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ABSTRACT. In this present investigation, the authors obtain coefficient inequality for certain
normalized analytic functions of complex orderf(z) defined on the open unit disk for which

1 + 1
b

[
zf ′(z)+αz2f ′′(z)

(1−α)f(z)+αzf ′(z) − 1
]

(0 ≤ α ≤ 1 andb 6= 0 be a complex number) lies in a region

starlike with respect to 1 and is symmetric with respect to the real axis. Also certain applications
of the main result for a class of functions of complex order defined by convolution are given.
As a special case of this result, coefficient inequality for a class of functions defined through
fractional derivatives is obtained. The motivation of this paper is to give a generalization of the
coefficient inequalities of the subclasses of starlike and convex functions of complex order.
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1. I NTRODUCTION

LetA denote the class of allanalyticfunctionsf(z) of the form

(1.1) f(z) = z +
∞∑

k=2

akz
k (z ∈ ∆ := {z ∈ C : |z| < 1})

andS be the subclass ofA consisting of univalent functions. Letφ(z) be an analytic function
with positive real part on∆ with φ(0) = 1, φ′(0) > 0 which maps the unit disk∆ onto a region
starlike with respect to 1 which is symmetric with respect to the real axis. LetS∗(φ) be the class
of functions inf ∈ S for which

zf ′(z)

f(z)
≺ φ(z), (z ∈ ∆)

andC(φ) be the class of functions inf ∈ S for which

1 +
zf ′′(z)

f ′(z)
≺ φ(z), (z ∈ ∆),

where≺ denotes the subordination between analytic functions. These classes were introduced
and studied by Ma and Minda [5]. They have obtained the Fekete-Szegö inequality for the
functions in the classC(φ). Sincef(z) ∈ C(φ) if and only if zf ′(z) ∈ S∗(φ), we get the
Fekete-Szegö problem for functions in the classS∗(φ).

For a brief history of Fekete-Szegö problem for the class of starlike, convex and close-to-
convex functions, see the paper by Srivastava et al. [9].

Very recently Ravichandran et al. [8] introduced the following classes of functions involving
complex order.

Definition 1.1. Let b 6= 0 be a complex number. Letφ(z) be an analytic function with positive
real part on∆ with φ(0) = 1, φ′(0) > 0 which maps the unit disk∆ onto a region starlike with
respect to1 which is symmetric with respect to the real axis. Then the classS∗b (φ) consists of
all analytic functionsf ∈ A satisfying

1 +
1

b

(
zf ′(z)

f(z)
− 1

)
≺ φ(z).

The classCb(φ) consists of functionsf ∈ A satisfying

1 +
1

b

zf ′′(z)

f ′(z)
≺ φ(z).

They have obtained the Fekete-Szegö inequalities for functions in these classes.

Motivated by the aforementioned works, we obtain the coefficient inequality for functions of
complex order in a more general classMα,b(φ) which we define below. Also we give applica-
tions of our results to certain functions defined through convolution (or the Hadamard product)
and in particular we consider a classMλ

α,b(φ) of functions defined by fractional derivatives.
The motivation of this paper is to give a generalization of the coefficient inequalities of the
subclasses of starlike and convex functions of complex order obtained Ravichandran et al. [8].

Definition 1.2. Let b 6= 0 be a complex number. Letφ(z) be an analytic function with positive
real part on∆ with φ′(0) = 1, φ′(0) > 0 which maps the unit disk∆ onto a region starlike with
respect to 1 which is symmmetric with respect to the real axis. Then the classMα,b(φ) consists
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of all functionsf ∈ A satisfying

1 +
1

b

[
zf ′(z) + αz2f ′′(z)

(1− α)f(z) + αzf ′(z)
− 1

]
≺ φ(z) (0 ≤ α ≤ 1).

For fixedg ∈ A, we define the classM g
α,b(φ) to be the class of functionsf ∈ A for which

(f ∗ g) ∈ M g
α,b(φ).

To prove our main result, we need the following :

Lemma 1.1. [8] If p(z) = 1 + c1z + c2z
2 + · · · is a function with positive real part, then

|c2 − µc2
1| ≤ 2 max{1, |2µ− 1|}

and the result is sharp for the functions given by

p(z) =
1 + z2

1− z2
, p(z) =

1 + z

1− z
.

