2p − c2p)(A−B)(p− λ)2

[ηp(p,A,B, λ, γ,m)]2 − 2(
p+m− 1

m
)(

p
m

)c2p(A−B)2(p− λ)2

,(3.24)

which completes the proof of Theorem 3.3.

4. APPLICATIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTIONS

In order to obtain some applications of Theorems 2.1-3.3 to the generalized hypergeometric
functions, we first put the sequences {bk} and {ck}, which are involved in (1.4) and (1.5), as
follows:

(4.1) bk = (
α1 + k

α1

)ck =
(α1 + 1)k(α2)k . . . (αq)k

(β1)k . . . (βs)k

1

k!
,

where

(4.2) ck =
(α1)k . . . (αq)k
(β1)k . . . (βs)k

1

k!
.

We assume further that

αj > 0 (j = 1, . . . , q) and βj > 0 (j = 1, . . . , s) .

The corresponding functions g(z) and h(z) defined by (1.4) and (1.5) then become

(4.3) g(z) = z−p qFs(α1 + 1, α2, . . . , αq; β1, . . . , βs; z)

and

(4.4) h(z) = z−p qFs(α1, . . . , αq; β1, . . . , βs; z) ,

AJMAA, Vol. 5, No. 2, Art. 14, pp. 1-15, 2009 AJMAA

http://ajmaa.org


MULTIVALENT FUNCTIONS WITH APPLICATIONS 11

where qFs(α1, . . . , αq; β1, . . . , βs; z) is the familiar generalized hypergeometric function de-
fined by (see, for example, [21], p. 19)

qFs(α1, . . . , αq; β1, . . . , βs; z) =
∞∑
k=0

(α1)k . . . (αq)k
(β1)k . . . (βs)k

.
zk

k!
(q ≤ s+ 1; q, s ∈ N0 = N ∪ {0}; z ∈ U) .(4.5)

where (θ)ν is the Pochhammer symbol defined, in terms of the Gamma function, by

(4.6) (θ)ν =
Γ(θ + ν)

Γ(θ)
=

{
1, (ν = 0; θ ∈ C\{0}),
(θ + 1) . . . (θ + k − 1), (ν ∈ N ; θ ∈ C) .

Making use of (4.4), the Hadamard product defined by (1.7) can be used to represent the Dziok-
Srivastava linear operator (cf. [6], p. 3)

Hp(α1, . . . , αq; β1, . . . , βs) : Σp → Σp

by means of the following relation :

(Hp(α1, . . . , αq; β1, . . . , βs)f)(z) = z−p qFs(α1, . . . , αq; β1, . . . , βs; z) ∗ f(z)

= z−p +
∞∑
k=p

akck+pz
k = (f ∗ h)(z) ,(4.7)

where ck is given by (4.2). Also, in view of (4.1), the Hadamard product defined by (1.6) repre-
sents a relation similar to (4.7), involving the Dziok-Srivastava operatorHp(α1, . . . , αq; β1, . . . , βs),
which is given by

(Hp(α1, . . . , αq; β1, . . . , βs)f)(z) = z−p qFs(α1 + 1, . . . , αq; β1, . . . , βs; z) ∗ f(z)

= z−p +
∞∑
k=p

ak(
α1 + k + p

α1

)ck+pz
k = (f ∗ g)(z) ,(4.8)

where ck is given by (4.2).
The subordination relation (1.8) in conjunction with (4.7) and (4.8) takes the following form:

γ
((Hp(α1 + 1, . . . , αq; β1, . . . , βs)f)(z))(m)

((Hp(α1, . . . , αq; β1, . . . , βs)f)(z))(m)
≺ γ − (A−B)(p− λ)z

1 +Bz

(4.9) (γ > 0; 0 ≤ B < A ≤ 1; 0 ≤ λ < p; p ≥ m; p, q, s ∈ N ;m ∈ N∗0 ).

Definition 4.1. A function f(z) ∈ Σp of the form (1.1) is said to in the classCp,q,s,m(α1;A,B, λ, γ)
if it satisfies the subordination relation (4.9) above.

We note that:
(i) Cp,q,s,m(α1;A,B, 0, γ) = Cp,q,s,m(α1;A,B, γ) (Raina and Srivastava [18]);
(ii) Cp,q,s,1(α1;A,B, 0, α1) = Ω+

p,q,s(α1;A,B) (Liu and Srivastava [13]).

The following consequences of Theorem 2.1 to Theorem 3.3 can be deduced by applying
(4.1) and (4.2) along with Definition 4.1.

Corollary 4.1. A function f(z) ∈ Σp of the form (1.1) belongs to the classCp,q,s,m(α1;A,B, λ, γ)
if and only if
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∞∑
k=p

ak

[
γ(k + p)(1 +B)

α1

+ (A−B)(p− λ)

](
k
m

)
ck+p(4.10)

≤ (A−B)(p− λ)

(
p+m− 1

m

)
,

where ck is given by (4.2).

Corollary 4.2. Let the function f(z) defined by (1.1) be in the class Cp,q,s,m(α1;A,B, λ, γ).
Then

(4.11) ak ≤
(A−B)(p− λ)(

p+m− 1
m

)[
γ(k + p)(1 +B)

α1

+ (A+B)(p− λ)

]
(
k
m

)ck+p

(k ≥ p; p ∈ N) .

The result is sharp for the function f(z) given by

(4.12) f(z) = z−p +

(A−B)(p− λ)(
p+m− 1

m
)[

γ(k + p)(1 +B)

α1

+ (A+B)(p− λ)

]
(
k
m

)ck+p

zk (k ≥ p; p ∈ N) .

