|
||||||||||||
if(isset($title)){?> }?> if(isset($author)){?> }?> |
Paper's Title:
Generalized Quasilinearization Method for the Forced Düffing Equation
Author(s):
Ramzi S. N. Alsaedi
Department of Mathematics, King Abdul Aziz University,
Jeddah P.O. Box 80203,
Saudi Arabia.
ramzialsaedi@yahoo.co.uk
Abstract:
A generalized quasilinearization method for the periodic
problem related to the forced D\"{u}ffing equation is developed and a
sequence of approximate solutions converging monotonically and quadratically
to the solution of the given problem is presented.
Paper's Title:
Common Fixed Point Results for Banach Operator Pairs and Applications to Best Approximation
Author(s):
Hemant Kumar Nashine
Department of Mathematics,
Disha Institute of Management and Technology,
Satya Vihar, Vidhansabha - Chandrakhuri Marg (Baloda Bazar Road),
Mandir Hasaud,
Raipur - 492101(Chhattisgarh), India.
hemantnashine@rediffmail.com
nashine_09@rediffmail.com
Abstract:
The common fixed point results for Banach operator pair with generalized nonexpansive mappings in q-normed space have been obtained in the present work. As application, some more general best approximation results have also been determined without the assumption of linearity or affinity of mappings. These results unify and generalize various existing known results with the aid of more general class of noncommuting mappings.
Paper's Title:
On Convergence Theorems of an Implicit Iterative Process with Errors for a
Finite Family of Asymptotically quasi I-nonexpansive Mappings
Author(s):
Farrukh Mukhamedov and Mansoor Saburov
Department of Computational & Theoretical
Sciences,
Faculty of Sciences, International Islamic University Malaysia,
P.O. Box, 141, 25710, Kuantan,
Malaysia
Abstract:
In this paper we prove the weak and strong convergence of the implicit iterative process with errors to a common fixed point of a finite family {Tj}Ni=1 of asymptotically quasi Ij-nonexpansive mappings as well as a family of {Ij}Nj=1 of asymptotically quasi nonexpansive mappings in the framework of Banach spaces. The obtained results improve and generalize the corresponding results in the existing literature.
Paper's Title:
Strong Convergence Theorems for a Common Zero of an Infinite Family of Gamma-Inverse Strongly Monotone Maps with Applications
Author(s):
Charles Ejike Chidume, Ogonnaya Michael Romanus, and Ukamaka Victoria Nnyaba
African University of Science and
Technology, Abuja,
Nigeria.
E-mail: cchidume@aust.edu.ng
E-mail: romanusogonnaya@gmail.com
E-mail: nnyabavictoriau@gmail.com
Abstract:
Let E be a uniformly convex and uniformly smooth real Banach space with
dual space E* and let Ak:E→E*,
k=1, 2, 3 , ...
be a family of inverse strongly monotone maps such that ∩∞k=1
Ak-1(0)≠∅.
A new iterative algorithm is constructed and proved to converge strongly to a
common zero of the family.
As a consequence of this result, a strong convergence theorem for approximating
a common J-fixed point for an infinite family of
gamma-strictly J-pseudocontractive maps is proved. These results are new and
improve recent results obtained for these classes of nonlinear maps.
Furthermore, the technique of proof is of independent interest.
Paper's Title:
Some Inequalities Concerning Derivative and Maximum Modulus of Polynomials
Author(s):
N. K. Govil, A. Liman and W. M. Shah
Department of Mathematics & Statistics,
Auburn University, Auburn,
Alabama 36849-5310,
U.S.A
Department of Mathematics,
National Institute of Technology,
Srinagar, Kashmir,
India - 190006
Department of Mathematics,
Kashmir University,
Srinagar, Kashmir,
India - 190006
govilnk@auburn.edu
abliman22@yahoo.com
wmshah@rediffmail.com
Abstract:
In this paper, we prove some compact generalizations of some well-known Bernstein type inequalities concerning the maximum modulus of a polynomial and its derivative in terms of maximum modulus of a polynomial on the unit circle. Besides, an inequality for self-inversive polynomials has also been obtained, which in particular gives some known inequalities for this class of polynomials. All the inequalities obtained are sharp.