2. COEFFICIENT PROBLEM

Our main result is the following :

Theorem 2.1. Let φ(z) = 1 + B1z + B2z
2 + B3z

3 + · · · . If f(z) given by (1.1) belongs to
Mα,b(φ), then

|a3 − µa2
2| ≤

B1|b|
2(1 + 2α)

max

{
1,

∣∣∣∣B2

B1

+

(
1− 2µ(1 + 2α)

(1 + α)2

)
bB1

∣∣∣∣} .

The result is sharp.

Proof. If f(z) ∈ Mα,b(φ), then there is a Schwarz functionw(z), analytic in∆ with w(0) = 0
and|w(z)| < 1 in ∆ such that

(2.1) 1 +
1

b

[
zf ′(z) + αz2f ′′(z)

(1− α)f(z) + αzf ′(z)
− 1

]
= φ(w(z)).

Definep1(z) by

(2.2) p1(z) =
1 + w(z)

1− w(z)
= 1 + c1z + c2z

2 + · · · .

Sincew(z) is a Schwarz function, we see that<(p1(z)) > 0 andp1(0) = 1. Define the function
p(z) by

(2.3) p(z) = 1 +
1

b

[
zf ′(z) + αz2f ′′(z)

(1− α)f(z) + αzf ′(z)
− 1

]
= 1 + b1z + b2z

2 + · · · .

In view of equations (2.1), (2.2), (2.3), we have

(2.4) p(z) = φ

(
p1(z)− 1

p1(z) + 1

)
.

Since
p1(z)− 1

p1(z) + 1
=

1

2

[
c1z +

(
c2 −

c2
1

2

)
z2 +

(
c3 −

c3
1

4
− c1c2

)
z3 + · · ·

]
and therefore

φ

(
p1(z)− 1

p1(z) + 1

)
= 1 +

1

2
B1c1z +

[
1

2
B1

(
c2 −

c2
1

2

)
+

B2c
2
1

4

]
z2 + · · · .
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from this equation (2.4), we obtain

(2.5) b1 =
B1c1

2
,

(2.6) b2 =
1

2

(
B1

(
c2 −

1

2
c2
1

))
+

1

4
B2c

2
1.

from the equation (2.3), we obtain

(2.7) a2 =
bb1

(1 + α)
,

(2.8) a3 =
bb2 + b2b2

1

2(1 + 2α)
.

By applying (2.5), (2.6) in (2.7) and (2.8) we have

a2 =
bB1c1

2(1 + α)
,

a3 =
bB1c2

4(1 + 2α)
+

c2
1

8(1 + 2α)

[
b2B2

1 − b(B1 −B2)
]
.

Therefore we have

(2.9) a3 − µa2
2 =

bB1

4(1 + 2α)

[
c2 − vc2

1

]
where

v =
1

2

[
1− B2

B1

+

[
2µ(1 + 2α)

(1 + α)2
− 1

]
bB1

]
.

Our result now follows by the application of Lemma 1.1. The result is sharp for the function
defined by

1 +
1

b

[
zf ′(z) + αz2f ′′(z)

(1− α)f(z) + αzf ′(z)
− 1

]
= φ(z2)

and

1 +
1

b

[
zf ′(z) + αz2f ′′(z)

(1− α)f(z) + αzf ′(z)
− 1

]
= φ(z).

Forα = 1, in Theorem 2.1 we get the result obtained by Ravichandran et al. [8].

Corollary 2.2. Let φ(z) = 1 + B1z + B2z
2 + B3z

3 + · · · . If f(z) given by (1.1) belongs to
S∗b (φ), then

|a3 − µa2
2| ≤

B1|b|
2

max

{
1;

∣∣∣∣B2

B1

+ (1− 2µ)bB1

∣∣∣∣} .

The result is sharp.

For a special caseα = 0, Theorem 2.1 reduces to another result obtained by Ravichandran et
al. [8].

Corollary 2.3. Let φ(z) = 1 + B1z + B2z
2 + B3z

3 + · · · . If f(z) given by (1.1) belongs to
Cb(φ), then

|a3 − µa2
2| ≤

B1|b|
6

max

{
1;

∣∣∣∣B2

B1

+

(
1− 3µ

2

)
bB1

∣∣∣∣} .