Corollary 4.3. Let a function f(z) ∈ Σp of the form (1.1) belong to the classCp,q,s,m(α1;A,B, λ, γ).
If the sequence {η∗k} is nondecreasing, then

r−p −
(A−B)(p− λ)(

p+m− 1
m

)

η∗p
rp ≤ |f(z)| ≤ r−p +

(A−B)(p− λ)(
p+m− 1

m
)

η∗p
rp(0 < |z| = r < 1) ,(4.13)

where

η∗k = η∗k(p,A,B, λ, γ,m, α1)

=

[
γ(k + p)(1 +B)

α1

+ (A−B)(p− λ)

]
(
k
m

)ck+p(k ≥ p; p ∈ N) .(4.14)

If the sequence
{
η∗k
k

}
is nondecreasing , then

−pr−p−1 −
p(A−B)(p− λ)(

p+m− 1
m

)

η∗p
rp−1 ≤ |f(z)| ≤ −pr−p−1+

(4.15)
p(A−B)(p− λ)(

p+m− 1
m

)

η∗p
rp−1(0 < |z| = r < 1).
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The results (4.13) and (4.15) are sharp with the extremal function f(z) given by

(4.16) f(z) = z−p +

(A−B)(p− λ)(
p+m− 1

m
)

η∗p
zk(p ∈ N) .

Remark 4.1. Putting λ = 0 in Corollary ??, we obtain the correct result for the classCp,q,s,m(α1;A,B, γ)
obtained by Raina and Srivastava [[18], Corollary 3].

Corollary 4.4. Let a function f(z) ∈ Σp of the form (1.1) belong to the classCp,q,s,m(α1;A,B, λ, γ).
Then

(i) f(z) is meromorphically p-valent starlike of order δ (0 ≤ δ < p) in the disc |z| < r∗1,
where

(4.17) r∗1 = inf
k≥p


(p− δ)η∗k

(k + δ)(A−B)(p− λ)(
p+m− 1

m
)


1

k + p

.

(ii) f(z) is meromorphically p-valent convex of order δ (0 ≤ δ < p) in the disc |z| < r∗2, that
is,

(4.18) r∗2 = inf
k≥p


p(p− δ)η∗k

k(k + δ)(A−B)(p− λ)(
p+m− 1

m
)


1

k + p

.

The sequence {η∗k} occuring in (4.17) and (4.18) is given by (4.14). Each of these results is
sharp for the function f(z) given by (4.12).

Corollary 4.5. Let the functions fj(z)(j = 1, 2) defined by (3.1) be in the classCp,q,s,m(α1;A,B, λ, γ).
If the sequence {η∗k} is nondecreasing, then (f1 ⊗ f2)(z) ∈ Cp,q,s,m(α1;A,B, ζ, γ), where

ζ = p−
2p
α1

(
p+m− 1

m

)(
p
m

)
γ(1 +B)(A−B)(p− λ)2

[η∗p(p,A,B, λ, γ,m, α1)]2 −
(
p+m− 1

m

)(
p
m

)
c2p(A−B)2(p− λ)2

,(4.19)

where η∗p(p,A,B, λ, γ,m, α1) is given by (4.12). The result is sharp for the functions fj(z)(j =
1, 2) given by

(4.20) fj(z) = z−p +

(A−B)(p− λ)(
p+m− 1

m
)

η∗p(p,A,B, λ, γ,m, α1)
zp (j = 1, 2; p ∈ N) .

Corollary 4.6. Let the function f1(z) defined by (3.1) be in the class Cp,q,s,m (α1;A,B, λ1, γ).
Suppose also that the function f2(z) defined by (3.1) be in the class Cp,q,s,m (α1;A,B, λ2, γ). If
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the sequence {η∗k} is nondecreasing, then (f1 ⊗ f2)(z) ∈ Cp,q,s,m(α1;A,B, ξ, γ), where

ξ = p−
2p
α1

(
p+m− 1

m

)(
p
m

)
γ(1 +B)(A−B)(p− λ1)(p− λ2)

[η∗p(p,A,B, λ1, γ,m, α1)][η∗p(p,A,B, λ2, γ,m, α1)]− Ω
(4.21)

(Ω =

(
p+m− 1

m

)(
p
m

)
c2p(A−B)2(p− λ1)(p− λ2)) .

The result is sharp for the functions fj(z)(j = 1, 2) given by

(4.22) f1(z) = z−p +

(A−B)(p− λ1)(
p+m− 1

m
)

η∗p(p,A,B, λ1, γ,m, α1)
zp (p ∈ N) ,

and

(4.23) f2(z) = z−p +

(A−B)(p− λ2)(
p+m− 1

m
)

η∗p(p,A,B, λ2, γ,m, α1)
zp (p ∈ N) .

Corollary 4.7. Let the functions fj(z)(j = 1, 2) defined by (3.1) be in the classCp,q,s,m(α1; A, B, λ, γ)
. If the sequence {η∗k} is nondecreasing, then the function h(z) defined by (3.17) belongs to the
class Cp,q,s,m(α1; A, B, =, γ), where

= = p−
4p
α1

(
p+m− 1

m
)(

p
m

)γ(1 +B)(A−B)(p− λ)2

[η∗p(p,A,B, λ, γ,m, α1)]2 − 2(
p+m− 1

m
)(

p
m

)c2p(A−B)2(p− λ)2

.(4.24)

The result is sharp for the functions fj(z)(j = 1, 2) given already by (4.21).
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