Paper's Title:
Integrability of Sine and Cosine Series Having Coefficients of a New Class
Author(s):
L. Leindler Bolyai Institute,
University of Szeged, Aradi Vértanúk Tere 1, H-6720 Szeged, Hungary
leindler@math.u-szeged.hu
Abstract:
Some integrability theorems or only their sufficient part are
generalized such that the coefficients of the sine and cosine series belong to a
new class of sequences being wider than the class of sequences of rest bounded
variation, which itself is a generalization of the monotone decreasing
sequences, but a subclass of the almost monotone decreasing sequences. It is
also verified that the new class of sequences and the class of almost monotone
decreasing sequences are not comparable.
Paper's Title:
Essential Random Fixed Point Set of Random Operators
Author(s):
Ismat Beg
Centre for Advanced Studies in Mathematics,
Lahore University of Management Sciences (LUMS),
54792-Lahore, PAKISTAN.
ibeg@lums.edu.pk
URL: http://web.lums.edu.pk/~ibeg
Abstract:
We obtain necessary and sufficient conditions for the existence of essential random fixed point of a random operator defined on a compact metric space. The structure of the set of essential random fixed points is also studied.
Paper's Title:
Strong Convergence Theorem for a Common Fixed Point of an
Infinite Family of J-nonexpansive Maps with Applications
Author(s):
Charlse Ejike Chidume, Otubo Emmanuel Ezzaka and Chinedu Godwin Ezea
African University of Science and
Technology,
Abuja,
Nigeria.
E-mail:
cchidume@aust.edu.ng
Ebonyi State University,
Abakaliki,
Nigeria.
E-mail: mrzzaka@yahoo.com
Nnamdi Azikiwe University,
Awka,
Nigeria.
E-mail: chinedu.ezea@gmail.com
Abstract:
Let E be a uniformly convex and uniformly smooth real Banach space with dual space E*. Let {Ti}∞i=1 be a family of J-nonexpansive maps, where, for each i,~Ti maps E to 2E*. A new class of maps, J-nonexpansive maps from E to E*, an analogue of nonexpansive self maps of E, is introduced. Assuming that the set of common J-fixed points of {Ti}∞i=1 is nonempty, an iterative scheme is constructed and proved to converge strongly to a point x* in ∩∞n=1FJTi. This result is then applied, in the case that E is a real Hilbert space to obtain a strong convergence theorem for approximation of a common fixed point for an infinite family of nonexpansive maps, assuming existences. The theorem obtained is compared with some important results in the literature. Finally, the technique of proof is also of independent interest.
Paper's Title:
A Comparison Between Two Different Stochastic Epidemic Models with Respect to the Entropy
Author(s):
Farzad Fatehi and Tayebe Waezizadeh
Department of Mathematics,
University of Sussex,
Brighton BN1 9QH,
UK.
E-mail: f.fatehi@sussex.ac.uk
URL:
http://www.sussex.ac.uk/profiles/361251
Department of Pure Mathematics, Faculty
of Mathematics and Computer,
Shahid Bahonar University of Kerman,
Kerman 76169-14111,
Iran.
E-mail: waezizadeh@uk.ac.ir
URL:
http://academicstaff.uk.ac.ir/en/tavaezizadeh
Abstract:
In this paper at first a brief history of mathematical models is presented with the aim to clarify the reliability of stochastic models over deterministic models. Next, the necessary background about random variables and stochastic processes, especially Markov chains and the entropy are introduced. After that, entropy of SIR stochastic models is computed and it is proven that an epidemic will disappear after a long time. Entropy of a stochastic mathematical model determines the average uncertainty about the outcome of that random experiment. At the end, we introduce a chain binomial epidemic model and compute its entropy, which is then compared with the DTMC SIR epidemic model to show which one is nearer to reality.
Paper's Title:
Some fixed point results in partial S-metric spaces
Author(s):
M. M. Rezaee, S. Sedghi, A. Mukheimer, K. Abodayeh, and Z. D. Mitrovic
Department of Mathematics, Qaemshahr
Branch,
Islamic Azad University, Qaemshahr,
Iran.
E-mail: Rezaee.mohammad.m@gmail.com
Department of Mathematics, Qaemshahr
Branch,
Islamic Azad University, Qaemshahr,
Iran.
E-mail: sedghi.gh@qaemiau.ac.ir
Department of Mathematics and General
Sciences,
Prince Sultan University, Riyadh,
KSA.