The result is sharp.
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Example 2.1. By takingα = 0, b = (1 − β)e−iλcosλ, φ(z) = 1+z
1−z

, we obtain the following
sharp inequality forλ-spirallike functionf(z) of orderβ;

|a3 − µa2
2| ≤

(1− β)cosλ

1 + 2α
max

{
1,

∣∣∣∣eiλ + 2

(
1− 2µ(1 + 2α)

(1 + α)2

)
(1− β)cosλ

∣∣∣∣} .

This result was obtained by Keogh and Merkes [4].

3. APPLICATIONS TO FUNCTION DEFINED BY FRACTIONAL DERIVATIVES

In order to introduce the classMλ
α,b(φ), we need the following :

Definition 3.1. (see [6, 7]; see also [10, 11]) Letf(z) be analytic in a simply connected region
of thez-plane containing the origin. The fractional derivative off of orderλ is defined by

Dλ
z f(z) =

1

Γ(1− λ)

d

dz

∫ z

0

f(ξ)

(z − ξ)λ
dξ (0 ≤ λ < 1),

where the multiplicity of(z − ξ)λ is removed by requiring thatlog(z − ξ) is real forz − ξ > 0.

Using the above Definition 3.1 and its known extensions involving fractional derivatives and
fractional integrals, Owa and Srivastava [6] introduced the operatorΩλ : A → A defined by

(Ωλf)(z) = Γ(2− λ)zλDλ
z f(z), (λ 6= 2, 3, 4, . . . ).

The classMλ
α,b(φ) consist of functionsf ∈ A for which Ωλf ∈ Mα,b(φ). Note thatM0

0,b(φ) ≡
S∗b (φ) andMλ

α,b(φ) is a special case of the classM g
α,b(φ) when

(3.1) g(z) = z +
∞∑

n=2

Γ(n + 1)Γ(2− λ)

Γ(n + 1− λ)
zn.

Let

g(z) = z +
∞∑

n=2

gnz
n (gn > 0).

Since

f(z) = z +
∞∑

n=2

anz
n ∈ M g

α,b(φ)

iff

f(z) ∗ g(z) = z +
∞∑

n=2

gnanz
n ∈ Mα,b(φ),

we obtain the coefficient estimate for functions in the classM g
α,b(φ), from the corresponding

estimate for functions in the classMα,b(φ). Applying Theorem 2.1 for function

f ∗ g(z) = z + g2a2z
2 + g3a3z

3 + . . . ,

we get the following theorem after an obvious change of the parameterµ :

Theorem 3.1.Let the functionφ(z) be given byφ(z) = 1 + B1z + B2z
2 + B3z

3 + · · · . If f(z)
given by (1.1) belongs toM g

α,b(φ), then

|a3 − µa2
2| =

B1|b|
2(1 + 2α)g3

max

{
1,

∣∣∣∣B2

B1

+

(
1− 2µ(1 + 2α)g3

(1 + α)2g2
2

)
bB1

∣∣∣∣} .

The result is sharp.
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Since

(Ωλf)(z) = z +
∞∑

n=2

Γ(n + 1)Γ(2− λ)

Γ(n + 1− λ)
anz

n,

we have

(3.2) g2 :=
Γ(3)Γ(2− λ)

Γ(3− λ)
=

2

(2− λ)
,

(3.3) g3 :=
Γ(4)Γ(2− λ)

Γ(4− λ)
=

6

(2− λ)(3− λ)
.

for g2 andg3 given by (3.2) and (3.3), Theorem 3.1 reduces to the following :

Theorem 3.2.Let the functionφ(z) be given byφ(z) = 1 + B1z + B2z
2 + B3z

3 + · · · . If f(z)
given by (1.1) belongs toMλ

α,b(φ) then

|a3 − µa2
2| ≤

(2− λ)(3− λ)B1|b|
12(1 + 2α)

max

{
1,

∣∣∣∣B2

B1

+

(
1− 3µ(1 + 2α)(2− λ)

(3− λ)(1 + α)2

)
bB1

∣∣∣∣} .

The result is sharp.
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