E-mail: mukheimer@psu.edu.sa
Department of Mathematics and General
Sciences,
Prince Sultan University, Riyadh,
KSA.
E-mail: kamal@psu.edu.sa
Nonlinear Analysis Research Group,
Faculty of Mathematics and Statistics,
Ton Duc Thang University, Ho Chi Minh City,
Vietnam.
E-mail: zoran.mitrovic@tdtu.edu.vn
Abstract:
We introduce in this article a new class of generalized metric spaces, called partial S-metric spaces. In addition, we also give some interesting results on fixed points in the partial S-metric spaces and some applications.
Paper's Title:
A New Relaxed b-metric Type and Fixed Point Results
Author(s):
P. Singh, V. Singh and Thokozani Cyprian Martin Jele
Department of Mathematics,
University of KwaZulu-Natal,
Private Bag X54001, Durban,
South Africa.
E-mail: singhp@ukzn.ac.za,
singhv@ukzn.ac.za,
thokozani.jele@nwu.ac.za
Abstract:
The purpose of this paper is to introduce a new relaxed α, β b-metric type by relaxing the triangle inequality. We investigate the effect that this generalization has on fixed point theorems.
Paper's Title:
Algorithms for Nonlinear Problems Involving Strictly Pseudocontractive Mappings
Author(s):
Mathew Olajiire Aibinu1, Surendra Colin Thakur2, Sibusiso Moyo3
1Institute for Systems Science
& KZN E-Skill CoLab,
Durban University of Technology,
Durban 4000,
South Africa.
1DSI-NRF
Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS),
Johannesburg,
South Africa.
E-mail: moaibinu@yahoo.com
mathewa@dut.ac.za
2 KZN E-Skill CoLab,
Durban University of Technology,
Durban 4000,
South Africa.
E-mail: thakur@dut.ac.za
3Institute for Systems Science & Office of the DVC Research,
Innovation & Engagement Milena Court,
Durban University of Technology,
Durban 4000,
South Africa.
E-mail: dvcrie@dut.ac.za
Abstract:
The puzzles in approximating a fixed point of nonlinear problems involving the class of strictly pseudocontractive mappings are conquered in this paper through viscosity implicit rules. Using generalized contraction mappings, a new viscosity iterative algorithm which is implicit in nature is proposed and analysed in Banach spaces for the class of strictly pseudocontractive mappings. The computations and analysis which are used in the proposed scheme are easy to follow and this gives rooms for a broad application of the scheme. It is obtained that the proposed iterative algorithm converges strongly to a fixed point of a μ-strictly pseudocontractive mapping which also solves a variational inequality problem. The result is also shown to hold for finite family of strictly pseudocontractive mappings. A numerical example is given to show the skillfulness of the proposed scheme and its implementation.
Paper's Title:
Coincidences and Fixed Points of Hybrid Maps in Symmetric Spaces
Author(s):
S. L. Singh and Bhagwati Prasad
Vedic MRI, 21 Govind Nagar,
Department of Mathematics, Gurukula Kangri University,
Rishikesh 249201
India
vedicmri@gmail.com
Hardwar 249404,
India
Abstract:
The purpose of this paper is to obtain a new coincidence theorem for a
single-valued and two multivalued operators in symmetric spaces. We derive
fixed point theorems and discuss some special cases and applications.
Paper's Title:
1-type Pseudo-Chebyshev Subspaces in Generalized 2-normed Spaces
Author(s):
Sh. Rezapour
Department of Mathematics, Azarbaijan University of Tarbiat Moallem,
Azarshahr, Tabriz,
Iran
sh.rezapour@azaruniv.edu
Abstract:
We construct a generalized 2-normed space from every normed space.
We introduce 1-type pseudo-Chebyshev subspaces in generalized
2-normed spaces and give some results in this field.
Paper's Title:
C*-valued metric projection and Moore-Penrose inverse on Hilbert C*-modules
Author(s):
M. Eshaghi Gordji, H. Fathi and S.A.R. Hosseinioun
Department of Mathematics,
Semnan University, P.O. Box 35195-363, Semnan,
Iran.
Center of Excellence in Nonlinear Analysis and Applications (CENAA),
Semnan University,
Iran.
E-mail: Madjid.Eshaghi@gmail.com
Department of Mathematics,
Shahid Beheshti University, Tehran,
Iran.
E-mail: Hedayat.fathi@yahoo.com
Department of Mathematical Sciences,
University of Arkansas, Fayetteville, Arkansas 72701,
USA.
E-mail: shossein@uark.net
Abstract:
Let t be a regular operator between Hilbert C*-modules and t† be its Moore-Penrose inverse. We give some characterizations for t† based on C*-valued metric projection. Moore-Penrose inverse of bounded operators and elements of a C*-algebra is studied as a special case.
Paper's Title:
Some Inequalities of the Hermite-Hadamard Type for k-Fractional Conformable Integrals
Author(s):
C.-J. Huang, G. Rahman, K. S. Nisar, A. Ghaffar and F. Qi
Department of Mathematics, Ganzhou Teachers College,
Ganzhou 341000, Jiangxi,
China.
E-mail:
hcj73jx@126.com ,
huangcj1973@qq.com
Department of Mathematics, Shaheed Benazir
Bhutto University,
Sheringal, Upper Dir, Khyber Pakhtoonkhwa,
Pakistan.
E-mail: gauhar55uom@gmail.com
Department of Mathematics, College of Arts
and Science at Wadi Aldawaser, 11991,
Prince Sattam Bin Abdulaziz University, Riyadh Region,
Kingdom of Saudi Arabia.
E-mail: n.sooppy@psau.edu.sa,
ksnisar1@gmail.com
Department of Mathematical Science,
Balochistan University of Information Technology,
Engineering and Management Sciences, Quetta,
Pakistan.
E-mail: abdulghaffar.jaffar@gmail.com
School of Mathematical Sciences, Tianjin
Polytechnic University,
Tianjin 300387,
China; Institute of Mathematics,
Henan Polytechnic University, Jiaozuo 454010, Henan,
China.
E-mail: qifeng618@gmail.com,
qifeng618@qq.com
Abstract:
In the paper, the authors deal with generalized k-fractional conformable integrals, establish some inequalities of the Hermite-Hadamard type for generalized k-fractional conformable integrals for convex functions, and generalize known inequalities of the Hermite-Hadamard type for conformable fractional integrals.
Paper's Title:
Numerical Solution of Certain Types of Fredholm-Volterra Integro-Fractional Differential Equations via Bernstein Polynomials
Author(s):
Alias B. Khalaf1, Azhaar H. Sallo2 and Shazad S. Ahmed3
1Department
of Mathematics, College of Science,
University of Duhok,
Kurdistan Region,
Iraq.
E-mail: aliasbkhalaf@uod.ac
2Department
of Mathematics, College of Science,
University of Duhok,
Kurdistan Region,
Iraq.
E-mail: azhaarsallo@uod.ac
3Department
of Mathematics, College of Science,
University of Sulaimani,
Kurdistan Region,
Iraq.
E-mail: shazad.ahmed@univsul.edu
Abstract:
In this article we obtain a numerical solution for a certain fractional order integro-differential equations of Fredholm-Volterra type, where the fractional derivative is defined in Caputo sense. The properties of Bernstein polynomials are applied in order to convert the fractional order integro-differential equations to the solution of algebraic equations. Some numerical examples are investigated to illustrate the method. Moreover, the results obtained by this method are compared with the exact solution and with the results of some existing methods as well.
Paper's Title:
Optimal Conditions using Multi-valued G-Presic type Mapping
Author(s):
Deb Sarkar, Ramakant Bhardwaj, Vandana Rathore, and Pulak Konar
Department of Mathematics, Amity
University, Kadampukur, 24PGS(N), Kolkata, West Bengal, 700135,
India.
E-mail: debsarkar1996@gmail.com
Department of Mathematics, Amity
University, Kadampukur, 24PGS(N), Kolkata, West Bengal, 700135,
India.
E-mail: drrkbhardwaj100@gmail.com
School of Engineering and Technology,
Jagran Lakecity University, Bhopal, MP-462044,
India.
E-mail: drvandana@jlu.edu.in
Department of Mathematics,
VIT University, Chennai, Tamil Nadu-600127,
India.
E-mail: pulakkonar@gmail.com
Abstract:
In the present paper, some best proximity results have been presented using the concept of G-Presic type multi-valued mapping. These results are the extensions of Presic's theorem in the non-self mapping. A suitable example has also been given. Here, some applications are presented in θ-chainable space and ordered metric space.
Search and serve lasted 1 second(s).